Proper tests

This commit is contained in:
obscuren 2014-02-24 12:44:29 +01:00
parent b29c1eecd1
commit 88a9c62fcc
2 changed files with 24 additions and 406 deletions

@ -6,11 +6,8 @@ import (
"fmt" "fmt"
"github.com/ethereum/eth-go/ethutil" "github.com/ethereum/eth-go/ethutil"
_ "github.com/ethereum/eth-go/ethwire" _ "github.com/ethereum/eth-go/ethwire"
"github.com/obscuren/secp256k1-go"
"log" "log"
"math"
"math/big" "math/big"
"strconv"
"sync" "sync"
"time" "time"
) )
@ -113,11 +110,14 @@ func (bm *BlockManager) ApplyTransactions(block *Block, txs []*Transaction) {
// If there's no recipient, it's a contract // If there's no recipient, it's a contract
if tx.IsContract() { if tx.IsContract() {
block.MakeContract(tx) block.MakeContract(tx)
bm.ProcessContract(tx, block) } else {
if contract := block.GetContract(tx.Recipient); contract != nil {
bm.ProcessContract(contract, tx, block)
} else { } else {
bm.TransactionPool.ProcessTransaction(tx, block) bm.TransactionPool.ProcessTransaction(tx, block)
} }
} }
}
} }
// Block processing and validating with a given (temporarily) state // Block processing and validating with a given (temporarily) state
@ -300,7 +300,7 @@ func (bm *BlockManager) Stop() {
bm.bc.Stop() bm.bc.Stop()
} }
func (bm *BlockManager) ProcessContract(tx *Transaction, block *Block) { func (bm *BlockManager) ProcessContract(contract *Contract, tx *Transaction, block *Block) {
// Recovering function in case the VM had any errors // Recovering function in case the VM had any errors
/* /*
defer func() { defer func() {
@ -310,402 +310,16 @@ func (bm *BlockManager) ProcessContract(tx *Transaction, block *Block) {
}() }()
*/ */
// Process contract vm := &Vm{}
bm.ProcContract(tx, block, func(opType OpType) bool { vm.Process(contract, NewState(block.state), RuntimeVars{
// TODO turn on once big ints are in place address: tx.Hash()[12:],
//if !block.PayFee(tx.Hash(), StepFee.Uint64()) { blockNumber: block.BlockInfo().Number,
// return false sender: tx.Sender(),
//} prevHash: block.PrevHash,
coinbase: block.Coinbase,
return true // Continue time: block.Time,
diff: block.Difficulty,
txValue: tx.Value,
txData: tx.Data,
}) })
} }
// Contract evaluation is done here.
func (bm *BlockManager) ProcContract(tx *Transaction, block *Block, cb TxCallback) {
addr := tx.Hash()[12:]
// Instruction pointer
pc := 0
blockInfo := bm.bc.BlockInfo(block)
contract := block.GetContract(addr)
if contract == nil {
fmt.Println("Contract not found")
return
}
Pow256 := ethutil.BigPow(2, 256)
if ethutil.Config.Debug {
fmt.Printf("# op\n")
}
stepcount := 0
totalFee := new(big.Int)
// helper function for getting a contract's memory address
getMem := func(num int) *ethutil.Value {
nb := ethutil.BigToBytes(big.NewInt(int64(num)), 256)
return contract.Addr(nb)
}
out:
for {
stepcount++
// The base big int for all calculations. Use this for any results.
base := new(big.Int)
val := getMem(pc)
//fmt.Printf("%x = %d, %v %x\n", r, len(r), v, nb)
op := OpCode(val.Uint())
var fee *big.Int = new(big.Int)
var fee2 *big.Int = new(big.Int)
if stepcount > 16 {
fee.Add(fee, StepFee)
}
// Calculate the fees
switch op {
case oSSTORE:
y, x := bm.stack.Peekn()
val := contract.Addr(ethutil.BigToBytes(x, 256))
if val.IsEmpty() && len(y.Bytes()) > 0 {
fee2.Add(DataFee, StoreFee)
} else {
fee2.Sub(DataFee, StoreFee)
}
case oSLOAD:
fee.Add(fee, StoreFee)
case oEXTRO, oBALANCE:
fee.Add(fee, ExtroFee)
case oSHA256, oRIPEMD160, oECMUL, oECADD, oECSIGN, oECRECOVER, oECVALID:
fee.Add(fee, CryptoFee)
case oMKTX:
fee.Add(fee, ContractFee)
}
tf := new(big.Int).Add(fee, fee2)
if contract.Amount.Cmp(tf) < 0 {
break
}
// Add the fee to the total fee. It's subtracted when we're done looping
totalFee.Add(totalFee, tf)
if !cb(0) {
break
}
if ethutil.Config.Debug {
fmt.Printf("%-3d %-4s", pc, op.String())
}
switch op {
case oSTOP:
fmt.Println("")
break out
case oADD:
x, y := bm.stack.Popn()
// (x + y) % 2 ** 256
base.Add(x, y)
base.Mod(base, Pow256)
// Pop result back on the stack
bm.stack.Push(base)
case oSUB:
x, y := bm.stack.Popn()
// (x - y) % 2 ** 256
base.Sub(x, y)
base.Mod(base, Pow256)
// Pop result back on the stack
bm.stack.Push(base)
case oMUL:
x, y := bm.stack.Popn()
// (x * y) % 2 ** 256
base.Mul(x, y)
base.Mod(base, Pow256)
// Pop result back on the stack
bm.stack.Push(base)
case oDIV:
x, y := bm.stack.Popn()
// floor(x / y)
base.Div(x, y)
// Pop result back on the stack
bm.stack.Push(base)
case oSDIV:
x, y := bm.stack.Popn()
// n > 2**255
if x.Cmp(Pow256) > 0 {
x.Sub(Pow256, x)
}
if y.Cmp(Pow256) > 0 {
y.Sub(Pow256, y)
}
z := new(big.Int)
z.Div(x, y)
if z.Cmp(Pow256) > 0 {
z.Sub(Pow256, z)
}
// Push result on to the stack
bm.stack.Push(z)
case oMOD:
x, y := bm.stack.Popn()
base.Mod(x, y)
bm.stack.Push(base)
case oSMOD:
x, y := bm.stack.Popn()
// n > 2**255
if x.Cmp(Pow256) > 0 {
x.Sub(Pow256, x)
}
if y.Cmp(Pow256) > 0 {
y.Sub(Pow256, y)
}
z := new(big.Int)
z.Mod(x, y)
if z.Cmp(Pow256) > 0 {
z.Sub(Pow256, z)
}
// Push result on to the stack
bm.stack.Push(z)
case oEXP:
x, y := bm.stack.Popn()
base.Exp(x, y, Pow256)
bm.stack.Push(base)
case oNEG:
base.Sub(Pow256, bm.stack.Pop())
bm.stack.Push(base)
case oLT:
x, y := bm.stack.Popn()
// x < y
if x.Cmp(y) < 0 {
bm.stack.Push(ethutil.BigTrue)
} else {
bm.stack.Push(ethutil.BigFalse)
}
case oLE:
x, y := bm.stack.Popn()
// x <= y
if x.Cmp(y) < 1 {
bm.stack.Push(ethutil.BigTrue)
} else {
bm.stack.Push(ethutil.BigFalse)
}
case oGT:
x, y := bm.stack.Popn()
// x > y
if x.Cmp(y) > 0 {
bm.stack.Push(ethutil.BigTrue)
} else {
bm.stack.Push(ethutil.BigFalse)
}
case oGE:
x, y := bm.stack.Popn()
// x >= y
if x.Cmp(y) > -1 {
bm.stack.Push(ethutil.BigTrue)
} else {
bm.stack.Push(ethutil.BigFalse)
}
case oNOT:
x, y := bm.stack.Popn()
// x != y
if x.Cmp(y) != 0 {
bm.stack.Push(ethutil.BigTrue)
} else {
bm.stack.Push(ethutil.BigFalse)
}
case oMYADDRESS:
bm.stack.Push(ethutil.BigD(tx.Hash()))
case oTXSENDER:
bm.stack.Push(ethutil.BigD(tx.Sender()))
case oTXVALUE:
bm.stack.Push(tx.Value)
case oTXDATAN:
bm.stack.Push(big.NewInt(int64(len(tx.Data))))
case oTXDATA:
v := bm.stack.Pop()
// v >= len(data)
if v.Cmp(big.NewInt(int64(len(tx.Data)))) >= 0 {
bm.stack.Push(ethutil.Big("0"))
} else {
bm.stack.Push(ethutil.Big(tx.Data[v.Uint64()]))
}
case oBLK_PREVHASH:
bm.stack.Push(ethutil.BigD(block.PrevHash))
case oBLK_COINBASE:
bm.stack.Push(ethutil.BigD(block.Coinbase))
case oBLK_TIMESTAMP:
bm.stack.Push(big.NewInt(block.Time))
case oBLK_NUMBER:
bm.stack.Push(big.NewInt(int64(blockInfo.Number)))
case oBLK_DIFFICULTY:
bm.stack.Push(block.Difficulty)
case oBASEFEE:
// e = 10^21
e := big.NewInt(0).Exp(big.NewInt(10), big.NewInt(21), big.NewInt(0))
d := new(big.Rat)
d.SetInt(block.Difficulty)
c := new(big.Rat)
c.SetFloat64(0.5)
// d = diff / 0.5
d.Quo(d, c)
// base = floor(d)
base.Div(d.Num(), d.Denom())
x := new(big.Int)
x.Div(e, base)
// x = floor(10^21 / floor(diff^0.5))
bm.stack.Push(x)
case oSHA256, oSHA3, oRIPEMD160:
// This is probably save
// ceil(pop / 32)
length := int(math.Ceil(float64(bm.stack.Pop().Uint64()) / 32.0))
// New buffer which will contain the concatenated popped items
data := new(bytes.Buffer)
for i := 0; i < length; i++ {
// Encode the number to bytes and have it 32bytes long
num := ethutil.NumberToBytes(bm.stack.Pop().Bytes(), 256)
data.WriteString(string(num))
}
if op == oSHA256 {
bm.stack.Push(base.SetBytes(ethutil.Sha256Bin(data.Bytes())))
} else if op == oSHA3 {
bm.stack.Push(base.SetBytes(ethutil.Sha3Bin(data.Bytes())))
} else {
bm.stack.Push(base.SetBytes(ethutil.Ripemd160(data.Bytes())))
}
case oECMUL:
y := bm.stack.Pop()
x := bm.stack.Pop()
//n := bm.stack.Pop()
//if ethutil.Big(x).Cmp(ethutil.Big(y)) {
data := new(bytes.Buffer)
data.WriteString(x.String())
data.WriteString(y.String())
if secp256k1.VerifyPubkeyValidity(data.Bytes()) == 1 {
// TODO
} else {
// Invalid, push infinity
bm.stack.Push(ethutil.Big("0"))
bm.stack.Push(ethutil.Big("0"))
}
//} else {
// // Invalid, push infinity
// bm.stack.Push("0")
// bm.stack.Push("0")
//}
case oECADD:
case oECSIGN:
case oECRECOVER:
case oECVALID:
case oPUSH:
pc++
bm.stack.Push(getMem(pc).BigInt())
case oPOP:
// Pop current value of the stack
bm.stack.Pop()
case oDUP:
// Dup top stack
x := bm.stack.Pop()
bm.stack.Push(x)
bm.stack.Push(x)
case oSWAP:
// Swap two top most values
x, y := bm.stack.Popn()
bm.stack.Push(y)
bm.stack.Push(x)
case oMLOAD:
x := bm.stack.Pop()
bm.stack.Push(bm.mem[x.String()])
case oMSTORE:
x, y := bm.stack.Popn()
bm.mem[x.String()] = y
case oSLOAD:
// Load the value in storage and push it on the stack
x := bm.stack.Pop()
// decode the object as a big integer
decoder := ethutil.NewValueFromBytes([]byte(contract.State().Get(x.String())))
if !decoder.IsNil() {
bm.stack.Push(decoder.BigInt())
} else {
bm.stack.Push(ethutil.BigFalse)
}
case oSSTORE:
// Store Y at index X
y, x := bm.stack.Popn()
addr := ethutil.BigToBytes(x, 256)
fmt.Printf(" => %x (%v) @ %v", y.Bytes(), y, ethutil.BigD(addr))
contract.SetAddr(addr, y)
//contract.State().Update(string(idx), string(y))
case oJMP:
x := int(bm.stack.Pop().Uint64())
// Set pc to x - 1 (minus one so the incrementing at the end won't effect it)
pc = x
pc--
case oJMPI:
x := bm.stack.Pop()
// Set pc to x if it's non zero
if x.Cmp(ethutil.BigFalse) != 0 {
pc = int(x.Uint64())
pc--
}
case oIND:
bm.stack.Push(big.NewInt(int64(pc)))
case oEXTRO:
memAddr := bm.stack.Pop()
contractAddr := bm.stack.Pop().Bytes()
// Push the contract's memory on to the stack
bm.stack.Push(getContractMemory(block, contractAddr, memAddr))
case oBALANCE:
// Pushes the balance of the popped value on to the stack
d := block.State().Get(bm.stack.Pop().String())
ether := NewAddressFromData([]byte(d))
bm.stack.Push(ether.Amount)
case oMKTX:
value, addr := bm.stack.Popn()
from, length := bm.stack.Popn()
j := 0
dataItems := make([]string, int(length.Uint64()))
for i := from.Uint64(); i < length.Uint64(); i++ {
dataItems[j] = string(bm.mem[strconv.Itoa(int(i))].Bytes())
j++
}
// TODO sign it?
tx := NewTransaction(addr.Bytes(), value, dataItems)
// Add the transaction to the tx pool
bm.TransactionPool.QueueTransaction(tx)
case oSUICIDE:
//addr := bm.stack.Pop()
default:
fmt.Println("Invalid OPCODE", op)
}
fmt.Println("")
bm.stack.Print()
pc++
}
block.UpdateContract(addr, contract)
}
// Returns an address from the specified contract's address
func getContractMemory(block *Block, contractAddr []byte, memAddr *big.Int) *big.Int {
contract := block.GetContract(contractAddr)
if contract == nil {
log.Panicf("invalid contract addr %x", contractAddr)
}
val := contract.State().Get(memAddr.String())
// decode the object as a big integer
decoder := ethutil.NewValueFromBytes([]byte(val))
if decoder.IsNil() {
return ethutil.BigFalse
}
return decoder.BigInt()
}

@ -22,8 +22,12 @@ func TestVm(t *testing.T) {
"1", "1",
"PUSH", "PUSH",
"2", "2",
"STOP",
}) })
ctrct := NewTransaction(ContractAddr, big.NewInt(200000000), script) tx := NewTransaction(ContractAddr, big.NewInt(200000000), script)
bm.ApplyTransactions(block, []*Transaction{ctrct}) addr := tx.Hash()[12:]
bm.ApplyTransactions(block, []*Transaction{tx})
tx2 := NewTransaction(addr, big.NewInt(1e17), nil)
tx2.Sign([]byte("aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa"))
bm.ApplyTransactions(block, []*Transaction{tx2})
} }