gofmt no coding standards

This commit is contained in:
obscuren 2014-01-11 15:27:08 +01:00
parent 8bbf879cb3
commit 9571a51286
14 changed files with 922 additions and 887 deletions

@ -21,3 +21,8 @@ Command line options
-c launch the developer console
-m start mining fake blocks and broadcast fake messages to the net
Contribution
============
See CONTRIB.md

@ -1,90 +1,90 @@
package main
import (
"fmt"
"github.com/ethereum/ethutil-go"
"fmt"
"github.com/ethereum/ethutil-go"
)
type BlockChain struct {
lastBlock *ethutil.Block
lastBlock *ethutil.Block
genesisBlock *ethutil.Block
genesisBlock *ethutil.Block
}
func NewBlockChain() *BlockChain {
bc := &BlockChain{}
bc.genesisBlock = ethutil.NewBlock( ethutil.Encode(ethutil.Genesis) )
bc := &BlockChain{}
bc.genesisBlock = ethutil.NewBlock(ethutil.Encode(ethutil.Genesis))
return bc
return bc
}
type BlockManager struct {
vm *Vm
vm *Vm
blockChain *BlockChain
blockChain *BlockChain
}
func NewBlockManager() *BlockManager {
bm := &BlockManager{vm: NewVm()}
bm := &BlockManager{vm: NewVm()}
return bm
return bm
}
// Process a block.
func (bm *BlockManager) ProcessBlock(block *ethutil.Block) error {
// TODO Validation (Or move to other part of the application)
if err := bm.ValidateBlock(block); err != nil {
return err
}
// TODO Validation (Or move to other part of the application)
if err := bm.ValidateBlock(block); err != nil {
return err
}
// Get the tx count. Used to create enough channels to 'join' the go routines
txCount := len(block.Transactions())
// Locking channel. When it has been fully buffered this method will return
lockChan := make(chan bool, txCount)
// Get the tx count. Used to create enough channels to 'join' the go routines
txCount := len(block.Transactions())
// Locking channel. When it has been fully buffered this method will return
lockChan := make(chan bool, txCount)
// Process each transaction/contract
for _, tx := range block.Transactions() {
// If there's no recipient, it's a contract
if tx.IsContract() {
go bm.ProcessContract(tx, block, lockChan)
} else {
// "finish" tx which isn't a contract
lockChan <- true
}
}
// Process each transaction/contract
for _, tx := range block.Transactions() {
// If there's no recipient, it's a contract
if tx.IsContract() {
go bm.ProcessContract(tx, block, lockChan)
} else {
// "finish" tx which isn't a contract
lockChan <- true
}
}
// Wait for all Tx to finish processing
for i := 0; i < txCount; i++ {
<- lockChan
}
// Wait for all Tx to finish processing
for i := 0; i < txCount; i++ {
<-lockChan
}
return nil
return nil
}
func (bm *BlockManager) ValidateBlock(block *ethutil.Block) error {
return nil
return nil
}
func (bm *BlockManager) ProcessContract(tx *ethutil.Transaction, block *ethutil.Block, lockChan chan bool) {
// Recovering function in case the VM had any errors
defer func() {
if r := recover(); r != nil {
fmt.Println("Recovered from VM execution with err =", r)
// Let the channel know where done even though it failed (so the execution may resume normally)
lockChan <- true
}
}()
// Recovering function in case the VM had any errors
defer func() {
if r := recover(); r != nil {
fmt.Println("Recovered from VM execution with err =", r)
// Let the channel know where done even though it failed (so the execution may resume normally)
lockChan <- true
}
}()
// Process contract
bm.vm.ProcContract(tx, block, func(opType OpType) bool {
// TODO turn on once big ints are in place
//if !block.PayFee(tx.Hash(), StepFee.Uint64()) {
// return false
//}
// Process contract
bm.vm.ProcContract(tx, block, func(opType OpType) bool {
// TODO turn on once big ints are in place
//if !block.PayFee(tx.Hash(), StepFee.Uint64()) {
// return false
//}
return true // Continue
})
return true // Continue
})
// Broadcast we're done
lockChan <- true
// Broadcast we're done
lockChan <- true
}

187
dagger.go

@ -1,142 +1,145 @@
package main
import (
"math/big"
"math/rand"
"time"
"github.com/obscuren/sha3"
"hash"
"github.com/ethereum/ethutil-go"
"github.com/ethereum/ethutil-go"
"github.com/obscuren/sha3"
"hash"
"math/big"
"math/rand"
"time"
)
type Dagger struct {
hash *big.Int
xn *big.Int
hash *big.Int
xn *big.Int
}
var Found bool
func (dag *Dagger) Find(obj *big.Int, resChan chan int64) {
r := rand.New(rand.NewSource(time.Now().UnixNano()))
r := rand.New(rand.NewSource(time.Now().UnixNano()))
for i := 0; i < 1000; i++ {
rnd := r.Int63()
for i := 0; i < 1000; i++ {
rnd := r.Int63()
if dag.Eval(big.NewInt(rnd)).Cmp(obj) < 0 {
// Post back result on the channel
resChan <- rnd
// Notify other threads we've found a valid nonce
Found = true
}
if dag.Eval(big.NewInt(rnd)).Cmp(obj) < 0 {
// Post back result on the channel
resChan <- rnd
// Notify other threads we've found a valid nonce
Found = true
}
// Break out if found
if Found { break }
}
// Break out if found
if Found {
break
}
}
resChan <- 0
resChan <- 0
}
func (dag *Dagger) Search(hash, diff *big.Int) *big.Int {
// TODO fix multi threading. Somehow it results in the wrong nonce
amountOfRoutines := 1
// TODO fix multi threading. Somehow it results in the wrong nonce
amountOfRoutines := 1
dag.hash = hash
dag.hash = hash
obj := ethutil.BigPow(2, 256)
obj = obj.Div(obj, diff)
obj := ethutil.BigPow(2, 256)
obj = obj.Div(obj, diff)
Found = false
resChan := make(chan int64, 3)
var res int64
Found = false
resChan := make(chan int64, 3)
var res int64
for k := 0; k < amountOfRoutines; k++ {
go dag.Find(obj, resChan)
}
for k := 0; k < amountOfRoutines; k++ {
go dag.Find(obj, resChan)
}
// Wait for each go routine to finish
for k := 0; k < amountOfRoutines; k++ {
// Get the result from the channel. 0 = quit
if r := <- resChan; r != 0 {
res = r
}
}
// Wait for each go routine to finish
for k := 0; k < amountOfRoutines; k++ {
// Get the result from the channel. 0 = quit
if r := <-resChan; r != 0 {
res = r
}
}
return big.NewInt(res)
return big.NewInt(res)
}
func DaggerVerify(hash, diff, nonce *big.Int) bool {
dagger := &Dagger{}
dagger.hash = hash
dagger := &Dagger{}
dagger.hash = hash
obj := ethutil.BigPow(2, 256)
obj = obj.Div(obj, diff)
obj := ethutil.BigPow(2, 256)
obj = obj.Div(obj, diff)
return dagger.Eval(nonce).Cmp(obj) < 0
return dagger.Eval(nonce).Cmp(obj) < 0
}
func (dag *Dagger) Node(L uint64, i uint64) *big.Int {
if L == i {
return dag.hash
}
if L == i {
return dag.hash
}
var m *big.Int
if L == 9 {
m = big.NewInt(16)
} else {
m = big.NewInt(3)
}
var m *big.Int
if L == 9 {
m = big.NewInt(16)
} else {
m = big.NewInt(3)
}
sha := sha3.NewKeccak256()
sha.Reset()
d := sha3.NewKeccak256()
b := new(big.Int)
ret := new(big.Int)
sha := sha3.NewKeccak256()
sha.Reset()
d := sha3.NewKeccak256()
b := new(big.Int)
ret := new(big.Int)
for k := 0; k < int(m.Uint64()); k++ {
d.Reset()
d.Write(dag.hash.Bytes())
d.Write(dag.xn.Bytes())
d.Write(big.NewInt(int64(L)).Bytes())
d.Write(big.NewInt(int64(i)).Bytes())
d.Write(big.NewInt(int64(k)).Bytes())
for k := 0; k < int(m.Uint64()); k++ {
d.Reset()
d.Write(dag.hash.Bytes())
d.Write(dag.xn.Bytes())
d.Write(big.NewInt(int64(L)).Bytes())
d.Write(big.NewInt(int64(i)).Bytes())
d.Write(big.NewInt(int64(k)).Bytes())
b.SetBytes(Sum(d))
pk := b.Uint64() & ((1 << ((L - 1) * 3)) - 1)
sha.Write(dag.Node(L - 1, pk).Bytes())
}
b.SetBytes(Sum(d))
pk := b.Uint64() & ((1 << ((L - 1) * 3)) - 1)
sha.Write(dag.Node(L-1, pk).Bytes())
}
ret.SetBytes(Sum(sha))
ret.SetBytes(Sum(sha))
return ret
return ret
}
func Sum(sha hash.Hash) []byte {
in := make([]byte, 32)
return sha.Sum(in)
in := make([]byte, 32)
return sha.Sum(in)
}
func (dag *Dagger) Eval(N *big.Int) *big.Int {
pow := ethutil.BigPow(2, 26)
dag.xn = N.Div(N, pow)
pow := ethutil.BigPow(2, 26)
dag.xn = N.Div(N, pow)
sha := sha3.NewKeccak256()
sha.Reset()
ret := new(big.Int)
sha := sha3.NewKeccak256()
sha.Reset()
ret := new(big.Int)
for k := 0; k < 4; k++ {
d := sha3.NewKeccak256()
b := new(big.Int)
for k := 0; k < 4; k++ {
d := sha3.NewKeccak256()
b := new(big.Int)
d.Reset()
d.Write(dag.hash.Bytes())
d.Write(dag.xn.Bytes())
d.Write(N.Bytes())
d.Write(big.NewInt(int64(k)).Bytes())
d.Reset()
d.Write(dag.hash.Bytes())
d.Write(dag.xn.Bytes())
d.Write(N.Bytes())
d.Write(big.NewInt(int64(k)).Bytes())
b.SetBytes(Sum(d))
pk := (b.Uint64() & 0x1ffffff)
b.SetBytes(Sum(d))
pk := (b.Uint64() & 0x1ffffff)
sha.Write(dag.Node(9, pk).Bytes())
}
sha.Write(dag.Node(9, pk).Bytes())
}
return ret.SetBytes(Sum(sha))
return ret.SetBytes(Sum(sha))
}

@ -1,17 +1,17 @@
package main
import (
"testing"
"math/big"
"math/big"
"testing"
)
func BenchmarkDaggerSearch(b *testing.B) {
hash := big.NewInt(0)
diff := BigPow(2, 36)
o := big.NewInt(0) // nonce doesn't matter. We're only testing against speed, not validity
hash := big.NewInt(0)
diff := BigPow(2, 36)
o := big.NewInt(0) // nonce doesn't matter. We're only testing against speed, not validity
// Reset timer so the big generation isn't included in the benchmark
b.ResetTimer()
// Validate
DaggerVerify(hash, diff, o)
// Reset timer so the big generation isn't included in the benchmark
b.ResetTimer()
// Validate
DaggerVerify(hash, diff, o)
}

@ -1,119 +1,121 @@
package main
import (
"fmt"
"bufio"
"strings"
"os"
"errors"
"encoding/hex"
"github.com/ethereum/ethdb-go"
"github.com/ethereum/ethutil-go"
"bufio"
"encoding/hex"
"errors"
"fmt"
"github.com/ethereum/ethdb-go"
"github.com/ethereum/ethutil-go"
"os"
"strings"
)
type Console struct {
db *ethdb.MemDatabase
trie *ethutil.Trie
db *ethdb.MemDatabase
trie *ethutil.Trie
}
func NewConsole() *Console {
db, _ := ethdb.NewMemDatabase()
trie := ethutil.NewTrie(db, "")
db, _ := ethdb.NewMemDatabase()
trie := ethutil.NewTrie(db, "")
return &Console{db: db, trie: trie}
return &Console{db: db, trie: trie}
}
func (i *Console) ValidateInput(action string, argumentLength int) error {
err := false
var expArgCount int
err := false
var expArgCount int
switch {
case action == "update" && argumentLength != 2:
err = true
expArgCount = 2
case action == "get" && argumentLength != 1:
err = true
expArgCount = 1
case action == "dag" && argumentLength != 2:
err = true
expArgCount = 2
}
switch {
case action == "update" && argumentLength != 2:
err = true
expArgCount = 2
case action == "get" && argumentLength != 1:
err = true
expArgCount = 1
case action == "dag" && argumentLength != 2:
err = true
expArgCount = 2
}
if err {
return errors.New(fmt.Sprintf("'%s' requires %d args, got %d", action, expArgCount, argumentLength))
} else {
return nil
}
if err {
return errors.New(fmt.Sprintf("'%s' requires %d args, got %d", action, expArgCount, argumentLength))
} else {
return nil
}
}
func (i *Console) ParseInput(input string) bool {
scanner := bufio.NewScanner(strings.NewReader(input))
scanner.Split(bufio.ScanWords)
scanner := bufio.NewScanner(strings.NewReader(input))
scanner.Split(bufio.ScanWords)
count := 0
var tokens []string
for scanner.Scan() {
count++
tokens = append(tokens, scanner.Text())
}
if err := scanner.Err(); err != nil {
fmt.Fprintln(os.Stderr, "reading input:", err)
}
count := 0
var tokens []string
for scanner.Scan() {
count++
tokens = append(tokens, scanner.Text())
}
if err := scanner.Err(); err != nil {
fmt.Fprintln(os.Stderr, "reading input:", err)
}
if len(tokens) == 0 { return true }
if len(tokens) == 0 {
return true
}
err := i.ValidateInput(tokens[0], count-1)
if err != nil {
fmt.Println(err)
} else {
switch tokens[0] {
case "update":
i.trie.Update(tokens[1], tokens[2])
err := i.ValidateInput(tokens[0], count-1)
if err != nil {
fmt.Println(err)
} else {
switch tokens[0] {
case "update":
i.trie.Update(tokens[1], tokens[2])
fmt.Println(hex.EncodeToString([]byte(i.trie.Root)))
case "get":
fmt.Println(i.trie.Get(tokens[1]))
case "root":
fmt.Println(hex.EncodeToString([]byte(i.trie.Root)))
case "rawroot":
fmt.Println(i.trie.Root)
case "print":
i.db.Print()
case "dag":
fmt.Println(DaggerVerify( ethutil.Big(tokens[1]), // hash
ethutil.BigPow(2, 36), // diff
ethutil.Big(tokens[2])))// nonce
case "exit", "quit", "q":
return false
case "help":
fmt.Printf( "COMMANDS:\n"+
"\033[1m= DB =\033[0m\n"+
"update KEY VALUE - Updates/Creates a new value for the given key\n"+
"get KEY - Retrieves the given key\n"+
"root - Prints the hex encoded merkle root\n"+
"rawroot - Prints the raw merkle root\n"+
"\033[1m= Dagger =\033[0m\n"+
"dag HASH NONCE - Verifies a nonce with the given hash with dagger\n")
default:
fmt.Println("Unknown command:", tokens[0])
}
}
fmt.Println(hex.EncodeToString([]byte(i.trie.Root)))
case "get":
fmt.Println(i.trie.Get(tokens[1]))
case "root":
fmt.Println(hex.EncodeToString([]byte(i.trie.Root)))
case "rawroot":
fmt.Println(i.trie.Root)
case "print":
i.db.Print()
case "dag":
fmt.Println(DaggerVerify(ethutil.Big(tokens[1]), // hash
ethutil.BigPow(2, 36), // diff
ethutil.Big(tokens[2]))) // nonce
case "exit", "quit", "q":
return false
case "help":
fmt.Printf("COMMANDS:\n" +
"\033[1m= DB =\033[0m\n" +
"update KEY VALUE - Updates/Creates a new value for the given key\n" +
"get KEY - Retrieves the given key\n" +
"root - Prints the hex encoded merkle root\n" +
"rawroot - Prints the raw merkle root\n" +
"\033[1m= Dagger =\033[0m\n" +
"dag HASH NONCE - Verifies a nonce with the given hash with dagger\n")
default:
fmt.Println("Unknown command:", tokens[0])
}
}
return true
return true
}
func (i *Console) Start() {
fmt.Printf("Eth Console. Type (help) for help\n")
reader := bufio.NewReader(os.Stdin)
for {
fmt.Printf("eth >>> ")
str, _, err := reader.ReadLine()
if err != nil {
fmt.Println("Error reading input", err)
} else {
if !i.ParseInput(string(str)) {
return
}
}
}
fmt.Printf("Eth Console. Type (help) for help\n")
reader := bufio.NewReader(os.Stdin)
for {
fmt.Printf("eth >>> ")
str, _, err := reader.ReadLine()
if err != nil {
fmt.Println("Error reading input", err)
} else {
if !i.ParseInput(string(str)) {
return
}
}
}
}

@ -1,85 +1,85 @@
package main
import (
"fmt"
"os"
"os/signal"
"flag"
"runtime"
"log"
"github.com/ethereum/ethutil-go"
"flag"
"fmt"
"github.com/ethereum/ethutil-go"
"log"
"os"
"os/signal"
"runtime"
)
const Debug = true
var StartConsole bool
var StartMining bool
func Init() {
flag.BoolVar(&StartConsole, "c", false, "debug and testing console")
flag.BoolVar(&StartMining, "m", false, "start dagger mining")
flag.Parse()
func Init() {
flag.BoolVar(&StartConsole, "c", false, "debug and testing console")
flag.BoolVar(&StartMining, "m", false, "start dagger mining")
flag.Parse()
}
// Register interrupt handlers so we can stop the server
func RegisterInterupts(s *Server) {
// Buffered chan of one is enough
c := make(chan os.Signal, 1)
// Notify about interrupts for now
signal.Notify(c, os.Interrupt)
go func() {
for sig := range c {
fmt.Printf("Shutting down (%v) ... \n", sig)
// Buffered chan of one is enough
c := make(chan os.Signal, 1)
// Notify about interrupts for now
signal.Notify(c, os.Interrupt)
go func() {
for sig := range c {
fmt.Printf("Shutting down (%v) ... \n", sig)
s.Stop()
}
}()
s.Stop()
}
}()
}
func main() {
runtime.GOMAXPROCS(runtime.NumCPU())
runtime.GOMAXPROCS(runtime.NumCPU())
ethutil.InitFees()
ethutil.InitFees()
Init()
Init()
if StartConsole {
console := NewConsole()
console.Start()
} else{
log.Println("Starting Ethereum")
server, err := NewServer()
if StartConsole {
console := NewConsole()
console.Start()
} else {
log.Println("Starting Ethereum")
server, err := NewServer()
if err != nil {
log.Println(err)
return
}
if err != nil {
log.Println(err)
return
}
RegisterInterupts(server)
RegisterInterupts(server)
if StartMining {
log.Println("Mining started")
dagger := &Dagger{}
if StartMining {
log.Println("Mining started")
dagger := &Dagger{}
go func() {
for {
res := dagger.Search(ethutil.Big("0"), ethutil.BigPow(2, 36))
server.Broadcast("block", Encode(res.String()))
}
}()
}
go func() {
for {
res := dagger.Search(ethutil.Big("0"), ethutil.BigPow(2, 36))
server.Broadcast("block", Encode(res.String()))
}
}()
}
server.Start()
server.Start()
err = server.ConnectToPeer("localhost:12345")
if err != nil {
log.Println(err)
server.Stop()
return
}
err = server.ConnectToPeer("localhost:12345")
if err != nil {
log.Println(err)
server.Stop()
return
}
// Wait for shutdown
server.WaitForShutdown()
}
// Wait for shutdown
server.WaitForShutdown()
}
}

108
peer.go

@ -1,92 +1,92 @@
package main
import (
"net"
"log"
"github.com/ethereum/ethwire-go"
"github.com/ethereum/ethwire-go"
"log"
"net"
)
type Peer struct {
// Server interface
server *Server
// Net connection
conn net.Conn
// Output queue which is used to communicate and handle messages
outputQueue chan ethwire.InOutMsg
// Quit channel
quit chan bool
// Server interface
server *Server
// Net connection
conn net.Conn
// Output queue which is used to communicate and handle messages
outputQueue chan ethwire.InOutMsg
// Quit channel
quit chan bool
}
func NewPeer(conn net.Conn, server *Server) *Peer {
return &Peer{
outputQueue: make(chan ethwire.InOutMsg, 1), // Buffered chan of 1 is enough
quit: make(chan bool),
return &Peer{
outputQueue: make(chan ethwire.InOutMsg, 1), // Buffered chan of 1 is enough
quit: make(chan bool),
server: server,
conn: conn,
}
server: server,
conn: conn,
}
}
// Outputs any RLP encoded data to the peer
func (p *Peer) QueueMessage(msgType string, data []byte) {
p.outputQueue <- ethwire.InOutMsg{MsgType: msgType, Data: data}
p.outputQueue <- ethwire.InOutMsg{MsgType: msgType, Data: data}
}
// Outbound message handler. Outbound messages are handled here
func (p *Peer) HandleOutbound() {
out:
for {
select {
// Main message queue. All outbound messages are processed through here
case msg := <-p.outputQueue:
// TODO Message checking and handle accordingly
err := ethwire.WriteMessage(p.conn, msg)
if err != nil {
log.Println(err)
for {
select {
// Main message queue. All outbound messages are processed through here
case msg := <-p.outputQueue:
// TODO Message checking and handle accordingly
err := ethwire.WriteMessage(p.conn, msg)
if err != nil {
log.Println(err)
// Stop the client if there was an error writing to it
p.Stop()
}
// Stop the client if there was an error writing to it
p.Stop()
}
// Break out of the for loop if a quit message is posted
case <- p.quit:
break out
}
}
// Break out of the for loop if a quit message is posted
case <-p.quit:
break out
}
}
}
// Inbound handler. Inbound messages are received here and passed to the appropriate methods
func (p *Peer) HandleInbound() {
defer p.Stop()
defer p.Stop()
out:
for {
// Wait for a message from the peer
msg, err := ethwire.ReadMessage(p.conn)
if err != nil {
log.Println(err)
for {
// Wait for a message from the peer
msg, err := ethwire.ReadMessage(p.conn)
if err != nil {
log.Println(err)
break out
}
break out
}
// TODO
data, _ := Decode(msg.Data, 0)
log.Printf("%s, %s\n", msg.MsgType, data)
}
// TODO
data, _ := Decode(msg.Data, 0)
log.Printf("%s, %s\n", msg.MsgType, data)
}
// Notify the out handler we're quiting
p.quit <- true
// Notify the out handler we're quiting
p.quit <- true
}
func (p *Peer) Start() {
// Run the outbound handler in a new goroutine
go p.HandleOutbound()
// Run the inbound handler in a new goroutine
go p.HandleInbound()
// Run the outbound handler in a new goroutine
go p.HandleOutbound()
// Run the inbound handler in a new goroutine
go p.HandleInbound()
}
func (p *Peer) Stop() {
p.conn.Close()
p.conn.Close()
p.quit <- true
p.quit <- true
}

352
rlp.go

@ -1,270 +1,278 @@
package main
import (
"fmt"
"bytes"
"math"
"math/big"
"github.com/ethereum/ethutil-go"
"bytes"
"fmt"
"github.com/ethereum/ethutil-go"
"math"
"math/big"
)
type RlpEncoder struct {
rlpData []byte
rlpData []byte
}
func NewRlpEncoder() *RlpEncoder {
encoder := &RlpEncoder{}
return encoder
func NewRlpEncoder() *RlpEncoder {
encoder := &RlpEncoder{}
return encoder
}
func (coder *RlpEncoder) EncodeData(rlpData []interface{}) []byte {
return nil
return nil
}
// Data attributes are returned by the rlp decoder. The data attributes represents
// one item within the rlp data structure. It's responsible for all the casting
// It always returns something valid
type RlpDataAttribute struct {
dataAttrib interface{}
dataAttrib interface{}
}
func NewRlpDataAttribute(attrib interface{}) *RlpDataAttribute {
return &RlpDataAttribute{dataAttrib: attrib}
return &RlpDataAttribute{dataAttrib: attrib}
}
func (attr *RlpDataAttribute) Length() int {
if data, ok := attr.dataAttrib.([]interface{}); ok {
return len(data)
}
if data, ok := attr.dataAttrib.([]interface{}); ok {
return len(data)
}
return 0
return 0
}
func (attr *RlpDataAttribute) AsUint() uint64 {
if value, ok := attr.dataAttrib.(uint8); ok {
return uint64(value)
} else if value, ok := attr.dataAttrib.(uint16); ok {
return uint64(value)
} else if value, ok := attr.dataAttrib.(uint32); ok {
return uint64(value)
} else if value, ok := attr.dataAttrib.(uint64); ok {
return value
}
if value, ok := attr.dataAttrib.(uint8); ok {
return uint64(value)
} else if value, ok := attr.dataAttrib.(uint16); ok {
return uint64(value)
} else if value, ok := attr.dataAttrib.(uint32); ok {
return uint64(value)
} else if value, ok := attr.dataAttrib.(uint64); ok {
return value
}
return 0
return 0
}
func (attr *RlpDataAttribute) AsBigInt() *big.Int {
if a, ok := attr.dataAttrib.([]byte); ok {
return ethutil.Big(string(a))
}
if a, ok := attr.dataAttrib.([]byte); ok {
return ethutil.Big(string(a))
}
return big.NewInt(0)
return big.NewInt(0)
}
func (attr *RlpDataAttribute) AsString() string {
if a, ok := attr.dataAttrib.([]byte); ok {
return string(a)
}
if a, ok := attr.dataAttrib.([]byte); ok {
return string(a)
}
return ""
return ""
}
func (attr *RlpDataAttribute) AsBytes() []byte {
if a, ok := attr.dataAttrib.([]byte); ok {
return a
}
if a, ok := attr.dataAttrib.([]byte); ok {
return a
}
return make([]byte, 0)
return make([]byte, 0)
}
// Threat the attribute as a slice
func (attr *RlpDataAttribute) Get(idx int) *RlpDataAttribute {
if d, ok := attr.dataAttrib.([]interface{}); ok {
// Guard for oob
if len(d) < idx {
return NewRlpDataAttribute(nil)
}
if d, ok := attr.dataAttrib.([]interface{}); ok {
// Guard for oob
if len(d) < idx {
return NewRlpDataAttribute(nil)
}
return NewRlpDataAttribute(d[idx])
}
return NewRlpDataAttribute(d[idx])
}
// If this wasn't a slice you probably shouldn't be using this function
return NewRlpDataAttribute(nil)
// If this wasn't a slice you probably shouldn't be using this function
return NewRlpDataAttribute(nil)
}
type RlpDecoder struct {
rlpData interface{}
rlpData interface{}
}
func NewRlpDecoder(rlpData []byte) *RlpDecoder {
decoder := &RlpDecoder{}
// Decode the data
data, _ := Decode(rlpData,0)
decoder.rlpData = data
return decoder
func NewRlpDecoder(rlpData []byte) *RlpDecoder {
decoder := &RlpDecoder{}
// Decode the data
data, _ := Decode(rlpData, 0)
decoder.rlpData = data
return decoder
}
func (dec *RlpDecoder) Get(idx int) *RlpDataAttribute {
return NewRlpDataAttribute(dec.rlpData).Get(idx)
return NewRlpDataAttribute(dec.rlpData).Get(idx)
}
/// Raw methods
func BinaryLength(n uint64) uint64 {
if n == 0 { return 0 }
if n == 0 {
return 0
}
return 1 + BinaryLength(n / 256)
return 1 + BinaryLength(n/256)
}
func ToBinarySlice(n uint64, length uint64) []uint64 {
if length == 0 {
length = BinaryLength(n)
}
if length == 0 {
length = BinaryLength(n)
}
if n == 0 { return make([]uint64, 1) }
if n == 0 {
return make([]uint64, 1)
}
slice := ToBinarySlice(n / 256, 0)
slice = append(slice, n % 256)
slice := ToBinarySlice(n/256, 0)
slice = append(slice, n%256)
return slice
return slice
}
func ToBin(n uint64, length uint64) string {
var buf bytes.Buffer
for _, val := range ToBinarySlice(n, length) {
buf.WriteString(string(val))
}
var buf bytes.Buffer
for _, val := range ToBinarySlice(n, length) {
buf.WriteString(string(val))
}
return buf.String()
return buf.String()
}
func FromBin(data []byte) uint64 {
if len(data) == 0 { return 0 }
if len(data) == 0 {
return 0
}
return FromBin(data[:len(data)-1]) * 256 + uint64(data[len(data)-1])
return FromBin(data[:len(data)-1])*256 + uint64(data[len(data)-1])
}
func Decode(data []byte, pos int) (interface{}, int) {
if pos > len(data)-1 {
panic(fmt.Sprintf("index out of range %d for data %q, l = %d", pos, data, len(data)))
}
if pos > len(data)-1 {
panic(fmt.Sprintf("index out of range %d for data %q, l = %d", pos, data, len(data)))
}
char := int(data[pos])
slice := make([]interface{}, 0)
switch {
case char < 24:
return data[pos], pos + 1
char := int(data[pos])
slice := make([]interface{}, 0)
switch {
case char < 24:
return data[pos], pos + 1
case char < 56:
b := int(data[pos]) - 23
return FromBin(data[pos+1 : pos+1+b]), pos + 1 + b
case char < 56:
b := int(data[pos]) - 23
return FromBin(data[pos+1 : pos+1+b]), pos + 1 + b
case char < 64:
b := int(data[pos]) - 55
b2 := int(FromBin(data[pos+1 : pos+1+b]))
return FromBin(data[pos+1+b : pos+1+b+b2]), pos+1+b+b2
case char < 64:
b := int(data[pos]) - 55
b2 := int(FromBin(data[pos+1 : pos+1+b]))
return FromBin(data[pos+1+b : pos+1+b+b2]), pos + 1 + b + b2
case char < 120:
b := int(data[pos]) - 64
return data[pos+1:pos+1+b], pos+1+b
case char < 120:
b := int(data[pos]) - 64
return data[pos+1 : pos+1+b], pos + 1 + b
case char < 128:
b := int(data[pos]) - 119
b2 := int(FromBin(data[pos+1 : pos+1+b]))
return data[pos+1+b : pos+1+b+b2], pos+1+b+b2
case char < 128:
b := int(data[pos]) - 119
b2 := int(FromBin(data[pos+1 : pos+1+b]))
return data[pos+1+b : pos+1+b+b2], pos + 1 + b + b2
case char < 184:
b := int(data[pos]) - 128
pos++
for i := 0; i < b; i++ {
var obj interface{}
case char < 184:
b := int(data[pos]) - 128
pos++
for i := 0; i < b; i++ {
var obj interface{}
obj, pos = Decode(data, pos)
slice = append(slice, obj)
}
return slice, pos
obj, pos = Decode(data, pos)
slice = append(slice, obj)
}
return slice, pos
case char < 192:
b := int(data[pos]) - 183
//b2 := int(FromBin(data[pos+1 : pos+1+b])) (ref implementation has an unused variable)
pos = pos+1+b
for i := 0; i < b; i++ {
var obj interface{}
case char < 192:
b := int(data[pos]) - 183
//b2 := int(FromBin(data[pos+1 : pos+1+b])) (ref implementation has an unused variable)
pos = pos + 1 + b
for i := 0; i < b; i++ {
var obj interface{}
obj, pos = Decode(data, pos)
slice = append(slice, obj)
}
return slice, pos
obj, pos = Decode(data, pos)
slice = append(slice, obj)
}
return slice, pos
default:
panic(fmt.Sprintf("byte not supported: %q", char))
}
default:
panic(fmt.Sprintf("byte not supported: %q", char))
}
return slice, 0
return slice, 0
}
func Encode(object interface{}) []byte {
var buff bytes.Buffer
var buff bytes.Buffer
switch t := object.(type) {
case uint32, uint64:
var num uint64
if _num, ok := t.(uint64); ok {
num = _num
} else if _num, ok := t.(uint32); ok {
num = uint64(_num)
}
switch t := object.(type) {
case uint32, uint64:
var num uint64
if _num, ok := t.(uint64); ok {
num = _num
} else if _num, ok := t.(uint32); ok {
num = uint64(_num)
}
if num >= 0 && num < 24 {
buff.WriteString(string(num))
} else if num <= uint64(math.Pow(2, 256)) {
b := ToBin(num, 0)
buff.WriteString(string(len(b) + 23) + b)
} else {
b := ToBin(num, 0)
b2 := ToBin(uint64(len(b)), 0)
buff.WriteString(string(len(b2) + 55) + b2 + b)
}
if num >= 0 && num < 24 {
buff.WriteString(string(num))
} else if num <= uint64(math.Pow(2, 256)) {
b := ToBin(num, 0)
buff.WriteString(string(len(b)+23) + b)
} else {
b := ToBin(num, 0)
b2 := ToBin(uint64(len(b)), 0)
buff.WriteString(string(len(b2)+55) + b2 + b)
}
case *big.Int:
buff.Write(Encode(t.String()))
case *big.Int:
buff.Write(Encode(t.String()))
case string:
if len(t) < 56 {
buff.WriteString(string(len(t) + 64) + t)
} else {
b2 := ToBin(uint64(len(t)), 0)
buff.WriteString(string(len(b2) + 119) + b2 + t)
}
case string:
if len(t) < 56 {
buff.WriteString(string(len(t)+64) + t)
} else {
b2 := ToBin(uint64(len(t)), 0)
buff.WriteString(string(len(b2)+119) + b2 + t)
}
case []byte:
// Cast the byte slice to a string
buff.Write(Encode(string(t)))
case []byte:
// Cast the byte slice to a string
buff.Write(Encode(string(t)))
case []interface{}, []string:
// Inline function for writing the slice header
WriteSliceHeader := func(length int) {
if length < 56 {
buff.WriteByte(byte(length + 128))
} else {
b2 := ToBin(uint64(length), 0)
buff.WriteByte(byte(len(b2) + 183))
buff.WriteString(b2)
}
}
case []interface{}, []string:
// Inline function for writing the slice header
WriteSliceHeader := func(length int) {
if length < 56 {
buff.WriteByte(byte(length + 128))
} else {
b2 := ToBin(uint64(length), 0)
buff.WriteByte(byte(len(b2) + 183))
buff.WriteString(b2)
}
}
// FIXME How can I do this "better"?
if interSlice, ok := t.([]interface{}); ok {
WriteSliceHeader(len(interSlice))
for _, val := range interSlice {
buff.Write(Encode(val))
}
} else if stringSlice, ok := t.([]string); ok {
WriteSliceHeader(len(stringSlice))
for _, val := range stringSlice {
buff.Write(Encode(val))
}
}
}
// FIXME How can I do this "better"?
if interSlice, ok := t.([]interface{}); ok {
WriteSliceHeader(len(interSlice))
for _, val := range interSlice {
buff.Write(Encode(val))
}
} else if stringSlice, ok := t.([]string); ok {
WriteSliceHeader(len(stringSlice))
for _, val := range stringSlice {
buff.Write(Encode(val))
}
}
}
return buff.Bytes()
return buff.Bytes()
}

@ -1,54 +1,54 @@
package main
import (
"testing"
"fmt"
"fmt"
"testing"
)
func TestEncode(t *testing.T) {
strRes := "Cdog"
strRes := "Cdog"
bytes := Encode("dog")
bytes := Encode("dog")
str := string(bytes)
if str != strRes {
t.Error(fmt.Sprintf("Expected %q, got %q", strRes, str))
}
//dec,_ := Decode(bytes, 0)
str := string(bytes)
if str != strRes {
t.Error(fmt.Sprintf("Expected %q, got %q", strRes, str))
}
//dec,_ := Decode(bytes, 0)
sliceRes := "\x83CdogCgodCcat"
strs := []string{"dog", "god", "cat"}
bytes = Encode(strs)
slice := string(bytes)
if slice != sliceRes {
t.Error(fmt.Sprintf("Expected %q, got %q", sliceRes, slice))
}
sliceRes := "\x83CdogCgodCcat"
strs := []string{"dog", "god", "cat"}
bytes = Encode(strs)
slice := string(bytes)
if slice != sliceRes {
t.Error(fmt.Sprintf("Expected %q, got %q", sliceRes, slice))
}
//dec,_ = Decode(bytes, 0)
//dec,_ = Decode(bytes, 0)
}
func TestMultiEncode(t *testing.T) {
inter := []interface{}{
[]interface{}{
"1","2","3",
},
[]string{
"string",
"string2",
"\x86A0J1234567890A\x00B20A0\x82F395843F657986",
"\x86A0J1234567890A\x00B20A0\x8cF395843F657986I335612448F524099H16716881A0H13114947G2039362G1507139H16719697G1048387E65360",
},
"test",
}
inter := []interface{}{
[]interface{}{
"1", "2", "3",
},
[]string{
"string",
"string2",
"\x86A0J1234567890A\x00B20A0\x82F395843F657986",
"\x86A0J1234567890A\x00B20A0\x8cF395843F657986I335612448F524099H16716881A0H13114947G2039362G1507139H16719697G1048387E65360",
},
"test",
}
bytes := Encode(inter)
bytes := Encode(inter)
Decode(bytes, 0)
Decode(bytes, 0)
}
func BenchmarkEncodeDecode(b *testing.B) {
for i := 0; i < b.N; i++ {
bytes := Encode([]string{"dog", "god", "cat"})
Decode(bytes, 0)
}
for i := 0; i < b.N; i++ {
bytes := Encode([]string{"dog", "god", "cat"})
Decode(bytes, 0)
}
}

155
server.go

@ -1,121 +1,120 @@
package main
import (
"container/list"
"net"
"log"
_"time"
"github.com/ethereum/ethdb-go"
"github.com/ethereum/ethutil-go"
"container/list"
"github.com/ethereum/ethdb-go"
"github.com/ethereum/ethutil-go"
"log"
"net"
_ "time"
)
type Server struct {
// Channel for shutting down the server
shutdownChan chan bool
// DB interface
db *ethdb.LDBDatabase
// Block manager for processing new blocks and managing the block chain
blockManager *BlockManager
// Peers (NYI)
peers *list.List
// Channel for shutting down the server
shutdownChan chan bool
// DB interface
db *ethdb.LDBDatabase
// Block manager for processing new blocks and managing the block chain
blockManager *BlockManager
// Peers (NYI)
peers *list.List
}
func NewServer() (*Server, error) {
db, err := ethdb.NewLDBDatabase()
if err != nil {
return nil, err
}
db, err := ethdb.NewLDBDatabase()
if err != nil {
return nil, err
}
ethutil.SetConfig(db)
ethutil.SetConfig(db)
server := &Server{
shutdownChan: make(chan bool),
blockManager: NewBlockManager(),
db: db,
peers: list.New(),
}
server := &Server{
shutdownChan: make(chan bool),
blockManager: NewBlockManager(),
db: db,
peers: list.New(),
}
return server, nil
return server, nil
}
func (s *Server) AddPeer(conn net.Conn) {
peer := NewPeer(conn, s)
s.peers.PushBack(peer)
peer.Start()
peer := NewPeer(conn, s)
s.peers.PushBack(peer)
peer.Start()
log.Println("Peer connected ::", conn.RemoteAddr())
log.Println("Peer connected ::", conn.RemoteAddr())
}
func (s *Server) ConnectToPeer(addr string) error {
conn, err := net.Dial("tcp", addr)
conn, err := net.Dial("tcp", addr)
if err != nil {
return err
}
if err != nil {
return err
}
peer := NewPeer(conn, s)
s.peers.PushBack(peer)
peer.Start()
peer := NewPeer(conn, s)
s.peers.PushBack(peer)
peer.Start()
log.Println("Connected to peer ::", conn.RemoteAddr())
log.Println("Connected to peer ::", conn.RemoteAddr())
return nil
return nil
}
func (s *Server) Broadcast(msgType string, data []byte) {
for e := s.peers.Front(); e != nil; e = e.Next() {
if peer, ok := e.Value.(*Peer); ok {
peer.QueueMessage(msgType, data)
}
}
for e := s.peers.Front(); e != nil; e = e.Next() {
if peer, ok := e.Value.(*Peer); ok {
peer.QueueMessage(msgType, data)
}
}
}
// Start the server
func (s *Server) Start() {
// For now this function just blocks the main thread
ln, err := net.Listen("tcp", ":12345")
if err != nil {
log.Fatal(err)
}
// For now this function just blocks the main thread
ln, err := net.Listen("tcp", ":12345")
if err != nil {
log.Fatal(err)
}
go func() {
for {
conn, err := ln.Accept()
if err != nil {
log.Println(err)
continue
}
go func() {
for {
conn, err := ln.Accept()
if err != nil {
log.Println(err)
continue
}
go s.AddPeer(conn)
}
}()
go s.AddPeer(conn)
}
}()
// TMP
//go func() {
// for {
// s.Broadcast("block", Encode("blockdata"))
//
// time.Sleep(100 * time.Millisecond)
// }
// }()
// TMP
//go func() {
// for {
// s.Broadcast("block", Encode("blockdata"))
//
// time.Sleep(100 * time.Millisecond)
// }
// }()
}
func (s *Server) Stop() {
// Close the database
defer s.db.Close()
// Close the database
defer s.db.Close()
// Loop thru the peers and close them (if we had them)
for e := s.peers.Front(); e != nil; e = e.Next() {
if peer, ok := e.Value.(*Peer); ok {
peer.Stop()
}
}
// Loop thru the peers and close them (if we had them)
for e := s.peers.Front(); e != nil; e = e.Next() {
if peer, ok := e.Value.(*Peer); ok {
peer.Stop()
}
}
s.shutdownChan <- true
s.shutdownChan <- true
}
// This function will wait for a shutdown and resumes main thread execution
func (s *Server) WaitForShutdown() {
<- s.shutdownChan
<-s.shutdownChan
}

@ -1,35 +1,35 @@
package main
import (
"fmt"
"testing"
"encoding/json"
"encoding/json"
"fmt"
"testing"
)
type TestSource struct {
Inputs map[string]string
Expectation string
Inputs map[string]string
Expectation string
}
func NewTestSource(source string) *TestSource {
s := &TestSource{}
err := json.Unmarshal([]byte(source), s)
if err != nil {
fmt.Println(err)
}
s := &TestSource{}
err := json.Unmarshal([]byte(source), s)
if err != nil {
fmt.Println(err)
}
return s
return s
}
type TestRunner struct {
source *TestSource
source *TestSource
}
func NewTestRunner(t *testing.T) *TestRunner {
return &TestRunner{}
return &TestRunner{}
}
func (runner *TestRunner) RunFromString(input string, Cb func(*TestSource)) {
source := NewTestSource(input)
Cb(source)
source := NewTestSource(input)
Cb(source)
}

@ -1,9 +1,9 @@
package main
import (
_"fmt"
"testing"
"encoding/hex"
"encoding/hex"
_ "fmt"
"testing"
)
var testsource = `{"Inputs":{
@ -15,17 +15,17 @@ var testsource = `{"Inputs":{
}`
func TestTestRunner(t *testing.T) {
db, _ := NewMemDatabase()
trie := NewTrie(db, "")
db, _ := NewMemDatabase()
trie := NewTrie(db, "")
runner := NewTestRunner(t)
runner.RunFromString(testsource, func(source *TestSource) {
for key, value := range source.Inputs {
trie.Update(key, value)
}
runner := NewTestRunner(t)
runner.RunFromString(testsource, func(source *TestSource) {
for key, value := range source.Inputs {
trie.Update(key, value)
}
if hex.EncodeToString([]byte(trie.root)) != source.Expectation {
t.Error("trie root did not match")
}
})
if hex.EncodeToString([]byte(trie.root)) != source.Expectation {
t.Error("trie root did not match")
}
})
}

@ -1,4 +1,5 @@
package main
/*
import (

451
vm.go

@ -1,267 +1,284 @@
package main
import (
"math/big"
"fmt"
"strconv"
"github.com/ethereum/ethutil-go"
"fmt"
"github.com/ethereum/ethutil-go"
"math/big"
"strconv"
)
// Op codes
const (
oSTOP int = 0x00
oADD int = 0x01
oMUL int = 0x02
oSUB int = 0x03
oDIV int = 0x04
oSDIV int = 0x05
oMOD int = 0x06
oSMOD int = 0x07
oEXP int = 0x08
oNEG int = 0x09
oLT int = 0x0a
oLE int = 0x0b
oGT int = 0x0c
oGE int = 0x0d
oEQ int = 0x0e
oNOT int = 0x0f
oMYADDRESS int = 0x10
oTXSENDER int = 0x11
oTXVALUE int = 0x12
oTXFEE int = 0x13
oTXDATAN int = 0x14
oTXDATA int = 0x15
oBLK_PREVHASH int = 0x16
oBLK_COINBASE int = 0x17
oBLK_TIMESTAMP int = 0x18
oBLK_NUMBER int = 0x19
oBLK_DIFFICULTY int = 0x1a
oSHA256 int = 0x20
oRIPEMD160 int = 0x21
oECMUL int = 0x22
oECADD int = 0x23
oECSIGN int = 0x24
oECRECOVER int = 0x25
oECVALID int = 0x26
oPUSH int = 0x30
oPOP int = 0x31
oDUP int = 0x32
oDUPN int = 0x33
oSWAP int = 0x34
oSWAPN int = 0x35
oLOAD int = 0x36
oSTORE int = 0x37
oJMP int = 0x40
oJMPI int = 0x41
oIND int = 0x42
oEXTRO int = 0x50
oBALANCE int = 0x51
oMKTX int = 0x60
oSUICIDE int = 0xff
oSTOP int = 0x00
oADD int = 0x01
oMUL int = 0x02
oSUB int = 0x03
oDIV int = 0x04
oSDIV int = 0x05
oMOD int = 0x06
oSMOD int = 0x07
oEXP int = 0x08
oNEG int = 0x09
oLT int = 0x0a
oLE int = 0x0b
oGT int = 0x0c
oGE int = 0x0d
oEQ int = 0x0e
oNOT int = 0x0f
oMYADDRESS int = 0x10
oTXSENDER int = 0x11
oTXVALUE int = 0x12
oTXFEE int = 0x13
oTXDATAN int = 0x14
oTXDATA int = 0x15
oBLK_PREVHASH int = 0x16
oBLK_COINBASE int = 0x17
oBLK_TIMESTAMP int = 0x18
oBLK_NUMBER int = 0x19
oBLK_DIFFICULTY int = 0x1a
oSHA256 int = 0x20
oRIPEMD160 int = 0x21
oECMUL int = 0x22
oECADD int = 0x23
oECSIGN int = 0x24
oECRECOVER int = 0x25
oECVALID int = 0x26
oPUSH int = 0x30
oPOP int = 0x31
oDUP int = 0x32
oDUPN int = 0x33
oSWAP int = 0x34
oSWAPN int = 0x35
oLOAD int = 0x36
oSTORE int = 0x37
oJMP int = 0x40
oJMPI int = 0x41
oIND int = 0x42
oEXTRO int = 0x50
oBALANCE int = 0x51
oMKTX int = 0x60
oSUICIDE int = 0xff
)
type OpType int
const (
tNorm = iota
tData
tExtro
tCrypto
tNorm = iota
tData
tExtro
tCrypto
)
type TxCallback func(opType OpType) bool
// Simple push/pop stack mechanism
type Stack struct {
data []string
data []string
}
func NewStack() *Stack {
return &Stack{}
return &Stack{}
}
func (st *Stack) Pop() string {
s := len(st.data)
s := len(st.data)
str := st.data[s-1]
st.data = st.data[:s-1]
str := st.data[s-1]
st.data = st.data[:s-1]
return str
return str
}
func (st *Stack) Popn() (*big.Int, *big.Int) {
s := len(st.data)
s := len(st.data)
strs := st.data[s-2:]
st.data = st.data[:s-2]
strs := st.data[s-2:]
st.data = st.data[:s-2]
return ethutil.Big(strs[0]), ethutil.Big(strs[1])
return ethutil.Big(strs[0]), ethutil.Big(strs[1])
}
func (st *Stack) Push(d string) {
st.data = append(st.data, d)
st.data = append(st.data, d)
}
func (st *Stack) Print() {
fmt.Println(st.data)
fmt.Println(st.data)
}
type Vm struct {
// Stack
stack *Stack
// Stack
stack *Stack
}
func NewVm() *Vm {
return &Vm{
stack: NewStack(),
}
return &Vm{
stack: NewStack(),
}
}
func (vm *Vm) ProcContract( tx *ethutil.Transaction,
block *ethutil.Block, cb TxCallback) {
// Instruction pointer
pc := 0
func (vm *Vm) ProcContract(tx *ethutil.Transaction,
block *ethutil.Block, cb TxCallback) {
// Instruction pointer
pc := 0
contract := block.GetContract(tx.Hash())
if contract == nil {
fmt.Println("Contract not found")
return
}
contract := block.GetContract(tx.Hash())
if contract == nil {
fmt.Println("Contract not found")
return
}
Pow256 := ethutil.BigPow(2, 256)
Pow256 := ethutil.BigPow(2, 256)
//fmt.Printf("# op arg\n")
//fmt.Printf("# op arg\n")
out:
for {
// The base big int for all calculations. Use this for any results.
base := new(big.Int)
// XXX Should Instr return big int slice instead of string slice?
// Get the next instruction from the contract
//op, _, _ := Instr(contract.state.Get(string(Encode(uint32(pc)))))
nb := ethutil.NumberToBytes(uint64(pc), 32)
op, _, _ := ethutil.Instr(contract.State().Get(string(nb)))
for {
// The base big int for all calculations. Use this for any results.
base := new(big.Int)
// XXX Should Instr return big int slice instead of string slice?
// Get the next instruction from the contract
//op, _, _ := Instr(contract.state.Get(string(Encode(uint32(pc)))))
nb := ethutil.NumberToBytes(uint64(pc), 32)
op, _, _ := ethutil.Instr(contract.State().Get(string(nb)))
if !cb(0) { break }
if !cb(0) {
break
}
if Debug {
//fmt.Printf("%-3d %-4d\n", pc, op)
}
if Debug {
//fmt.Printf("%-3d %-4d\n", pc, op)
}
switch op {
case oADD:
x, y := vm.stack.Popn()
// (x + y) % 2 ** 256
base.Add(x, y)
base.Mod(base, Pow256)
// Pop result back on the stack
vm.stack.Push(base.String())
case oSUB:
x, y := vm.stack.Popn()
// (x - y) % 2 ** 256
base.Sub(x, y)
base.Mod(base, Pow256)
// Pop result back on the stack
vm.stack.Push(base.String())
case oMUL:
x, y := vm.stack.Popn()
// (x * y) % 2 ** 256
base.Mul(x, y)
base.Mod(base, Pow256)
// Pop result back on the stack
vm.stack.Push(base.String())
case oDIV:
x, y := vm.stack.Popn()
// floor(x / y)
base.Div(x, y)
// Pop result back on the stack
vm.stack.Push(base.String())
case oSDIV:
x, y := vm.stack.Popn()
// n > 2**255
if x.Cmp(Pow256) > 0 { x.Sub(Pow256, x) }
if y.Cmp(Pow256) > 0 { y.Sub(Pow256, y) }
z := new(big.Int)
z.Div(x, y)
if z.Cmp(Pow256) > 0 { z.Sub(Pow256, z) }
// Push result on to the stack
vm.stack.Push(z.String())
case oMOD:
x, y := vm.stack.Popn()
base.Mod(x, y)
vm.stack.Push(base.String())
case oSMOD:
x, y := vm.stack.Popn()
// n > 2**255
if x.Cmp(Pow256) > 0 { x.Sub(Pow256, x) }
if y.Cmp(Pow256) > 0 { y.Sub(Pow256, y) }
z := new(big.Int)
z.Mod(x, y)
if z.Cmp(Pow256) > 0 { z.Sub(Pow256, z) }
// Push result on to the stack
vm.stack.Push(z.String())
case oEXP:
x, y := vm.stack.Popn()
base.Exp(x, y, Pow256)
switch op {
case oADD:
x, y := vm.stack.Popn()
// (x + y) % 2 ** 256
base.Add(x, y)
base.Mod(base, Pow256)
// Pop result back on the stack
vm.stack.Push(base.String())
case oSUB:
x, y := vm.stack.Popn()
// (x - y) % 2 ** 256
base.Sub(x, y)
base.Mod(base, Pow256)
// Pop result back on the stack
vm.stack.Push(base.String())
case oMUL:
x, y := vm.stack.Popn()
// (x * y) % 2 ** 256
base.Mul(x, y)
base.Mod(base, Pow256)
// Pop result back on the stack
vm.stack.Push(base.String())
case oDIV:
x, y := vm.stack.Popn()
// floor(x / y)
base.Div(x, y)
// Pop result back on the stack
vm.stack.Push(base.String())
case oSDIV:
x, y := vm.stack.Popn()
// n > 2**255
if x.Cmp(Pow256) > 0 {
x.Sub(Pow256, x)
}
if y.Cmp(Pow256) > 0 {
y.Sub(Pow256, y)
}
z := new(big.Int)
z.Div(x, y)
if z.Cmp(Pow256) > 0 {
z.Sub(Pow256, z)
}
// Push result on to the stack
vm.stack.Push(z.String())
case oMOD:
x, y := vm.stack.Popn()
base.Mod(x, y)
vm.stack.Push(base.String())
case oSMOD:
x, y := vm.stack.Popn()
// n > 2**255
if x.Cmp(Pow256) > 0 {
x.Sub(Pow256, x)
}
if y.Cmp(Pow256) > 0 {
y.Sub(Pow256, y)
}
z := new(big.Int)
z.Mod(x, y)
if z.Cmp(Pow256) > 0 {
z.Sub(Pow256, z)
}
// Push result on to the stack
vm.stack.Push(z.String())
case oEXP:
x, y := vm.stack.Popn()
base.Exp(x, y, Pow256)
vm.stack.Push(base.String())
case oNEG:
base.Sub(Pow256, ethutil.Big(vm.stack.Pop()))
vm.stack.Push(base.String())
case oLT:
x, y := vm.stack.Popn()
// x < y
if x.Cmp(y) < 0 {
vm.stack.Push("1")
} else {
vm.stack.Push("0")
}
case oLE:
x, y := vm.stack.Popn()
// x <= y
if x.Cmp(y) < 1 {
vm.stack.Push("1")
} else {
vm.stack.Push("0")
}
case oGT:
x, y := vm.stack.Popn()
// x > y
if x.Cmp(y) > 0 {
vm.stack.Push("1")
} else {
vm.stack.Push("0")
}
case oGE:
x, y := vm.stack.Popn()
// x >= y
if x.Cmp(y) > -1 {
vm.stack.Push("1")
} else {
vm.stack.Push("0")
}
case oNOT:
x, y := vm.stack.Popn()
// x != y
if x.Cmp(y) != 0 {
vm.stack.Push("1")
} else {
vm.stack.Push("0")
}
case oMYADDRESS:
vm.stack.Push(string(tx.Hash()))
case oTXSENDER:
vm.stack.Push(string(tx.Sender()))
case oPUSH:
// Get the next entry and pushes the value on the stack
pc++
vm.stack.Push(contract.State().Get(string(ethutil.NumberToBytes(uint64(pc), 32))))
case oPOP:
// Pop current value of the stack
vm.stack.Pop()
case oLOAD:
// Load instruction X on the stack
i, _ := strconv.Atoi(vm.stack.Pop())
vm.stack.Push(contract.State().Get(string(ethutil.NumberToBytes(uint64(i), 32))))
case oSTOP:
break out
}
pc++
}
vm.stack.Push(base.String())
case oNEG:
base.Sub(Pow256, ethutil.Big(vm.stack.Pop()))
vm.stack.Push(base.String())
case oLT:
x, y := vm.stack.Popn()
// x < y
if x.Cmp(y) < 0 {
vm.stack.Push("1")
} else {
vm.stack.Push("0")
}
case oLE:
x, y := vm.stack.Popn()
// x <= y
if x.Cmp(y) < 1 {
vm.stack.Push("1")
} else {
vm.stack.Push("0")
}
case oGT:
x, y := vm.stack.Popn()
// x > y
if x.Cmp(y) > 0 {
vm.stack.Push("1")
} else {
vm.stack.Push("0")
}
case oGE:
x, y := vm.stack.Popn()
// x >= y
if x.Cmp(y) > -1 {
vm.stack.Push("1")
} else {
vm.stack.Push("0")
}
case oNOT:
x, y := vm.stack.Popn()
// x != y
if x.Cmp(y) != 0 {
vm.stack.Push("1")
} else {
vm.stack.Push("0")
}
case oMYADDRESS:
vm.stack.Push(string(tx.Hash()))
case oTXSENDER:
vm.stack.Push(string(tx.Sender()))
case oPUSH:
// Get the next entry and pushes the value on the stack
pc++
vm.stack.Push(contract.State().Get(string(ethutil.NumberToBytes(uint64(pc), 32))))
case oPOP:
// Pop current value of the stack
vm.stack.Pop()
case oLOAD:
// Load instruction X on the stack
i, _ := strconv.Atoi(vm.stack.Pop())
vm.stack.Push(contract.State().Get(string(ethutil.NumberToBytes(uint64(i), 32))))
case oSTOP:
break out
}
pc++
}
vm.stack.Print()
vm.stack.Print()
}