Merge pull request #3413 from zsfelfoldi/light-topic4

les, p2p/discv5: implement server pool, improve peer selection, light fetcher and topic searching
This commit is contained in:
Felix Lange 2016-12-12 20:46:15 +01:00 committed by GitHub
commit a98e8c0889
21 changed files with 1918 additions and 551 deletions

@ -104,6 +104,7 @@ type Config struct {
type LesServer interface { type LesServer interface {
Start(srvr *p2p.Server) Start(srvr *p2p.Server)
Synced()
Stop() Stop()
Protocols() []p2p.Protocol Protocols() []p2p.Protocol
} }
@ -145,6 +146,7 @@ type Ethereum struct {
func (s *Ethereum) AddLesServer(ls LesServer) { func (s *Ethereum) AddLesServer(ls LesServer) {
s.lesServer = ls s.lesServer = ls
s.protocolManager.lesServer = ls
} }
// New creates a new Ethereum object (including the // New creates a new Ethereum object (including the

@ -87,6 +87,8 @@ type ProtocolManager struct {
quitSync chan struct{} quitSync chan struct{}
noMorePeers chan struct{} noMorePeers chan struct{}
lesServer LesServer
// wait group is used for graceful shutdowns during downloading // wait group is used for graceful shutdowns during downloading
// and processing // and processing
wg sync.WaitGroup wg sync.WaitGroup
@ -171,7 +173,7 @@ func NewProtocolManager(config *params.ChainConfig, fastSync bool, networkId int
return blockchain.CurrentBlock().NumberU64() return blockchain.CurrentBlock().NumberU64()
} }
inserter := func(blocks types.Blocks) (int, error) { inserter := func(blocks types.Blocks) (int, error) {
atomic.StoreUint32(&manager.synced, 1) // Mark initial sync done on any fetcher import manager.setSynced() // Mark initial sync done on any fetcher import
return manager.insertChain(blocks) return manager.insertChain(blocks)
} }
manager.fetcher = fetcher.New(blockchain.GetBlockByHash, validator, manager.BroadcastBlock, heighter, inserter, manager.removePeer) manager.fetcher = fetcher.New(blockchain.GetBlockByHash, validator, manager.BroadcastBlock, heighter, inserter, manager.removePeer)

@ -181,7 +181,7 @@ func (pm *ProtocolManager) synchronise(peer *peer) {
if err := pm.downloader.Synchronise(peer.id, pHead, pTd, mode); err != nil { if err := pm.downloader.Synchronise(peer.id, pHead, pTd, mode); err != nil {
return return
} }
atomic.StoreUint32(&pm.synced, 1) // Mark initial sync done pm.setSynced() // Mark initial sync done
// If fast sync was enabled, and we synced up, disable it // If fast sync was enabled, and we synced up, disable it
if atomic.LoadUint32(&pm.fastSync) == 1 { if atomic.LoadUint32(&pm.fastSync) == 1 {
@ -192,3 +192,10 @@ func (pm *ProtocolManager) synchronise(peer *peer) {
} }
} }
} }
// setSynced sets the synced flag and notifies the light server if present
func (pm *ProtocolManager) setSynced() {
if atomic.SwapUint32(&pm.synced, 1) == 0 && pm.lesServer != nil {
pm.lesServer.Synced()
}
}

@ -23,135 +23,374 @@ import (
"time" "time"
"github.com/ethereum/go-ethereum/common" "github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/common/mclock"
"github.com/ethereum/go-ethereum/core" "github.com/ethereum/go-ethereum/core"
"github.com/ethereum/go-ethereum/core/types" "github.com/ethereum/go-ethereum/core/types"
"github.com/ethereum/go-ethereum/light"
"github.com/ethereum/go-ethereum/logger"
"github.com/ethereum/go-ethereum/logger/glog"
) )
const (
blockDelayTimeout = time.Second * 10 // timeout for a peer to announce a head that has already been confirmed by others
maxNodeCount = 20 // maximum number of fetcherTreeNode entries remembered for each peer
)
// lightFetcher
type lightFetcher struct { type lightFetcher struct {
pm *ProtocolManager pm *ProtocolManager
odr *LesOdr odr *LesOdr
chain BlockChain chain *light.LightChain
headAnnouncedMu sync.Mutex maxConfirmedTd *big.Int
headAnnouncedBy map[common.Hash][]*peer peers map[*peer]*fetcherPeerInfo
currentTd *big.Int lastUpdateStats *updateStatsEntry
lock sync.Mutex // qwerqwerqwe
deliverChn chan fetchResponse deliverChn chan fetchResponse
reqMu sync.RWMutex reqMu sync.RWMutex
requested map[uint64]fetchRequest requested map[uint64]fetchRequest
timeoutChn chan uint64 timeoutChn chan uint64
notifyChn chan bool // true if initiated from outside requestChn chan bool // true if initiated from outside
syncing bool syncing bool
syncDone chan struct{} syncDone chan *peer
} }
// fetcherPeerInfo holds fetcher-specific information about each active peer
type fetcherPeerInfo struct {
root, lastAnnounced *fetcherTreeNode
nodeCnt int
confirmedTd *big.Int
bestConfirmed *fetcherTreeNode
nodeByHash map[common.Hash]*fetcherTreeNode
firstUpdateStats *updateStatsEntry
}
// fetcherTreeNode is a node of a tree that holds information about blocks recently
// announced and confirmed by a certain peer. Each new announce message from a peer
// adds nodes to the tree, based on the previous announced head and the reorg depth.
// There are three possible states for a tree node:
// - announced: not downloaded (known) yet, but we know its head, number and td
// - intermediate: not known, hash and td are empty, they are filled out when it becomes known
// - known: both announced by this peer and downloaded (from any peer).
// This structure makes it possible to always know which peer has a certain block,
// which is necessary for selecting a suitable peer for ODR requests and also for
// canonizing new heads. It also helps to always download the minimum necessary
// amount of headers with a single request.
type fetcherTreeNode struct {
hash common.Hash
number uint64
td *big.Int
known, requested bool
parent *fetcherTreeNode
children []*fetcherTreeNode
}
// fetchRequest represents a header download request
type fetchRequest struct { type fetchRequest struct {
hash common.Hash hash common.Hash
amount uint64 amount uint64
peer *peer peer *peer
sent mclock.AbsTime
timeout bool
} }
// fetchResponse represents a header download response
type fetchResponse struct { type fetchResponse struct {
reqID uint64 reqID uint64
headers []*types.Header headers []*types.Header
peer *peer
} }
// newLightFetcher creates a new light fetcher
func newLightFetcher(pm *ProtocolManager) *lightFetcher { func newLightFetcher(pm *ProtocolManager) *lightFetcher {
f := &lightFetcher{ f := &lightFetcher{
pm: pm, pm: pm,
chain: pm.blockchain, chain: pm.blockchain.(*light.LightChain),
odr: pm.odr, odr: pm.odr,
headAnnouncedBy: make(map[common.Hash][]*peer), peers: make(map[*peer]*fetcherPeerInfo),
deliverChn: make(chan fetchResponse, 100), deliverChn: make(chan fetchResponse, 100),
requested: make(map[uint64]fetchRequest), requested: make(map[uint64]fetchRequest),
timeoutChn: make(chan uint64), timeoutChn: make(chan uint64),
notifyChn: make(chan bool, 100), requestChn: make(chan bool, 100),
syncDone: make(chan struct{}), syncDone: make(chan *peer),
currentTd: big.NewInt(0), maxConfirmedTd: big.NewInt(0),
} }
go f.syncLoop() go f.syncLoop()
return f return f
} }
func (f *lightFetcher) notify(p *peer, head *announceData) { // syncLoop is the main event loop of the light fetcher
var headHash common.Hash func (f *lightFetcher) syncLoop() {
if head == nil { f.pm.wg.Add(1)
// initial notify defer f.pm.wg.Done()
headHash = p.Head()
} else { requestStarted := false
if core.GetTd(f.pm.chainDb, head.Hash, head.Number) != nil { for {
head.haveHeaders = head.Number select {
case <-f.pm.quitSync:
return
// when a new announce is received, request loop keeps running until
// no further requests are necessary or possible
case newAnnounce := <-f.requestChn:
f.lock.Lock()
s := requestStarted
requestStarted = false
if !f.syncing && !(newAnnounce && s) {
if peer, node, amount := f.nextRequest(); node != nil {
requestStarted = true
reqID, started := f.request(peer, node, amount)
if started {
go func() {
time.Sleep(softRequestTimeout)
f.reqMu.Lock()
req, ok := f.requested[reqID]
if ok {
req.timeout = true
f.requested[reqID] = req
} }
//fmt.Println("notify", p.id, head.Number, head.ReorgDepth, head.haveHeaders) f.reqMu.Unlock()
if !p.addNotify(head) { // keep starting new requests while possible
//fmt.Println("addNotify fail") f.requestChn <- false
f.pm.removePeer(p.id) }()
}
}
}
f.lock.Unlock()
case reqID := <-f.timeoutChn:
f.reqMu.Lock()
req, ok := f.requested[reqID]
if ok {
delete(f.requested, reqID)
}
f.reqMu.Unlock()
if ok {
f.pm.serverPool.adjustResponseTime(req.peer.poolEntry, time.Duration(mclock.Now()-req.sent), true)
glog.V(logger.Debug).Infof("hard timeout by peer %v", req.peer.id)
go f.pm.removePeer(req.peer.id)
}
case resp := <-f.deliverChn:
f.reqMu.Lock()
req, ok := f.requested[resp.reqID]
if ok && req.peer != resp.peer {
ok = false
}
if ok {
delete(f.requested, resp.reqID)
}
f.reqMu.Unlock()
if ok {
f.pm.serverPool.adjustResponseTime(req.peer.poolEntry, time.Duration(mclock.Now()-req.sent), req.timeout)
}
f.lock.Lock()
if !ok || !(f.syncing || f.processResponse(req, resp)) {
glog.V(logger.Debug).Infof("failed processing response by peer %v", resp.peer.id)
go f.pm.removePeer(resp.peer.id)
}
f.lock.Unlock()
case p := <-f.syncDone:
f.lock.Lock()
glog.V(logger.Debug).Infof("done synchronising with peer %v", p.id)
f.checkSyncedHeaders(p)
f.syncing = false
f.lock.Unlock()
} }
headHash = head.Hash
} }
f.headAnnouncedMu.Lock()
f.headAnnouncedBy[headHash] = append(f.headAnnouncedBy[headHash], p)
f.headAnnouncedMu.Unlock()
f.notifyChn <- true
} }
func (f *lightFetcher) gotHeader(header *types.Header) { // addPeer adds a new peer to the fetcher's peer set
f.headAnnouncedMu.Lock() func (f *lightFetcher) addPeer(p *peer) {
defer f.headAnnouncedMu.Unlock() p.lock.Lock()
p.hasBlock = func(hash common.Hash, number uint64) bool {
return f.peerHasBlock(p, hash, number)
}
p.lock.Unlock()
hash := header.Hash() f.lock.Lock()
peerList := f.headAnnouncedBy[hash] defer f.lock.Unlock()
if peerList == nil {
f.peers[p] = &fetcherPeerInfo{nodeByHash: make(map[common.Hash]*fetcherTreeNode)}
}
// removePeer removes a new peer from the fetcher's peer set
func (f *lightFetcher) removePeer(p *peer) {
p.lock.Lock()
p.hasBlock = nil
p.lock.Unlock()
f.lock.Lock()
defer f.lock.Unlock()
// check for potential timed out block delay statistics
f.checkUpdateStats(p, nil)
delete(f.peers, p)
}
// announce processes a new announcement message received from a peer, adding new
// nodes to the peer's block tree and removing old nodes if necessary
func (f *lightFetcher) announce(p *peer, head *announceData) {
f.lock.Lock()
defer f.lock.Unlock()
glog.V(logger.Debug).Infof("received announce from peer %v #%d %016x reorg: %d", p.id, head.Number, head.Hash[:8], head.ReorgDepth)
fp := f.peers[p]
if fp == nil {
glog.V(logger.Debug).Infof("announce: unknown peer")
return return
} }
number := header.Number.Uint64()
td := core.GetTd(f.pm.chainDb, hash, number) if fp.lastAnnounced != nil && head.Td.Cmp(fp.lastAnnounced.td) <= 0 {
for _, peer := range peerList { // announced tds should be strictly monotonic
peer.lock.Lock() glog.V(logger.Debug).Infof("non-monotonic Td from peer %v", p.id)
ok := peer.gotHeader(hash, number, td) go f.pm.removePeer(p.id)
peer.lock.Unlock() return
if !ok {
//fmt.Println("gotHeader fail")
f.pm.removePeer(peer.id)
}
}
delete(f.headAnnouncedBy, hash)
} }
func (f *lightFetcher) nextRequest() (*peer, *announceData) { n := fp.lastAnnounced
var bestPeer *peer for i := uint64(0); i < head.ReorgDepth; i++ {
bestTd := f.currentTd if n == nil {
for _, peer := range f.pm.peers.AllPeers() { break
peer.lock.RLock()
if !peer.headInfo.requested && (peer.headInfo.Td.Cmp(bestTd) > 0 ||
(bestPeer != nil && peer.headInfo.Td.Cmp(bestTd) == 0 && peer.headInfo.haveHeaders > bestPeer.headInfo.haveHeaders)) {
bestPeer = peer
bestTd = peer.headInfo.Td
} }
peer.lock.RUnlock() n = n.parent
} }
if bestPeer == nil { if n != nil {
return nil, nil // n is now the reorg common ancestor, add a new branch of nodes
// check if the node count is too high to add new nodes
locked := false
for uint64(fp.nodeCnt)+head.Number-n.number > maxNodeCount && fp.root != nil {
if !locked {
f.chain.LockChain()
defer f.chain.UnlockChain()
locked = true
} }
bestPeer.lock.Lock() // if one of root's children is canonical, keep it, delete other branches and root itself
res := bestPeer.headInfo var newRoot *fetcherTreeNode
res.requested = true for i, nn := range fp.root.children {
bestPeer.lock.Unlock() if core.GetCanonicalHash(f.pm.chainDb, nn.number) == nn.hash {
for _, peer := range f.pm.peers.AllPeers() { fp.root.children = append(fp.root.children[:i], fp.root.children[i+1:]...)
if peer != bestPeer { nn.parent = nil
peer.lock.Lock() newRoot = nn
if peer.headInfo.Hash == bestPeer.headInfo.Hash && peer.headInfo.haveHeaders == bestPeer.headInfo.haveHeaders { break
peer.headInfo.requested = true
}
peer.lock.Unlock()
} }
} }
return bestPeer, res fp.deleteNode(fp.root)
if n == fp.root {
n = newRoot
}
fp.root = newRoot
if newRoot == nil || !f.checkKnownNode(p, newRoot) {
fp.bestConfirmed = nil
fp.confirmedTd = nil
} }
func (f *lightFetcher) deliverHeaders(reqID uint64, headers []*types.Header) { if n == nil {
f.deliverChn <- fetchResponse{reqID: reqID, headers: headers} break
}
}
if n != nil {
for n.number < head.Number {
nn := &fetcherTreeNode{number: n.number + 1, parent: n}
n.children = append(n.children, nn)
n = nn
fp.nodeCnt++
}
n.hash = head.Hash
n.td = head.Td
fp.nodeByHash[n.hash] = n
}
}
if n == nil {
// could not find reorg common ancestor or had to delete entire tree, a new root and a resync is needed
if fp.root != nil {
fp.deleteNode(fp.root)
}
n = &fetcherTreeNode{hash: head.Hash, number: head.Number, td: head.Td}
fp.root = n
fp.nodeCnt++
fp.nodeByHash[n.hash] = n
fp.bestConfirmed = nil
fp.confirmedTd = nil
} }
f.checkKnownNode(p, n)
p.lock.Lock()
p.headInfo = head
fp.lastAnnounced = n
p.lock.Unlock()
f.checkUpdateStats(p, nil)
f.requestChn <- true
}
// peerHasBlock returns true if we can assume the peer knows the given block
// based on its announcements
func (f *lightFetcher) peerHasBlock(p *peer, hash common.Hash, number uint64) bool {
f.lock.Lock()
defer f.lock.Unlock()
fp := f.peers[p]
if fp == nil || fp.root == nil {
return false
}
if number >= fp.root.number {
// it is recent enough that if it is known, is should be in the peer's block tree
return fp.nodeByHash[hash] != nil
}
f.chain.LockChain()
defer f.chain.UnlockChain()
// if it's older than the peer's block tree root but it's in the same canonical chain
// than the root, we can still be sure the peer knows it
return core.GetCanonicalHash(f.pm.chainDb, fp.root.number) == fp.root.hash && core.GetCanonicalHash(f.pm.chainDb, number) == hash
}
// request initiates a header download request from a certain peer
func (f *lightFetcher) request(p *peer, n *fetcherTreeNode, amount uint64) (uint64, bool) {
fp := f.peers[p]
if fp == nil {
glog.V(logger.Debug).Infof("request: unknown peer")
return 0, false
}
if fp.bestConfirmed == nil || fp.root == nil || !f.checkKnownNode(p, fp.root) {
f.syncing = true
go func() {
glog.V(logger.Debug).Infof("synchronising with peer %v", p.id)
f.pm.synchronise(p)
f.syncDone <- p
}()
return 0, false
}
reqID := getNextReqID()
n.requested = true
cost := p.GetRequestCost(GetBlockHeadersMsg, int(amount))
p.fcServer.SendRequest(reqID, cost)
f.reqMu.Lock()
f.requested[reqID] = fetchRequest{hash: n.hash, amount: amount, peer: p, sent: mclock.Now()}
f.reqMu.Unlock()
go p.RequestHeadersByHash(reqID, cost, n.hash, int(amount), 0, true)
go func() {
time.Sleep(hardRequestTimeout)
f.timeoutChn <- reqID
}()
return reqID, true
}
// requestAmount calculates the amount of headers to be downloaded starting
// from a certain head backwards
func (f *lightFetcher) requestAmount(p *peer, n *fetcherTreeNode) uint64 {
amount := uint64(0)
nn := n
for nn != nil && !f.checkKnownNode(p, nn) {
nn = nn.parent
amount++
}
if nn == nil {
amount = n.number
}
return amount
}
// requestedID tells if a certain reqID has been requested by the fetcher
func (f *lightFetcher) requestedID(reqID uint64) bool { func (f *lightFetcher) requestedID(reqID uint64) bool {
f.reqMu.RLock() f.reqMu.RLock()
_, ok := f.requested[reqID] _, ok := f.requested[reqID]
@ -159,36 +398,51 @@ func (f *lightFetcher) requestedID(reqID uint64) bool {
return ok return ok
} }
func (f *lightFetcher) request(p *peer, block *announceData) { // nextRequest selects the peer and announced head to be requested next, amount
//fmt.Println("request", p.id, block.Number, block.haveHeaders) // to be downloaded starting from the head backwards is also returned
amount := block.Number - block.haveHeaders func (f *lightFetcher) nextRequest() (*peer, *fetcherTreeNode, uint64) {
if amount == 0 { var (
return bestHash common.Hash
bestAmount uint64
)
bestTd := f.maxConfirmedTd
for p, fp := range f.peers {
for hash, n := range fp.nodeByHash {
if !f.checkKnownNode(p, n) && !n.requested && (bestTd == nil || n.td.Cmp(bestTd) >= 0) {
amount := f.requestAmount(p, n)
if bestTd == nil || n.td.Cmp(bestTd) > 0 || amount < bestAmount {
bestHash = hash
bestAmount = amount
bestTd = n.td
} }
if amount > 100 { }
f.syncing = true }
go func() { }
//fmt.Println("f.pm.synchronise(p)") if bestTd == f.maxConfirmedTd {
f.pm.synchronise(p) return nil, nil, 0
//fmt.Println("sync done")
f.syncDone <- struct{}{}
}()
return
} }
reqID := f.odr.getNextReqID() peer := f.pm.serverPool.selectPeer(func(p *peer) (bool, uint64) {
f.reqMu.Lock() fp := f.peers[p]
f.requested[reqID] = fetchRequest{hash: block.Hash, amount: amount, peer: p} if fp == nil || fp.nodeByHash[bestHash] == nil {
f.reqMu.Unlock() return false, 0
cost := p.GetRequestCost(GetBlockHeadersMsg, int(amount)) }
p.fcServer.SendRequest(reqID, cost) return true, p.fcServer.CanSend(p.GetRequestCost(GetBlockHeadersMsg, int(bestAmount)))
go p.RequestHeadersByHash(reqID, cost, block.Hash, int(amount), 0, true) })
go func() { var node *fetcherTreeNode
time.Sleep(hardRequestTimeout) if peer != nil {
f.timeoutChn <- reqID node = f.peers[peer].nodeByHash[bestHash]
}() }
return peer, node, bestAmount
} }
// deliverHeaders delivers header download request responses for processing
func (f *lightFetcher) deliverHeaders(peer *peer, reqID uint64, headers []*types.Header) {
f.deliverChn <- fetchResponse{reqID: reqID, headers: headers, peer: peer}
}
// processResponse processes header download request responses
func (f *lightFetcher) processResponse(req fetchRequest, resp fetchResponse) bool { func (f *lightFetcher) processResponse(req fetchRequest, resp fetchResponse) bool {
if uint64(len(resp.headers)) != req.amount || resp.headers[0].Hash() != req.hash { if uint64(len(resp.headers)) != req.amount || resp.headers[0].Hash() != req.hash {
return false return false
@ -200,96 +454,248 @@ func (f *lightFetcher) processResponse(req fetchRequest, resp fetchResponse) boo
if _, err := f.chain.InsertHeaderChain(headers, 1); err != nil { if _, err := f.chain.InsertHeaderChain(headers, 1); err != nil {
return false return false
} }
for _, header := range headers { tds := make([]*big.Int, len(headers))
td := core.GetTd(f.pm.chainDb, header.Hash(), header.Number.Uint64()) for i, header := range headers {
td := f.chain.GetTd(header.Hash(), header.Number.Uint64())
if td == nil { if td == nil {
return false return false
} }
if td.Cmp(f.currentTd) > 0 { tds[i] = td
f.currentTd = td
}
f.gotHeader(header)
} }
f.newHeaders(headers, tds)
return true return true
} }
func (f *lightFetcher) checkSyncedHeaders() { // newHeaders updates the block trees of all active peers according to a newly
//fmt.Println("checkSyncedHeaders()") // downloaded and validated batch or headers
for _, peer := range f.pm.peers.AllPeers() { func (f *lightFetcher) newHeaders(headers []*types.Header, tds []*big.Int) {
peer.lock.Lock() var maxTd *big.Int
h := peer.firstHeadInfo for p, fp := range f.peers {
remove := false if !f.checkAnnouncedHeaders(fp, headers, tds) {
loop: glog.V(logger.Debug).Infof("announce inconsistency by peer %v", p.id)
for h != nil { go f.pm.removePeer(p.id)
if td := core.GetTd(f.pm.chainDb, h.Hash, h.Number); td != nil {
//fmt.Println(" found", h.Number)
ok := peer.gotHeader(h.Hash, h.Number, td)
if !ok {
remove = true
break loop
} }
if td.Cmp(f.currentTd) > 0 { if fp.confirmedTd != nil && (maxTd == nil || maxTd.Cmp(fp.confirmedTd) > 0) {
f.currentTd = td maxTd = fp.confirmedTd
} }
} }
h = h.next if maxTd != nil {
f.updateMaxConfirmedTd(maxTd)
}
}
// checkAnnouncedHeaders updates peer's block tree if necessary after validating
// a batch of headers. It searches for the latest header in the batch that has a
// matching tree node (if any), and if it has not been marked as known already,
// sets it and its parents to known (even those which are older than the currently
// validated ones). Return value shows if all hashes, numbers and Tds matched
// correctly to the announced values (otherwise the peer should be dropped).
func (f *lightFetcher) checkAnnouncedHeaders(fp *fetcherPeerInfo, headers []*types.Header, tds []*big.Int) bool {
var (
n *fetcherTreeNode
header *types.Header
td *big.Int
)
for i := len(headers) - 1; ; i-- {
if i < 0 {
if n == nil {
// no more headers and nothing to match
return true
}
// we ran out of recently delivered headers but have not reached a node known by this peer yet, continue matching
td = f.chain.GetTd(header.ParentHash, header.Number.Uint64()-1)
header = f.chain.GetHeader(header.ParentHash, header.Number.Uint64()-1)
} else {
header = headers[i]
td = tds[i]
}
hash := header.Hash()
number := header.Number.Uint64()
if n == nil {
n = fp.nodeByHash[hash]
}
if n != nil {
if n.td == nil {
// node was unannounced
if nn := fp.nodeByHash[hash]; nn != nil {
// if there was already a node with the same hash, continue there and drop this one
nn.children = append(nn.children, n.children...)
n.children = nil
fp.deleteNode(n)
n = nn
} else {
n.hash = hash
n.td = td
fp.nodeByHash[hash] = n
}
}
// check if it matches the header
if n.hash != hash || n.number != number || n.td.Cmp(td) != 0 {
// peer has previously made an invalid announcement
return false
}
if n.known {
// we reached a known node that matched our expectations, return with success
return true
}
n.known = true
if fp.confirmedTd == nil || td.Cmp(fp.confirmedTd) > 0 {
fp.confirmedTd = td
fp.bestConfirmed = n
}
n = n.parent
if n == nil {
return true
} }
peer.lock.Unlock()
if remove {
//fmt.Println("checkSync fail")
f.pm.removePeer(peer.id)
} }
} }
} }
func (f *lightFetcher) syncLoop() { // checkSyncedHeaders updates peer's block tree after synchronisation by marking
f.pm.wg.Add(1) // downloaded headers as known. If none of the announced headers are found after
defer f.pm.wg.Done() // syncing, the peer is dropped.
func (f *lightFetcher) checkSyncedHeaders(p *peer) {
srtoNotify := false fp := f.peers[p]
for { if fp == nil {
select { glog.V(logger.Debug).Infof("checkSyncedHeaders: unknown peer")
case <-f.pm.quitSync:
return return
case ext := <-f.notifyChn: }
//fmt.Println("<-f.notifyChn", f.syncing, ext, srtoNotify) n := fp.lastAnnounced
s := srtoNotify var td *big.Int
srtoNotify = false for n != nil {
if !f.syncing && !(ext && s) { if td = f.chain.GetTd(n.hash, n.number); td != nil {
if p, r := f.nextRequest(); r != nil { break
srtoNotify = true }
go func() { n = n.parent
time.Sleep(softRequestTimeout) }
f.notifyChn <- false // now n is the latest downloaded header after syncing
}() if n == nil {
f.request(p, r) glog.V(logger.Debug).Infof("synchronisation failed with peer %v", p.id)
go f.pm.removePeer(p.id)
} else {
header := f.chain.GetHeader(n.hash, n.number)
f.newHeaders([]*types.Header{header}, []*big.Int{td})
} }
} }
case reqID := <-f.timeoutChn:
f.reqMu.Lock() // checkKnownNode checks if a block tree node is known (downloaded and validated)
req, ok := f.requested[reqID] // If it was not known previously but found in the database, sets its known flag
if ok { func (f *lightFetcher) checkKnownNode(p *peer, n *fetcherTreeNode) bool {
delete(f.requested, reqID) if n.known {
return true
} }
f.reqMu.Unlock() td := f.chain.GetTd(n.hash, n.number)
if ok { if td == nil {
//fmt.Println("hard timeout") return false
f.pm.removePeer(req.peer.id)
} }
case resp := <-f.deliverChn:
//fmt.Println("<-f.deliverChn", f.syncing) fp := f.peers[p]
f.reqMu.Lock() if fp == nil {
req, ok := f.requested[resp.reqID] glog.V(logger.Debug).Infof("checkKnownNode: unknown peer")
delete(f.requested, resp.reqID) return false
f.reqMu.Unlock()
if !ok || !(f.syncing || f.processResponse(req, resp)) {
//fmt.Println("processResponse fail")
f.pm.removePeer(req.peer.id)
} }
case <-f.syncDone: header := f.chain.GetHeader(n.hash, n.number)
//fmt.Println("<-f.syncDone", f.syncing) if !f.checkAnnouncedHeaders(fp, []*types.Header{header}, []*big.Int{td}) {
f.checkSyncedHeaders() glog.V(logger.Debug).Infof("announce inconsistency by peer %v", p.id)
f.syncing = false go f.pm.removePeer(p.id)
}
if fp.confirmedTd != nil {
f.updateMaxConfirmedTd(fp.confirmedTd)
}
return n.known
}
// deleteNode deletes a node and its child subtrees from a peer's block tree
func (fp *fetcherPeerInfo) deleteNode(n *fetcherTreeNode) {
if n.parent != nil {
for i, nn := range n.parent.children {
if nn == n {
n.parent.children = append(n.parent.children[:i], n.parent.children[i+1:]...)
break
}
}
}
for {
if n.td != nil {
delete(fp.nodeByHash, n.hash)
}
fp.nodeCnt--
if len(n.children) == 0 {
return
}
for i, nn := range n.children {
if i == 0 {
n = nn
} else {
fp.deleteNode(nn)
}
}
}
}
// updateStatsEntry items form a linked list that is expanded with a new item every time a new head with a higher Td
// than the previous one has been downloaded and validated. The list contains a series of maximum confirmed Td values
// and the time these values have been confirmed, both increasing monotonically. A maximum confirmed Td is calculated
// both globally for all peers and also for each individual peer (meaning that the given peer has announced the head
// and it has also been downloaded from any peer, either before or after the given announcement).
// The linked list has a global tail where new confirmed Td entries are added and a separate head for each peer,
// pointing to the next Td entry that is higher than the peer's max confirmed Td (nil if it has already confirmed
// the current global head).
type updateStatsEntry struct {
time mclock.AbsTime
td *big.Int
next *updateStatsEntry
}
// updateMaxConfirmedTd updates the block delay statistics of active peers. Whenever a new highest Td is confirmed,
// adds it to the end of a linked list together with the time it has been confirmed. Then checks which peers have
// already confirmed a head with the same or higher Td (which counts as zero block delay) and updates their statistics.
// Those who have not confirmed such a head by now will be updated by a subsequent checkUpdateStats call with a
// positive block delay value.
func (f *lightFetcher) updateMaxConfirmedTd(td *big.Int) {
if f.maxConfirmedTd == nil || td.Cmp(f.maxConfirmedTd) > 0 {
f.maxConfirmedTd = td
newEntry := &updateStatsEntry{
time: mclock.Now(),
td: td,
}
if f.lastUpdateStats != nil {
f.lastUpdateStats.next = newEntry
}
f.lastUpdateStats = newEntry
for p, _ := range f.peers {
f.checkUpdateStats(p, newEntry)
}
}
}
// checkUpdateStats checks those peers who have not confirmed a certain highest Td (or a larger one) by the time it
// has been confirmed by another peer. If they have confirmed such a head by now, their stats are updated with the
// block delay which is (this peer's confirmation time)-(first confirmation time). After blockDelayTimeout has passed,
// the stats are updated with blockDelayTimeout value. In either case, the confirmed or timed out updateStatsEntry
// items are removed from the head of the linked list.
// If a new entry has been added to the global tail, it is passed as a parameter here even though this function
// assumes that it has already been added, so that if the peer's list is empty (all heads confirmed, head is nil),
// it can set the new head to newEntry.
func (f *lightFetcher) checkUpdateStats(p *peer, newEntry *updateStatsEntry) {
now := mclock.Now()
fp := f.peers[p]
if fp == nil {
glog.V(logger.Debug).Infof("checkUpdateStats: unknown peer")
return
}
if newEntry != nil && fp.firstUpdateStats == nil {
fp.firstUpdateStats = newEntry
}
for fp.firstUpdateStats != nil && fp.firstUpdateStats.time <= now-mclock.AbsTime(blockDelayTimeout) {
f.pm.serverPool.adjustBlockDelay(p.poolEntry, blockDelayTimeout)
fp.firstUpdateStats = fp.firstUpdateStats.next
}
if fp.confirmedTd != nil {
for fp.firstUpdateStats != nil && fp.firstUpdateStats.td.Cmp(fp.confirmedTd) <= 0 {
f.pm.serverPool.adjustBlockDelay(p.poolEntry, time.Duration(now-fp.firstUpdateStats.time))
fp.firstUpdateStats = fp.firstUpdateStats.next
} }
} }
} }

@ -22,8 +22,8 @@ import (
"errors" "errors"
"fmt" "fmt"
"math/big" "math/big"
"net"
"sync" "sync"
"time"
"github.com/ethereum/go-ethereum/common" "github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/core" "github.com/ethereum/go-ethereum/core"
@ -58,7 +58,7 @@ const (
MaxHeaderProofsFetch = 64 // Amount of merkle proofs to be fetched per retrieval request MaxHeaderProofsFetch = 64 // Amount of merkle proofs to be fetched per retrieval request
MaxTxSend = 64 // Amount of transactions to be send per request MaxTxSend = 64 // Amount of transactions to be send per request
disableClientRemovePeer = true disableClientRemovePeer = false
) )
// errIncompatibleConfig is returned if the requested protocols and configs are // errIncompatibleConfig is returned if the requested protocols and configs are
@ -101,10 +101,7 @@ type ProtocolManager struct {
chainDb ethdb.Database chainDb ethdb.Database
odr *LesOdr odr *LesOdr
server *LesServer server *LesServer
serverPool *serverPool
topicDisc *discv5.Network
lesTopic discv5.Topic
p2pServer *p2p.Server
downloader *downloader.Downloader downloader *downloader.Downloader
fetcher *lightFetcher fetcher *lightFetcher
@ -157,13 +154,29 @@ func NewProtocolManager(chainConfig *params.ChainConfig, lightSync bool, network
Version: version, Version: version,
Length: ProtocolLengths[i], Length: ProtocolLengths[i],
Run: func(p *p2p.Peer, rw p2p.MsgReadWriter) error { Run: func(p *p2p.Peer, rw p2p.MsgReadWriter) error {
var entry *poolEntry
peer := manager.newPeer(int(version), networkId, p, rw) peer := manager.newPeer(int(version), networkId, p, rw)
if manager.serverPool != nil {
addr := p.RemoteAddr().(*net.TCPAddr)
entry = manager.serverPool.connect(peer, addr.IP, uint16(addr.Port))
if entry == nil {
return fmt.Errorf("unwanted connection")
}
}
peer.poolEntry = entry
select { select {
case manager.newPeerCh <- peer: case manager.newPeerCh <- peer:
manager.wg.Add(1) manager.wg.Add(1)
defer manager.wg.Done() defer manager.wg.Done()
return manager.handle(peer) err := manager.handle(peer)
if entry != nil {
manager.serverPool.disconnect(entry)
}
return err
case <-manager.quitSync: case <-manager.quitSync:
if entry != nil {
manager.serverPool.disconnect(entry)
}
return p2p.DiscQuitting return p2p.DiscQuitting
} }
}, },
@ -192,7 +205,6 @@ func NewProtocolManager(chainConfig *params.ChainConfig, lightSync bool, network
manager.downloader = downloader.New(downloader.LightSync, chainDb, manager.eventMux, blockchain.HasHeader, nil, blockchain.GetHeaderByHash, manager.downloader = downloader.New(downloader.LightSync, chainDb, manager.eventMux, blockchain.HasHeader, nil, blockchain.GetHeaderByHash,
nil, blockchain.CurrentHeader, nil, nil, nil, blockchain.GetTdByHash, nil, blockchain.CurrentHeader, nil, nil, nil, blockchain.GetTdByHash,
blockchain.InsertHeaderChain, nil, nil, blockchain.Rollback, removePeer) blockchain.InsertHeaderChain, nil, nil, blockchain.Rollback, removePeer)
manager.fetcher = newLightFetcher(manager)
} }
if odr != nil { if odr != nil {
@ -222,10 +234,12 @@ func (pm *ProtocolManager) removePeer(id string) {
glog.V(logger.Debug).Infof("LES: unregister peer %v", id) glog.V(logger.Debug).Infof("LES: unregister peer %v", id)
if pm.lightSync { if pm.lightSync {
pm.downloader.UnregisterPeer(id) pm.downloader.UnregisterPeer(id)
pm.odr.UnregisterPeer(peer)
if pm.txrelay != nil { if pm.txrelay != nil {
pm.txrelay.removePeer(id) pm.txrelay.removePeer(id)
} }
if pm.fetcher != nil {
pm.fetcher.removePeer(peer)
}
} }
if err := pm.peers.Unregister(id); err != nil { if err := pm.peers.Unregister(id); err != nil {
glog.V(logger.Error).Infoln("Removal failed:", err) glog.V(logger.Error).Infoln("Removal failed:", err)
@ -236,54 +250,26 @@ func (pm *ProtocolManager) removePeer(id string) {
} }
} }
func (pm *ProtocolManager) findServers() {
if pm.p2pServer == nil || pm.topicDisc == nil {
return
}
glog.V(logger.Debug).Infoln("Looking for topic", string(pm.lesTopic))
enodes := make(chan string, 100)
stop := make(chan struct{})
go pm.topicDisc.SearchTopic(pm.lesTopic, stop, enodes)
go func() {
added := make(map[string]bool)
for {
select {
case enode := <-enodes:
if !added[enode] {
glog.V(logger.Info).Infoln("Found LES server:", enode)
added[enode] = true
if node, err := discover.ParseNode(enode); err == nil {
pm.p2pServer.AddPeer(node)
}
}
case <-stop:
return
}
}
}()
select {
case <-time.After(time.Second * 20):
case <-pm.quitSync:
}
close(stop)
}
func (pm *ProtocolManager) Start(srvr *p2p.Server) { func (pm *ProtocolManager) Start(srvr *p2p.Server) {
pm.p2pServer = srvr var topicDisc *discv5.Network
if srvr != nil { if srvr != nil {
pm.topicDisc = srvr.DiscV5 topicDisc = srvr.DiscV5
} }
pm.lesTopic = discv5.Topic("LES@" + common.Bytes2Hex(pm.blockchain.Genesis().Hash().Bytes()[0:8])) lesTopic := discv5.Topic("LES@" + common.Bytes2Hex(pm.blockchain.Genesis().Hash().Bytes()[0:8]))
if pm.lightSync { if pm.lightSync {
// start sync handler // start sync handler
go pm.findServers() if srvr != nil { // srvr is nil during testing
pm.serverPool = newServerPool(pm.chainDb, []byte("serverPool/"), srvr, lesTopic, pm.quitSync, &pm.wg)
pm.odr.serverPool = pm.serverPool
pm.fetcher = newLightFetcher(pm)
}
go pm.syncer() go pm.syncer()
} else { } else {
if pm.topicDisc != nil { if topicDisc != nil {
go func() { go func() {
glog.V(logger.Debug).Infoln("Starting registering topic", string(pm.lesTopic)) glog.V(logger.Info).Infoln("Starting registering topic", string(lesTopic))
pm.topicDisc.RegisterTopic(pm.lesTopic, pm.quitSync) topicDisc.RegisterTopic(lesTopic, pm.quitSync)
glog.V(logger.Debug).Infoln("Stopped registering topic", string(pm.lesTopic)) glog.V(logger.Info).Infoln("Stopped registering topic", string(lesTopic))
}() }()
} }
go func() { go func() {
@ -352,13 +338,13 @@ func (pm *ProtocolManager) handle(p *peer) error {
glog.V(logger.Debug).Infof("LES: register peer %v", p.id) glog.V(logger.Debug).Infof("LES: register peer %v", p.id)
if pm.lightSync { if pm.lightSync {
requestHeadersByHash := func(origin common.Hash, amount int, skip int, reverse bool) error { requestHeadersByHash := func(origin common.Hash, amount int, skip int, reverse bool) error {
reqID := pm.odr.getNextReqID() reqID := getNextReqID()
cost := p.GetRequestCost(GetBlockHeadersMsg, amount) cost := p.GetRequestCost(GetBlockHeadersMsg, amount)
p.fcServer.SendRequest(reqID, cost) p.fcServer.SendRequest(reqID, cost)
return p.RequestHeadersByHash(reqID, cost, origin, amount, skip, reverse) return p.RequestHeadersByHash(reqID, cost, origin, amount, skip, reverse)
} }
requestHeadersByNumber := func(origin uint64, amount int, skip int, reverse bool) error { requestHeadersByNumber := func(origin uint64, amount int, skip int, reverse bool) error {
reqID := pm.odr.getNextReqID() reqID := getNextReqID()
cost := p.GetRequestCost(GetBlockHeadersMsg, amount) cost := p.GetRequestCost(GetBlockHeadersMsg, amount)
p.fcServer.SendRequest(reqID, cost) p.fcServer.SendRequest(reqID, cost)
return p.RequestHeadersByNumber(reqID, cost, origin, amount, skip, reverse) return p.RequestHeadersByNumber(reqID, cost, origin, amount, skip, reverse)
@ -367,12 +353,21 @@ func (pm *ProtocolManager) handle(p *peer) error {
requestHeadersByHash, requestHeadersByNumber, nil, nil, nil); err != nil { requestHeadersByHash, requestHeadersByNumber, nil, nil, nil); err != nil {
return err return err
} }
pm.odr.RegisterPeer(p)
if pm.txrelay != nil { if pm.txrelay != nil {
pm.txrelay.addPeer(p) pm.txrelay.addPeer(p)
} }
pm.fetcher.notify(p, nil) p.lock.Lock()
head := p.headInfo
p.lock.Unlock()
if pm.fetcher != nil {
pm.fetcher.addPeer(p)
pm.fetcher.announce(p, head)
}
if p.poolEntry != nil {
pm.serverPool.registered(p.poolEntry)
}
} }
stop := make(chan struct{}) stop := make(chan struct{})
@ -454,7 +449,9 @@ func (pm *ProtocolManager) handleMsg(p *peer) error {
return errResp(ErrDecode, "%v: %v", msg, err) return errResp(ErrDecode, "%v: %v", msg, err)
} }
glog.V(logger.Detail).Infoln("AnnounceMsg:", req.Number, req.Hash, req.Td, req.ReorgDepth) glog.V(logger.Detail).Infoln("AnnounceMsg:", req.Number, req.Hash, req.Td, req.ReorgDepth)
pm.fetcher.notify(p, &req) if pm.fetcher != nil {
go pm.fetcher.announce(p, &req)
}
case GetBlockHeadersMsg: case GetBlockHeadersMsg:
glog.V(logger.Debug).Infof("<=== GetBlockHeadersMsg from peer %v", p.id) glog.V(logger.Debug).Infof("<=== GetBlockHeadersMsg from peer %v", p.id)
@ -552,8 +549,8 @@ func (pm *ProtocolManager) handleMsg(p *peer) error {
return errResp(ErrDecode, "msg %v: %v", msg, err) return errResp(ErrDecode, "msg %v: %v", msg, err)
} }
p.fcServer.GotReply(resp.ReqID, resp.BV) p.fcServer.GotReply(resp.ReqID, resp.BV)
if pm.fetcher.requestedID(resp.ReqID) { if pm.fetcher != nil && pm.fetcher.requestedID(resp.ReqID) {
pm.fetcher.deliverHeaders(resp.ReqID, resp.Headers) pm.fetcher.deliverHeaders(p, resp.ReqID, resp.Headers)
} else { } else {
err := pm.downloader.DeliverHeaders(p.id, resp.Headers) err := pm.downloader.DeliverHeaders(p.id, resp.Headers)
if err != nil { if err != nil {

@ -25,6 +25,7 @@ import (
"math/big" "math/big"
"sync" "sync"
"testing" "testing"
"time"
"github.com/ethereum/go-ethereum/common" "github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/core" "github.com/ethereum/go-ethereum/core"
@ -334,3 +335,13 @@ func (p *testPeer) handshake(t *testing.T, td *big.Int, head common.Hash, headNu
func (p *testPeer) close() { func (p *testPeer) close() {
p.app.Close() p.app.Close()
} }
type testServerPool peer
func (p *testServerPool) selectPeer(func(*peer) (bool, uint64)) *peer {
return (*peer)(p)
}
func (p *testServerPool) adjustResponseTime(*poolEntry, time.Duration, bool) {
}

@ -17,6 +17,8 @@
package les package les
import ( import (
"crypto/rand"
"encoding/binary"
"sync" "sync"
"time" "time"
@ -37,6 +39,11 @@ var (
// peerDropFn is a callback type for dropping a peer detected as malicious. // peerDropFn is a callback type for dropping a peer detected as malicious.
type peerDropFn func(id string) type peerDropFn func(id string)
type odrPeerSelector interface {
selectPeer(func(*peer) (bool, uint64)) *peer
adjustResponseTime(*poolEntry, time.Duration, bool)
}
type LesOdr struct { type LesOdr struct {
light.OdrBackend light.OdrBackend
db ethdb.Database db ethdb.Database
@ -44,15 +51,13 @@ type LesOdr struct {
removePeer peerDropFn removePeer peerDropFn
mlock, clock sync.Mutex mlock, clock sync.Mutex
sentReqs map[uint64]*sentReq sentReqs map[uint64]*sentReq
peers *odrPeerSet serverPool odrPeerSelector
lastReqID uint64
} }
func NewLesOdr(db ethdb.Database) *LesOdr { func NewLesOdr(db ethdb.Database) *LesOdr {
return &LesOdr{ return &LesOdr{
db: db, db: db,
stop: make(chan struct{}), stop: make(chan struct{}),
peers: newOdrPeerSet(),
sentReqs: make(map[uint64]*sentReq), sentReqs: make(map[uint64]*sentReq),
} }
} }
@ -77,16 +82,6 @@ type sentReq struct {
answered chan struct{} // closed and set to nil when any peer answers it answered chan struct{} // closed and set to nil when any peer answers it
} }
// RegisterPeer registers a new LES peer to the ODR capable peer set
func (self *LesOdr) RegisterPeer(p *peer) error {
return self.peers.register(p)
}
// UnregisterPeer removes a peer from the ODR capable peer set
func (self *LesOdr) UnregisterPeer(p *peer) {
self.peers.unregister(p)
}
const ( const (
MsgBlockBodies = iota MsgBlockBodies = iota
MsgCode MsgCode
@ -142,29 +137,26 @@ func (self *LesOdr) requestPeer(req *sentReq, peer *peer, delivered, timeout cha
select { select {
case <-delivered: case <-delivered:
servTime := uint64(mclock.Now() - stime) if self.serverPool != nil {
self.peers.updateTimeout(peer, false) self.serverPool.adjustResponseTime(peer.poolEntry, time.Duration(mclock.Now()-stime), false)
self.peers.updateServTime(peer, servTime) }
return return
case <-time.After(softRequestTimeout): case <-time.After(softRequestTimeout):
close(timeout) close(timeout)
if self.peers.updateTimeout(peer, true) {
self.removePeer(peer.id)
}
case <-self.stop: case <-self.stop:
return return
} }
select { select {
case <-delivered: case <-delivered:
servTime := uint64(mclock.Now() - stime)
self.peers.updateServTime(peer, servTime)
return
case <-time.After(hardRequestTimeout): case <-time.After(hardRequestTimeout):
self.removePeer(peer.id) go self.removePeer(peer.id)
case <-self.stop: case <-self.stop:
return return
} }
if self.serverPool != nil {
self.serverPool.adjustResponseTime(peer.poolEntry, time.Duration(mclock.Now()-stime), true)
}
} }
// networkRequest sends a request to known peers until an answer is received // networkRequest sends a request to known peers until an answer is received
@ -176,7 +168,7 @@ func (self *LesOdr) networkRequest(ctx context.Context, lreq LesOdrRequest) erro
sentTo: make(map[*peer]chan struct{}), sentTo: make(map[*peer]chan struct{}),
answered: answered, // reply delivered by any peer answered: answered, // reply delivered by any peer
} }
reqID := self.getNextReqID() reqID := getNextReqID()
self.mlock.Lock() self.mlock.Lock()
self.sentReqs[reqID] = req self.sentReqs[reqID] = req
self.mlock.Unlock() self.mlock.Unlock()
@ -193,7 +185,16 @@ func (self *LesOdr) networkRequest(ctx context.Context, lreq LesOdrRequest) erro
exclude := make(map[*peer]struct{}) exclude := make(map[*peer]struct{})
for { for {
if peer := self.peers.bestPeer(lreq, exclude); peer == nil { var p *peer
if self.serverPool != nil {
p = self.serverPool.selectPeer(func(p *peer) (bool, uint64) {
if !lreq.CanSend(p) {
return false, 0
}
return true, p.fcServer.CanSend(lreq.GetCost(p))
})
}
if p == nil {
select { select {
case <-ctx.Done(): case <-ctx.Done():
return ctx.Err() return ctx.Err()
@ -202,17 +203,17 @@ func (self *LesOdr) networkRequest(ctx context.Context, lreq LesOdrRequest) erro
case <-time.After(retryPeers): case <-time.After(retryPeers):
} }
} else { } else {
exclude[peer] = struct{}{} exclude[p] = struct{}{}
delivered := make(chan struct{}) delivered := make(chan struct{})
timeout := make(chan struct{}) timeout := make(chan struct{})
req.lock.Lock() req.lock.Lock()
req.sentTo[peer] = delivered req.sentTo[p] = delivered
req.lock.Unlock() req.lock.Unlock()
reqWg.Add(1) reqWg.Add(1)
cost := lreq.GetCost(peer) cost := lreq.GetCost(p)
peer.fcServer.SendRequest(reqID, cost) p.fcServer.SendRequest(reqID, cost)
go self.requestPeer(req, peer, delivered, timeout, reqWg) go self.requestPeer(req, p, delivered, timeout, reqWg)
lreq.Request(reqID, peer) lreq.Request(reqID, p)
select { select {
case <-ctx.Done(): case <-ctx.Done():
@ -239,10 +240,8 @@ func (self *LesOdr) Retrieve(ctx context.Context, req light.OdrRequest) (err err
return return
} }
func (self *LesOdr) getNextReqID() uint64 { func getNextReqID() uint64 {
self.clock.Lock() var rnd [8]byte
defer self.clock.Unlock() rand.Read(rnd[:])
return binary.BigEndian.Uint64(rnd[:])
self.lastReqID++
return self.lastReqID
} }

@ -1,120 +0,0 @@
// Copyright 2016 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package les
import (
"sync"
)
const dropTimeoutRatio = 20
type odrPeerInfo struct {
reqTimeSum, reqTimeCnt, reqCnt, timeoutCnt uint64
}
// odrPeerSet represents the collection of active peer participating in the block
// download procedure.
type odrPeerSet struct {
peers map[*peer]*odrPeerInfo
lock sync.RWMutex
}
// newPeerSet creates a new peer set top track the active download sources.
func newOdrPeerSet() *odrPeerSet {
return &odrPeerSet{
peers: make(map[*peer]*odrPeerInfo),
}
}
// Register injects a new peer into the working set, or returns an error if the
// peer is already known.
func (ps *odrPeerSet) register(p *peer) error {
ps.lock.Lock()
defer ps.lock.Unlock()
if _, ok := ps.peers[p]; ok {
return errAlreadyRegistered
}
ps.peers[p] = &odrPeerInfo{}
return nil
}
// Unregister removes a remote peer from the active set, disabling any further
// actions to/from that particular entity.
func (ps *odrPeerSet) unregister(p *peer) error {
ps.lock.Lock()
defer ps.lock.Unlock()
if _, ok := ps.peers[p]; !ok {
return errNotRegistered
}
delete(ps.peers, p)
return nil
}
func (ps *odrPeerSet) peerPriority(p *peer, info *odrPeerInfo, req LesOdrRequest) uint64 {
tm := p.fcServer.CanSend(req.GetCost(p))
if info.reqTimeCnt > 0 {
tm += info.reqTimeSum / info.reqTimeCnt
}
return tm
}
func (ps *odrPeerSet) bestPeer(req LesOdrRequest, exclude map[*peer]struct{}) *peer {
var best *peer
var bpv uint64
ps.lock.Lock()
defer ps.lock.Unlock()
for p, info := range ps.peers {
if _, ok := exclude[p]; !ok {
pv := ps.peerPriority(p, info, req)
if best == nil || pv < bpv {
best = p
bpv = pv
}
}
}
return best
}
func (ps *odrPeerSet) updateTimeout(p *peer, timeout bool) (drop bool) {
ps.lock.Lock()
defer ps.lock.Unlock()
if info, ok := ps.peers[p]; ok {
info.reqCnt++
if timeout {
// check ratio before increase to allow an extra timeout
if info.timeoutCnt*dropTimeoutRatio >= info.reqCnt {
return true
}
info.timeoutCnt++
}
}
return false
}
func (ps *odrPeerSet) updateServTime(p *peer, servTime uint64) {
ps.lock.Lock()
defer ps.lock.Unlock()
if info, ok := ps.peers[p]; ok {
info.reqTimeSum += servTime
info.reqTimeCnt++
}
}

@ -36,6 +36,7 @@ import (
type LesOdrRequest interface { type LesOdrRequest interface {
GetCost(*peer) uint64 GetCost(*peer) uint64
CanSend(*peer) bool
Request(uint64, *peer) error Request(uint64, *peer) error
Valid(ethdb.Database, *Msg) bool // if true, keeps the retrieved object Valid(ethdb.Database, *Msg) bool // if true, keeps the retrieved object
} }
@ -66,6 +67,11 @@ func (self *BlockRequest) GetCost(peer *peer) uint64 {
return peer.GetRequestCost(GetBlockBodiesMsg, 1) return peer.GetRequestCost(GetBlockBodiesMsg, 1)
} }
// CanSend tells if a certain peer is suitable for serving the given request
func (self *BlockRequest) CanSend(peer *peer) bool {
return peer.HasBlock(self.Hash, self.Number)
}
// Request sends an ODR request to the LES network (implementation of LesOdrRequest) // Request sends an ODR request to the LES network (implementation of LesOdrRequest)
func (self *BlockRequest) Request(reqID uint64, peer *peer) error { func (self *BlockRequest) Request(reqID uint64, peer *peer) error {
glog.V(logger.Debug).Infof("ODR: requesting body of block %08x from peer %v", self.Hash[:4], peer.id) glog.V(logger.Debug).Infof("ODR: requesting body of block %08x from peer %v", self.Hash[:4], peer.id)
@ -121,6 +127,11 @@ func (self *ReceiptsRequest) GetCost(peer *peer) uint64 {
return peer.GetRequestCost(GetReceiptsMsg, 1) return peer.GetRequestCost(GetReceiptsMsg, 1)
} }
// CanSend tells if a certain peer is suitable for serving the given request
func (self *ReceiptsRequest) CanSend(peer *peer) bool {
return peer.HasBlock(self.Hash, self.Number)
}
// Request sends an ODR request to the LES network (implementation of LesOdrRequest) // Request sends an ODR request to the LES network (implementation of LesOdrRequest)
func (self *ReceiptsRequest) Request(reqID uint64, peer *peer) error { func (self *ReceiptsRequest) Request(reqID uint64, peer *peer) error {
glog.V(logger.Debug).Infof("ODR: requesting receipts for block %08x from peer %v", self.Hash[:4], peer.id) glog.V(logger.Debug).Infof("ODR: requesting receipts for block %08x from peer %v", self.Hash[:4], peer.id)
@ -171,6 +182,11 @@ func (self *TrieRequest) GetCost(peer *peer) uint64 {
return peer.GetRequestCost(GetProofsMsg, 1) return peer.GetRequestCost(GetProofsMsg, 1)
} }
// CanSend tells if a certain peer is suitable for serving the given request
func (self *TrieRequest) CanSend(peer *peer) bool {
return peer.HasBlock(self.Id.BlockHash, self.Id.BlockNumber)
}
// Request sends an ODR request to the LES network (implementation of LesOdrRequest) // Request sends an ODR request to the LES network (implementation of LesOdrRequest)
func (self *TrieRequest) Request(reqID uint64, peer *peer) error { func (self *TrieRequest) Request(reqID uint64, peer *peer) error {
glog.V(logger.Debug).Infof("ODR: requesting trie root %08x key %08x from peer %v", self.Id.Root[:4], self.Key[:4], peer.id) glog.V(logger.Debug).Infof("ODR: requesting trie root %08x key %08x from peer %v", self.Id.Root[:4], self.Key[:4], peer.id)
@ -221,6 +237,11 @@ func (self *CodeRequest) GetCost(peer *peer) uint64 {
return peer.GetRequestCost(GetCodeMsg, 1) return peer.GetRequestCost(GetCodeMsg, 1)
} }
// CanSend tells if a certain peer is suitable for serving the given request
func (self *CodeRequest) CanSend(peer *peer) bool {
return peer.HasBlock(self.Id.BlockHash, self.Id.BlockNumber)
}
// Request sends an ODR request to the LES network (implementation of LesOdrRequest) // Request sends an ODR request to the LES network (implementation of LesOdrRequest)
func (self *CodeRequest) Request(reqID uint64, peer *peer) error { func (self *CodeRequest) Request(reqID uint64, peer *peer) error {
glog.V(logger.Debug).Infof("ODR: requesting node data for hash %08x from peer %v", self.Hash[:4], peer.id) glog.V(logger.Debug).Infof("ODR: requesting node data for hash %08x from peer %v", self.Hash[:4], peer.id)
@ -274,6 +295,14 @@ func (self *ChtRequest) GetCost(peer *peer) uint64 {
return peer.GetRequestCost(GetHeaderProofsMsg, 1) return peer.GetRequestCost(GetHeaderProofsMsg, 1)
} }
// CanSend tells if a certain peer is suitable for serving the given request
func (self *ChtRequest) CanSend(peer *peer) bool {
peer.lock.RLock()
defer peer.lock.RUnlock()
return self.ChtNum <= (peer.headInfo.Number-light.ChtConfirmations)/light.ChtFrequency
}
// Request sends an ODR request to the LES network (implementation of LesOdrRequest) // Request sends an ODR request to the LES network (implementation of LesOdrRequest)
func (self *ChtRequest) Request(reqID uint64, peer *peer) error { func (self *ChtRequest) Request(reqID uint64, peer *peer) error {
glog.V(logger.Debug).Infof("ODR: requesting CHT #%d block #%d from peer %v", self.ChtNum, self.BlockNum, peer.id) glog.V(logger.Debug).Infof("ODR: requesting CHT #%d block #%d from peer %v", self.ChtNum, self.BlockNum, peer.id)

@ -160,6 +160,8 @@ func testOdr(t *testing.T, protocol int, expFail uint64, fn odrTestFn) {
pm, db, odr := newTestProtocolManagerMust(t, false, 4, testChainGen) pm, db, odr := newTestProtocolManagerMust(t, false, 4, testChainGen)
lpm, ldb, odr := newTestProtocolManagerMust(t, true, 0, nil) lpm, ldb, odr := newTestProtocolManagerMust(t, true, 0, nil)
_, err1, lpeer, err2 := newTestPeerPair("peer", protocol, pm, lpm) _, err1, lpeer, err2 := newTestPeerPair("peer", protocol, pm, lpm)
pool := (*testServerPool)(lpeer)
odr.serverPool = pool
select { select {
case <-time.After(time.Millisecond * 100): case <-time.After(time.Millisecond * 100):
case err := <-err1: case err := <-err1:
@ -188,13 +190,13 @@ func testOdr(t *testing.T, protocol int, expFail uint64, fn odrTestFn) {
} }
// temporarily remove peer to test odr fails // temporarily remove peer to test odr fails
odr.UnregisterPeer(lpeer) odr.serverPool = nil
// expect retrievals to fail (except genesis block) without a les peer // expect retrievals to fail (except genesis block) without a les peer
test(expFail) test(expFail)
odr.RegisterPeer(lpeer) odr.serverPool = pool
// expect all retrievals to pass // expect all retrievals to pass
test(5) test(5)
odr.UnregisterPeer(lpeer) odr.serverPool = nil
// still expect all retrievals to pass, now data should be cached locally // still expect all retrievals to pass, now data should be cached locally
test(5) test(5)
} }

@ -51,12 +51,14 @@ type peer struct {
id string id string
firstHeadInfo, headInfo *announceData headInfo *announceData
headInfoLen int
lock sync.RWMutex lock sync.RWMutex
announceChn chan announceData announceChn chan announceData
poolEntry *poolEntry
hasBlock func(common.Hash, uint64) bool
fcClient *flowcontrol.ClientNode // nil if the peer is server only fcClient *flowcontrol.ClientNode // nil if the peer is server only
fcServer *flowcontrol.ServerNode // nil if the peer is client only fcServer *flowcontrol.ServerNode // nil if the peer is client only
fcServerParams *flowcontrol.ServerParams fcServerParams *flowcontrol.ServerParams
@ -109,67 +111,6 @@ func (p *peer) headBlockInfo() blockInfo {
return blockInfo{Hash: p.headInfo.Hash, Number: p.headInfo.Number, Td: p.headInfo.Td} return blockInfo{Hash: p.headInfo.Hash, Number: p.headInfo.Number, Td: p.headInfo.Td}
} }
func (p *peer) addNotify(announce *announceData) bool {
p.lock.Lock()
defer p.lock.Unlock()
if announce.Td.Cmp(p.headInfo.Td) < 1 {
return false
}
if p.headInfoLen >= maxHeadInfoLen {
//return false
p.firstHeadInfo = p.firstHeadInfo.next
p.headInfoLen--
}
if announce.haveHeaders == 0 {
hh := p.headInfo.Number - announce.ReorgDepth
if p.headInfo.haveHeaders < hh {
hh = p.headInfo.haveHeaders
}
announce.haveHeaders = hh
}
p.headInfo.next = announce
p.headInfo = announce
p.headInfoLen++
return true
}
func (p *peer) gotHeader(hash common.Hash, number uint64, td *big.Int) bool {
h := p.firstHeadInfo
ptr := 0
for h != nil {
if h.Hash == hash {
if h.Number != number || h.Td.Cmp(td) != 0 {
return false
}
h.headKnown = true
h.haveHeaders = h.Number
p.firstHeadInfo = h
p.headInfoLen -= ptr
last := h
h = h.next
// propagate haveHeaders through the chain
for h != nil {
hh := last.Number - h.ReorgDepth
if last.haveHeaders < hh {
hh = last.haveHeaders
}
if hh > h.haveHeaders {
h.haveHeaders = hh
} else {
return true
}
last = h
h = h.next
}
return true
}
h = h.next
ptr++
}
return true
}
// Td retrieves the current total difficulty of a peer. // Td retrieves the current total difficulty of a peer.
func (p *peer) Td() *big.Int { func (p *peer) Td() *big.Int {
p.lock.RLock() p.lock.RLock()
@ -195,6 +136,9 @@ func sendResponse(w p2p.MsgWriter, msgcode, reqID, bv uint64, data interface{})
} }
func (p *peer) GetRequestCost(msgcode uint64, amount int) uint64 { func (p *peer) GetRequestCost(msgcode uint64, amount int) uint64 {
p.lock.RLock()
defer p.lock.RUnlock()
cost := p.fcCosts[msgcode].baseCost + p.fcCosts[msgcode].reqCost*uint64(amount) cost := p.fcCosts[msgcode].baseCost + p.fcCosts[msgcode].reqCost*uint64(amount)
if cost > p.fcServerParams.BufLimit { if cost > p.fcServerParams.BufLimit {
cost = p.fcServerParams.BufLimit cost = p.fcServerParams.BufLimit
@ -202,6 +146,14 @@ func (p *peer) GetRequestCost(msgcode uint64, amount int) uint64 {
return cost return cost
} }
// HasBlock checks if the peer has a given block
func (p *peer) HasBlock(hash common.Hash, number uint64) bool {
p.lock.RLock()
hashBlock := p.hasBlock
p.lock.RUnlock()
return hashBlock != nil && hashBlock(hash, number)
}
// SendAnnounce announces the availability of a number of blocks through // SendAnnounce announces the availability of a number of blocks through
// a hash notification. // a hash notification.
func (p *peer) SendAnnounce(request announceData) error { func (p *peer) SendAnnounce(request announceData) error {
@ -453,9 +405,7 @@ func (p *peer) Handshake(td *big.Int, head common.Hash, headNum uint64, genesis
p.fcCosts = MRC.decode() p.fcCosts = MRC.decode()
} }
p.firstHeadInfo = &announceData{Td: rTd, Hash: rHash, Number: rNum} p.headInfo = &announceData{Td: rTd, Hash: rHash, Number: rNum}
p.headInfo = p.firstHeadInfo
p.headInfoLen = 1
return nil return nil
} }

173
les/randselect.go Normal file

@ -0,0 +1,173 @@
// Copyright 2016 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
// Package les implements the Light Ethereum Subprotocol.
package les
import (
"math/rand"
)
// wrsItem interface should be implemented by any entries that are to be selected from
// a weightedRandomSelect set. Note that recalculating monotonously decreasing item
// weights on-demand (without constantly calling update) is allowed
type wrsItem interface {
Weight() int64
}
// weightedRandomSelect is capable of weighted random selection from a set of items
type weightedRandomSelect struct {
root *wrsNode
idx map[wrsItem]int
}
// newWeightedRandomSelect returns a new weightedRandomSelect structure
func newWeightedRandomSelect() *weightedRandomSelect {
return &weightedRandomSelect{root: &wrsNode{maxItems: wrsBranches}, idx: make(map[wrsItem]int)}
}
// update updates an item's weight, adds it if it was non-existent or removes it if
// the new weight is zero. Note that explicitly updating decreasing weights is not necessary.
func (w *weightedRandomSelect) update(item wrsItem) {
w.setWeight(item, item.Weight())
}
// remove removes an item from the set
func (w *weightedRandomSelect) remove(item wrsItem) {
w.setWeight(item, 0)
}
// setWeight sets an item's weight to a specific value (removes it if zero)
func (w *weightedRandomSelect) setWeight(item wrsItem, weight int64) {
idx, ok := w.idx[item]
if ok {
w.root.setWeight(idx, weight)
if weight == 0 {
delete(w.idx, item)
}
} else {
if weight != 0 {
if w.root.itemCnt == w.root.maxItems {
// add a new level
newRoot := &wrsNode{sumWeight: w.root.sumWeight, itemCnt: w.root.itemCnt, level: w.root.level + 1, maxItems: w.root.maxItems * wrsBranches}
newRoot.items[0] = w.root
newRoot.weights[0] = w.root.sumWeight
w.root = newRoot
}
w.idx[item] = w.root.insert(item, weight)
}
}
}
// choose randomly selects an item from the set, with a chance proportional to its
// current weight. If the weight of the chosen element has been decreased since the
// last stored value, returns it with a newWeight/oldWeight chance, otherwise just
// updates its weight and selects another one
func (w *weightedRandomSelect) choose() wrsItem {
for {
if w.root.sumWeight == 0 {
return nil
}
val := rand.Int63n(w.root.sumWeight)
choice, lastWeight := w.root.choose(val)
weight := choice.Weight()
if weight != lastWeight {
w.setWeight(choice, weight)
}
if weight >= lastWeight || rand.Int63n(lastWeight) < weight {
return choice
}
}
}
const wrsBranches = 8 // max number of branches in the wrsNode tree
// wrsNode is a node of a tree structure that can store wrsItems or further wrsNodes.
type wrsNode struct {
items [wrsBranches]interface{}
weights [wrsBranches]int64
sumWeight int64
level, itemCnt, maxItems int
}
// insert recursively inserts a new item to the tree and returns the item index
func (n *wrsNode) insert(item wrsItem, weight int64) int {
branch := 0
for n.items[branch] != nil && (n.level == 0 || n.items[branch].(*wrsNode).itemCnt == n.items[branch].(*wrsNode).maxItems) {
branch++
if branch == wrsBranches {
panic(nil)
}
}
n.itemCnt++
n.sumWeight += weight
n.weights[branch] += weight
if n.level == 0 {
n.items[branch] = item
return branch
} else {
var subNode *wrsNode
if n.items[branch] == nil {
subNode = &wrsNode{maxItems: n.maxItems / wrsBranches, level: n.level - 1}
n.items[branch] = subNode
} else {
subNode = n.items[branch].(*wrsNode)
}
subIdx := subNode.insert(item, weight)
return subNode.maxItems*branch + subIdx
}
}
// setWeight updates the weight of a certain item (which should exist) and returns
// the change of the last weight value stored in the tree
func (n *wrsNode) setWeight(idx int, weight int64) int64 {
if n.level == 0 {
oldWeight := n.weights[idx]
n.weights[idx] = weight
diff := weight - oldWeight
n.sumWeight += diff
if weight == 0 {
n.items[idx] = nil
n.itemCnt--
}
return diff
}
branchItems := n.maxItems / wrsBranches
branch := idx / branchItems
diff := n.items[branch].(*wrsNode).setWeight(idx-branch*branchItems, weight)
n.weights[branch] += diff
n.sumWeight += diff
if weight == 0 {
n.itemCnt--
}
return diff
}
// choose recursively selects an item from the tree and returns it along with its weight
func (n *wrsNode) choose(val int64) (wrsItem, int64) {
for i, w := range n.weights {
if val < w {
if n.level == 0 {
return n.items[i].(wrsItem), n.weights[i]
} else {
return n.items[i].(*wrsNode).choose(val)
}
} else {
val -= w
}
}
panic(nil)
}

67
les/randselect_test.go Normal file

@ -0,0 +1,67 @@
// Copyright 2016 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package les
import (
"math/rand"
"testing"
)
type testWrsItem struct {
idx int
widx *int
}
func (t *testWrsItem) Weight() int64 {
w := *t.widx
if w == -1 || w == t.idx {
return int64(t.idx + 1)
}
return 0
}
func TestWeightedRandomSelect(t *testing.T) {
testFn := func(cnt int) {
s := newWeightedRandomSelect()
w := -1
list := make([]testWrsItem, cnt)
for i, _ := range list {
list[i] = testWrsItem{idx: i, widx: &w}
s.update(&list[i])
}
w = rand.Intn(cnt)
c := s.choose()
if c == nil {
t.Errorf("expected item, got nil")
} else {
if c.(*testWrsItem).idx != w {
t.Errorf("expected another item")
}
}
w = -2
if s.choose() != nil {
t.Errorf("expected nil, got item")
}
}
testFn(1)
testFn(10)
testFn(100)
testFn(1000)
testFn(10000)
testFn(100000)
testFn(1000000)
}

@ -71,6 +71,8 @@ func testAccess(t *testing.T, protocol int, fn accessTestFn) {
pm, db, _ := newTestProtocolManagerMust(t, false, 4, testChainGen) pm, db, _ := newTestProtocolManagerMust(t, false, 4, testChainGen)
lpm, ldb, odr := newTestProtocolManagerMust(t, true, 0, nil) lpm, ldb, odr := newTestProtocolManagerMust(t, true, 0, nil)
_, err1, lpeer, err2 := newTestPeerPair("peer", protocol, pm, lpm) _, err1, lpeer, err2 := newTestPeerPair("peer", protocol, pm, lpm)
pool := (*testServerPool)(lpeer)
odr.serverPool = pool
select { select {
case <-time.After(time.Millisecond * 100): case <-time.After(time.Millisecond * 100):
case err := <-err1: case err := <-err1:
@ -100,11 +102,10 @@ func testAccess(t *testing.T, protocol int, fn accessTestFn) {
} }
// temporarily remove peer to test odr fails // temporarily remove peer to test odr fails
odr.UnregisterPeer(lpeer) odr.serverPool = nil
// expect retrievals to fail (except genesis block) without a les peer // expect retrievals to fail (except genesis block) without a les peer
test(0) test(0)
odr.RegisterPeer(lpeer) odr.serverPool = pool
// expect all retrievals to pass // expect all retrievals to pass
test(5) test(5)
odr.UnregisterPeer(lpeer)
} }

@ -42,6 +42,9 @@ type LesServer struct {
fcManager *flowcontrol.ClientManager // nil if our node is client only fcManager *flowcontrol.ClientManager // nil if our node is client only
fcCostStats *requestCostStats fcCostStats *requestCostStats
defParams *flowcontrol.ServerParams defParams *flowcontrol.ServerParams
srvr *p2p.Server
synced, stopped bool
lock sync.Mutex
} }
func NewLesServer(eth *eth.Ethereum, config *eth.Config) (*LesServer, error) { func NewLesServer(eth *eth.Ethereum, config *eth.Config) (*LesServer, error) {
@ -67,12 +70,35 @@ func (s *LesServer) Protocols() []p2p.Protocol {
return s.protocolManager.SubProtocols return s.protocolManager.SubProtocols
} }
// Start only starts the actual service if the ETH protocol has already been synced,
// otherwise it will be started by Synced()
func (s *LesServer) Start(srvr *p2p.Server) { func (s *LesServer) Start(srvr *p2p.Server) {
s.protocolManager.Start(srvr) s.lock.Lock()
defer s.lock.Unlock()
s.srvr = srvr
if s.synced {
s.protocolManager.Start(s.srvr)
}
} }
// Synced notifies the server that the ETH protocol has been synced and LES service can be started
func (s *LesServer) Synced() {
s.lock.Lock()
defer s.lock.Unlock()
s.synced = true
if s.srvr != nil && !s.stopped {
s.protocolManager.Start(s.srvr)
}
}
// Stop stops the LES service
func (s *LesServer) Stop() { func (s *LesServer) Stop() {
s.lock.Lock()
defer s.lock.Unlock()
s.stopped = true
s.fcCostStats.store() s.fcCostStats.store()
s.fcManager.Stop() s.fcManager.Stop()
go func() { go func() {
@ -325,7 +351,6 @@ func (pm *ProtocolManager) blockLoop() {
var ( var (
lastChtKey = []byte("LastChtNumber") // chtNum (uint64 big endian) lastChtKey = []byte("LastChtNumber") // chtNum (uint64 big endian)
chtPrefix = []byte("cht") // chtPrefix + chtNum (uint64 big endian) -> trie root hash chtPrefix = []byte("cht") // chtPrefix + chtNum (uint64 big endian) -> trie root hash
chtConfirmations = light.ChtFrequency / 2
) )
func getChtRoot(db ethdb.Database, num uint64) common.Hash { func getChtRoot(db ethdb.Database, num uint64) common.Hash {
@ -346,8 +371,8 @@ func makeCht(db ethdb.Database) bool {
headNum := core.GetBlockNumber(db, headHash) headNum := core.GetBlockNumber(db, headHash)
var newChtNum uint64 var newChtNum uint64
if headNum > chtConfirmations { if headNum > light.ChtConfirmations {
newChtNum = (headNum - chtConfirmations) / light.ChtFrequency newChtNum = (headNum - light.ChtConfirmations) / light.ChtFrequency
} }
var lastChtNum uint64 var lastChtNum uint64

766
les/serverpool.go Normal file

@ -0,0 +1,766 @@
// Copyright 2016 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
// Package les implements the Light Ethereum Subprotocol.
package les
import (
"io"
"math"
"math/rand"
"net"
"strconv"
"sync"
"time"
"github.com/ethereum/go-ethereum/common/mclock"
"github.com/ethereum/go-ethereum/ethdb"
"github.com/ethereum/go-ethereum/logger"
"github.com/ethereum/go-ethereum/logger/glog"
"github.com/ethereum/go-ethereum/p2p"
"github.com/ethereum/go-ethereum/p2p/discover"
"github.com/ethereum/go-ethereum/p2p/discv5"
"github.com/ethereum/go-ethereum/rlp"
)
const (
// After a connection has been ended or timed out, there is a waiting period
// before it can be selected for connection again.
// waiting period = base delay * (1 + random(1))
// base delay = shortRetryDelay for the first shortRetryCnt times after a
// successful connection, after that longRetryDelay is applied
shortRetryCnt = 5
shortRetryDelay = time.Second * 5
longRetryDelay = time.Minute * 10
// maxNewEntries is the maximum number of newly discovered (never connected) nodes.
// If the limit is reached, the least recently discovered one is thrown out.
maxNewEntries = 1000
// maxKnownEntries is the maximum number of known (already connected) nodes.
// If the limit is reached, the least recently connected one is thrown out.
// (not that unlike new entries, known entries are persistent)
maxKnownEntries = 1000
// target for simultaneously connected servers
targetServerCount = 5
// target for servers selected from the known table
// (we leave room for trying new ones if there is any)
targetKnownSelect = 3
// after dialTimeout, consider the server unavailable and adjust statistics
dialTimeout = time.Second * 30
// targetConnTime is the minimum expected connection duration before a server
// drops a client without any specific reason
targetConnTime = time.Minute * 10
// new entry selection weight calculation based on most recent discovery time:
// unity until discoverExpireStart, then exponential decay with discoverExpireConst
discoverExpireStart = time.Minute * 20
discoverExpireConst = time.Minute * 20
// known entry selection weight is dropped by a factor of exp(-failDropLn) after
// each unsuccessful connection (restored after a successful one)
failDropLn = 0.1
// known node connection success and quality statistics have a long term average
// and a short term value which is adjusted exponentially with a factor of
// pstatRecentAdjust with each dial/connection and also returned exponentially
// to the average with the time constant pstatReturnToMeanTC
pstatRecentAdjust = 0.1
pstatReturnToMeanTC = time.Hour
// node address selection weight is dropped by a factor of exp(-addrFailDropLn) after
// each unsuccessful connection (restored after a successful one)
addrFailDropLn = math.Ln2
// responseScoreTC and delayScoreTC are exponential decay time constants for
// calculating selection chances from response times and block delay times
responseScoreTC = time.Millisecond * 100
delayScoreTC = time.Second * 5
timeoutPow = 10
// peerSelectMinWeight is added to calculated weights at request peer selection
// to give poorly performing peers a little chance of coming back
peerSelectMinWeight = 0.005
// initStatsWeight is used to initialize previously unknown peers with good
// statistics to give a chance to prove themselves
initStatsWeight = 1
)
// serverPool implements a pool for storing and selecting newly discovered and already
// known light server nodes. It received discovered nodes, stores statistics about
// known nodes and takes care of always having enough good quality servers connected.
type serverPool struct {
db ethdb.Database
dbKey []byte
server *p2p.Server
quit chan struct{}
wg *sync.WaitGroup
connWg sync.WaitGroup
discSetPeriod chan time.Duration
discNodes chan *discv5.Node
discLookups chan bool
entries map[discover.NodeID]*poolEntry
lock sync.Mutex
timeout, enableRetry chan *poolEntry
adjustStats chan poolStatAdjust
knownQueue, newQueue poolEntryQueue
knownSelect, newSelect *weightedRandomSelect
knownSelected, newSelected int
fastDiscover bool
}
// newServerPool creates a new serverPool instance
func newServerPool(db ethdb.Database, dbPrefix []byte, server *p2p.Server, topic discv5.Topic, quit chan struct{}, wg *sync.WaitGroup) *serverPool {
pool := &serverPool{
db: db,
dbKey: append(dbPrefix, []byte(topic)...),
server: server,
quit: quit,
wg: wg,
entries: make(map[discover.NodeID]*poolEntry),
timeout: make(chan *poolEntry, 1),
adjustStats: make(chan poolStatAdjust, 100),
enableRetry: make(chan *poolEntry, 1),
knownSelect: newWeightedRandomSelect(),
newSelect: newWeightedRandomSelect(),
fastDiscover: true,
}
pool.knownQueue = newPoolEntryQueue(maxKnownEntries, pool.removeEntry)
pool.newQueue = newPoolEntryQueue(maxNewEntries, pool.removeEntry)
wg.Add(1)
pool.loadNodes()
pool.checkDial()
if pool.server.DiscV5 != nil {
pool.discSetPeriod = make(chan time.Duration, 1)
pool.discNodes = make(chan *discv5.Node, 100)
pool.discLookups = make(chan bool, 100)
go pool.server.DiscV5.SearchTopic(topic, pool.discSetPeriod, pool.discNodes, pool.discLookups)
}
go pool.eventLoop()
return pool
}
// connect should be called upon any incoming connection. If the connection has been
// dialed by the server pool recently, the appropriate pool entry is returned.
// Otherwise, the connection should be rejected.
// Note that whenever a connection has been accepted and a pool entry has been returned,
// disconnect should also always be called.
func (pool *serverPool) connect(p *peer, ip net.IP, port uint16) *poolEntry {
pool.lock.Lock()
defer pool.lock.Unlock()
entry := pool.entries[p.ID()]
if entry == nil {
return nil
}
glog.V(logger.Debug).Infof("connecting to %v, state: %v", p.id, entry.state)
if entry.state != psDialed {
return nil
}
pool.connWg.Add(1)
entry.peer = p
entry.state = psConnected
addr := &poolEntryAddress{
ip: ip,
port: port,
lastSeen: mclock.Now(),
}
entry.lastConnected = addr
entry.addr = make(map[string]*poolEntryAddress)
entry.addr[addr.strKey()] = addr
entry.addrSelect = *newWeightedRandomSelect()
entry.addrSelect.update(addr)
return entry
}
// registered should be called after a successful handshake
func (pool *serverPool) registered(entry *poolEntry) {
glog.V(logger.Debug).Infof("registered %v", entry.id.String())
pool.lock.Lock()
defer pool.lock.Unlock()
entry.state = psRegistered
entry.regTime = mclock.Now()
if !entry.known {
pool.newQueue.remove(entry)
entry.known = true
}
pool.knownQueue.setLatest(entry)
entry.shortRetry = shortRetryCnt
}
// disconnect should be called when ending a connection. Service quality statistics
// can be updated optionally (not updated if no registration happened, in this case
// only connection statistics are updated, just like in case of timeout)
func (pool *serverPool) disconnect(entry *poolEntry) {
glog.V(logger.Debug).Infof("disconnected %v", entry.id.String())
pool.lock.Lock()
defer pool.lock.Unlock()
if entry.state == psRegistered {
connTime := mclock.Now() - entry.regTime
connAdjust := float64(connTime) / float64(targetConnTime)
if connAdjust > 1 {
connAdjust = 1
}
stopped := false
select {
case <-pool.quit:
stopped = true
default:
}
if stopped {
entry.connectStats.add(1, connAdjust)
} else {
entry.connectStats.add(connAdjust, 1)
}
}
entry.state = psNotConnected
if entry.knownSelected {
pool.knownSelected--
} else {
pool.newSelected--
}
pool.setRetryDial(entry)
pool.connWg.Done()
}
const (
pseBlockDelay = iota
pseResponseTime
pseResponseTimeout
)
// poolStatAdjust records are sent to adjust peer block delay/response time statistics
type poolStatAdjust struct {
adjustType int
entry *poolEntry
time time.Duration
}
// adjustBlockDelay adjusts the block announce delay statistics of a node
func (pool *serverPool) adjustBlockDelay(entry *poolEntry, time time.Duration) {
pool.adjustStats <- poolStatAdjust{pseBlockDelay, entry, time}
}
// adjustResponseTime adjusts the request response time statistics of a node
func (pool *serverPool) adjustResponseTime(entry *poolEntry, time time.Duration, timeout bool) {
if timeout {
pool.adjustStats <- poolStatAdjust{pseResponseTimeout, entry, time}
} else {
pool.adjustStats <- poolStatAdjust{pseResponseTime, entry, time}
}
}
type selectPeerItem struct {
peer *peer
weight int64
}
func (sp selectPeerItem) Weight() int64 {
return sp.weight
}
// selectPeer selects a suitable peer for a request
func (pool *serverPool) selectPeer(canSend func(*peer) (bool, uint64)) *peer {
pool.lock.Lock()
defer pool.lock.Unlock()
sel := newWeightedRandomSelect()
for _, entry := range pool.entries {
if entry.state == psRegistered {
p := entry.peer
ok, cost := canSend(p)
if ok {
w := int64(1000000000 * (peerSelectMinWeight + math.Exp(-(entry.responseStats.recentAvg()+float64(cost))/float64(responseScoreTC))*math.Pow((1-entry.timeoutStats.recentAvg()), timeoutPow)))
sel.update(selectPeerItem{peer: p, weight: w})
}
}
}
choice := sel.choose()
if choice == nil {
return nil
}
return choice.(selectPeerItem).peer
}
// eventLoop handles pool events and mutex locking for all internal functions
func (pool *serverPool) eventLoop() {
lookupCnt := 0
var convTime mclock.AbsTime
pool.discSetPeriod <- time.Millisecond * 100
for {
select {
case entry := <-pool.timeout:
pool.lock.Lock()
if !entry.removed {
pool.checkDialTimeout(entry)
}
pool.lock.Unlock()
case entry := <-pool.enableRetry:
pool.lock.Lock()
if !entry.removed {
entry.delayedRetry = false
pool.updateCheckDial(entry)
}
pool.lock.Unlock()
case adj := <-pool.adjustStats:
pool.lock.Lock()
switch adj.adjustType {
case pseBlockDelay:
adj.entry.delayStats.add(float64(adj.time), 1)
case pseResponseTime:
adj.entry.responseStats.add(float64(adj.time), 1)
adj.entry.timeoutStats.add(0, 1)
case pseResponseTimeout:
adj.entry.timeoutStats.add(1, 1)
}
pool.lock.Unlock()
case node := <-pool.discNodes:
pool.lock.Lock()
now := mclock.Now()
id := discover.NodeID(node.ID)
entry := pool.entries[id]
if entry == nil {
glog.V(logger.Debug).Infof("discovered %v", node.String())
entry = &poolEntry{
id: id,
addr: make(map[string]*poolEntryAddress),
addrSelect: *newWeightedRandomSelect(),
shortRetry: shortRetryCnt,
}
pool.entries[id] = entry
// initialize previously unknown peers with good statistics to give a chance to prove themselves
entry.connectStats.add(1, initStatsWeight)
entry.delayStats.add(0, initStatsWeight)
entry.responseStats.add(0, initStatsWeight)
entry.timeoutStats.add(0, initStatsWeight)
}
entry.lastDiscovered = now
addr := &poolEntryAddress{
ip: node.IP,
port: node.TCP,
}
if a, ok := entry.addr[addr.strKey()]; ok {
addr = a
} else {
entry.addr[addr.strKey()] = addr
}
addr.lastSeen = now
entry.addrSelect.update(addr)
if !entry.known {
pool.newQueue.setLatest(entry)
}
pool.updateCheckDial(entry)
pool.lock.Unlock()
case conv := <-pool.discLookups:
if conv {
if lookupCnt == 0 {
convTime = mclock.Now()
}
lookupCnt++
if pool.fastDiscover && (lookupCnt == 50 || time.Duration(mclock.Now()-convTime) > time.Minute) {
pool.fastDiscover = false
pool.discSetPeriod <- time.Minute
}
}
case <-pool.quit:
close(pool.discSetPeriod)
pool.connWg.Wait()
pool.saveNodes()
pool.wg.Done()
return
}
}
}
// loadNodes loads known nodes and their statistics from the database
func (pool *serverPool) loadNodes() {
enc, err := pool.db.Get(pool.dbKey)
if err != nil {
return
}
var list []*poolEntry
err = rlp.DecodeBytes(enc, &list)
if err != nil {
glog.V(logger.Debug).Infof("node list decode error: %v", err)
return
}
for _, e := range list {
glog.V(logger.Debug).Infof("loaded server stats %016x fails: %v connStats: %v / %v delayStats: %v / %v responseStats: %v / %v timeoutStats: %v / %v", e.id[0:8], e.lastConnected.fails, e.connectStats.avg, e.connectStats.weight, time.Duration(e.delayStats.avg), e.delayStats.weight, time.Duration(e.responseStats.avg), e.responseStats.weight, e.timeoutStats.avg, e.timeoutStats.weight)
pool.entries[e.id] = e
pool.knownQueue.setLatest(e)
pool.knownSelect.update((*knownEntry)(e))
}
}
// saveNodes saves known nodes and their statistics into the database. Nodes are
// ordered from least to most recently connected.
func (pool *serverPool) saveNodes() {
list := make([]*poolEntry, len(pool.knownQueue.queue))
for i, _ := range list {
list[i] = pool.knownQueue.fetchOldest()
}
enc, err := rlp.EncodeToBytes(list)
if err == nil {
pool.db.Put(pool.dbKey, enc)
}
}
// removeEntry removes a pool entry when the entry count limit is reached.
// Note that it is called by the new/known queues from which the entry has already
// been removed so removing it from the queues is not necessary.
func (pool *serverPool) removeEntry(entry *poolEntry) {
pool.newSelect.remove((*discoveredEntry)(entry))
pool.knownSelect.remove((*knownEntry)(entry))
entry.removed = true
delete(pool.entries, entry.id)
}
// setRetryDial starts the timer which will enable dialing a certain node again
func (pool *serverPool) setRetryDial(entry *poolEntry) {
delay := longRetryDelay
if entry.shortRetry > 0 {
entry.shortRetry--
delay = shortRetryDelay
}
delay += time.Duration(rand.Int63n(int64(delay) + 1))
entry.delayedRetry = true
go func() {
select {
case <-pool.quit:
case <-time.After(delay):
select {
case <-pool.quit:
case pool.enableRetry <- entry:
}
}
}()
}
// updateCheckDial is called when an entry can potentially be dialed again. It updates
// its selection weights and checks if new dials can/should be made.
func (pool *serverPool) updateCheckDial(entry *poolEntry) {
pool.newSelect.update((*discoveredEntry)(entry))
pool.knownSelect.update((*knownEntry)(entry))
pool.checkDial()
}
// checkDial checks if new dials can/should be made. It tries to select servers both
// based on good statistics and recent discovery.
func (pool *serverPool) checkDial() {
fillWithKnownSelects := !pool.fastDiscover
for pool.knownSelected < targetKnownSelect {
entry := pool.knownSelect.choose()
if entry == nil {
fillWithKnownSelects = false
break
}
pool.dial((*poolEntry)(entry.(*knownEntry)), true)
}
for pool.knownSelected+pool.newSelected < targetServerCount {
entry := pool.newSelect.choose()
if entry == nil {
break
}
pool.dial((*poolEntry)(entry.(*discoveredEntry)), false)
}
if fillWithKnownSelects {
// no more newly discovered nodes to select and since fast discover period
// is over, we probably won't find more in the near future so select more
// known entries if possible
for pool.knownSelected < targetServerCount {
entry := pool.knownSelect.choose()
if entry == nil {
break
}
pool.dial((*poolEntry)(entry.(*knownEntry)), true)
}
}
}
// dial initiates a new connection
func (pool *serverPool) dial(entry *poolEntry, knownSelected bool) {
if entry.state != psNotConnected {
return
}
entry.state = psDialed
entry.knownSelected = knownSelected
if knownSelected {
pool.knownSelected++
} else {
pool.newSelected++
}
addr := entry.addrSelect.choose().(*poolEntryAddress)
glog.V(logger.Debug).Infof("dialing %v out of %v, known: %v", entry.id.String()+"@"+addr.strKey(), len(entry.addr), knownSelected)
entry.dialed = addr
go func() {
pool.server.AddPeer(discover.NewNode(entry.id, addr.ip, addr.port, addr.port))
select {
case <-pool.quit:
case <-time.After(dialTimeout):
select {
case <-pool.quit:
case pool.timeout <- entry:
}
}
}()
}
// checkDialTimeout checks if the node is still in dialed state and if so, resets it
// and adjusts connection statistics accordingly.
func (pool *serverPool) checkDialTimeout(entry *poolEntry) {
if entry.state != psDialed {
return
}
glog.V(logger.Debug).Infof("timeout %v", entry.id.String()+"@"+entry.dialed.strKey())
entry.state = psNotConnected
if entry.knownSelected {
pool.knownSelected--
} else {
pool.newSelected--
}
entry.connectStats.add(0, 1)
entry.dialed.fails++
pool.setRetryDial(entry)
}
const (
psNotConnected = iota
psDialed
psConnected
psRegistered
)
// poolEntry represents a server node and stores its current state and statistics.
type poolEntry struct {
peer *peer
id discover.NodeID
addr map[string]*poolEntryAddress
lastConnected, dialed *poolEntryAddress
addrSelect weightedRandomSelect
lastDiscovered mclock.AbsTime
known, knownSelected bool
connectStats, delayStats poolStats
responseStats, timeoutStats poolStats
state int
regTime mclock.AbsTime
queueIdx int
removed bool
delayedRetry bool
shortRetry int
}
func (e *poolEntry) EncodeRLP(w io.Writer) error {
return rlp.Encode(w, []interface{}{e.id, e.lastConnected.ip, e.lastConnected.port, e.lastConnected.fails, &e.connectStats, &e.delayStats, &e.responseStats, &e.timeoutStats})
}
func (e *poolEntry) DecodeRLP(s *rlp.Stream) error {
var entry struct {
ID discover.NodeID
IP net.IP
Port uint16
Fails uint
CStat, DStat, RStat, TStat poolStats
}
if err := s.Decode(&entry); err != nil {
return err
}
addr := &poolEntryAddress{ip: entry.IP, port: entry.Port, fails: entry.Fails, lastSeen: mclock.Now()}
e.id = entry.ID
e.addr = make(map[string]*poolEntryAddress)
e.addr[addr.strKey()] = addr
e.addrSelect = *newWeightedRandomSelect()
e.addrSelect.update(addr)
e.lastConnected = addr
e.connectStats = entry.CStat
e.delayStats = entry.DStat
e.responseStats = entry.RStat
e.timeoutStats = entry.TStat
e.shortRetry = shortRetryCnt
e.known = true
return nil
}
// discoveredEntry implements wrsItem
type discoveredEntry poolEntry
// Weight calculates random selection weight for newly discovered entries
func (e *discoveredEntry) Weight() int64 {
if e.state != psNotConnected || e.delayedRetry {
return 0
}
t := time.Duration(mclock.Now() - e.lastDiscovered)
if t <= discoverExpireStart {
return 1000000000
} else {
return int64(1000000000 * math.Exp(-float64(t-discoverExpireStart)/float64(discoverExpireConst)))
}
}
// knownEntry implements wrsItem
type knownEntry poolEntry
// Weight calculates random selection weight for known entries
func (e *knownEntry) Weight() int64 {
if e.state != psNotConnected || !e.known || e.delayedRetry {
return 0
}
return int64(1000000000 * e.connectStats.recentAvg() * math.Exp(-float64(e.lastConnected.fails)*failDropLn-e.responseStats.recentAvg()/float64(responseScoreTC)-e.delayStats.recentAvg()/float64(delayScoreTC)) * math.Pow((1-e.timeoutStats.recentAvg()), timeoutPow))
}
// poolEntryAddress is a separate object because currently it is necessary to remember
// multiple potential network addresses for a pool entry. This will be removed after
// the final implementation of v5 discovery which will retrieve signed and serial
// numbered advertisements, making it clear which IP/port is the latest one.
type poolEntryAddress struct {
ip net.IP
port uint16
lastSeen mclock.AbsTime // last time it was discovered, connected or loaded from db
fails uint // connection failures since last successful connection (persistent)
}
func (a *poolEntryAddress) Weight() int64 {
t := time.Duration(mclock.Now() - a.lastSeen)
return int64(1000000*math.Exp(-float64(t)/float64(discoverExpireConst)-float64(a.fails)*addrFailDropLn)) + 1
}
func (a *poolEntryAddress) strKey() string {
return a.ip.String() + ":" + strconv.Itoa(int(a.port))
}
// poolStats implement statistics for a certain quantity with a long term average
// and a short term value which is adjusted exponentially with a factor of
// pstatRecentAdjust with each update and also returned exponentially to the
// average with the time constant pstatReturnToMeanTC
type poolStats struct {
sum, weight, avg, recent float64
lastRecalc mclock.AbsTime
}
// init initializes stats with a long term sum/update count pair retrieved from the database
func (s *poolStats) init(sum, weight float64) {
s.sum = sum
s.weight = weight
var avg float64
if weight > 0 {
avg = s.sum / weight
}
s.avg = avg
s.recent = avg
s.lastRecalc = mclock.Now()
}
// recalc recalculates recent value return-to-mean and long term average
func (s *poolStats) recalc() {
now := mclock.Now()
s.recent = s.avg + (s.recent-s.avg)*math.Exp(-float64(now-s.lastRecalc)/float64(pstatReturnToMeanTC))
if s.sum == 0 {
s.avg = 0
} else {
if s.sum > s.weight*1e30 {
s.avg = 1e30
} else {
s.avg = s.sum / s.weight
}
}
s.lastRecalc = now
}
// add updates the stats with a new value
func (s *poolStats) add(value, weight float64) {
s.weight += weight
s.sum += value * weight
s.recalc()
}
// recentAvg returns the short-term adjusted average
func (s *poolStats) recentAvg() float64 {
s.recalc()
return s.recent
}
func (s *poolStats) EncodeRLP(w io.Writer) error {
return rlp.Encode(w, []interface{}{math.Float64bits(s.sum), math.Float64bits(s.weight)})
}
func (s *poolStats) DecodeRLP(st *rlp.Stream) error {
var stats struct {
SumUint, WeightUint uint64
}
if err := st.Decode(&stats); err != nil {
return err
}
s.init(math.Float64frombits(stats.SumUint), math.Float64frombits(stats.WeightUint))
return nil
}
// poolEntryQueue keeps track of its least recently accessed entries and removes
// them when the number of entries reaches the limit
type poolEntryQueue struct {
queue map[int]*poolEntry // known nodes indexed by their latest lastConnCnt value
newPtr, oldPtr, maxCnt int
removeFromPool func(*poolEntry)
}
// newPoolEntryQueue returns a new poolEntryQueue
func newPoolEntryQueue(maxCnt int, removeFromPool func(*poolEntry)) poolEntryQueue {
return poolEntryQueue{queue: make(map[int]*poolEntry), maxCnt: maxCnt, removeFromPool: removeFromPool}
}
// fetchOldest returns and removes the least recently accessed entry
func (q *poolEntryQueue) fetchOldest() *poolEntry {
if len(q.queue) == 0 {
return nil
}
for {
if e := q.queue[q.oldPtr]; e != nil {
delete(q.queue, q.oldPtr)
q.oldPtr++
return e
}
q.oldPtr++
}
}
// remove removes an entry from the queue
func (q *poolEntryQueue) remove(entry *poolEntry) {
if q.queue[entry.queueIdx] == entry {
delete(q.queue, entry.queueIdx)
}
}
// setLatest adds or updates a recently accessed entry. It also checks if an old entry
// needs to be removed and removes it from the parent pool too with a callback function.
func (q *poolEntryQueue) setLatest(entry *poolEntry) {
if q.queue[entry.queueIdx] == entry {
delete(q.queue, entry.queueIdx)
} else {
if len(q.queue) == q.maxCnt {
e := q.fetchOldest()
q.remove(e)
q.removeFromPool(e)
}
}
entry.queueIdx = q.newPtr
q.queue[entry.queueIdx] = entry
q.newPtr++
}

@ -505,3 +505,14 @@ func (self *LightChain) SyncCht(ctx context.Context) bool {
} }
return false return false
} }
// LockChain locks the chain mutex for reading so that multiple canonical hashes can be
// retrieved while it is guaranteed that they belong to the same version of the chain
func (self *LightChain) LockChain() {
self.chainmu.RLock()
}
// UnlockChain unlocks the chain mutex
func (self *LightChain) UnlockChain() {
self.chainmu.RUnlock()
}

@ -48,6 +48,7 @@ type OdrRequest interface {
// TrieID identifies a state or account storage trie // TrieID identifies a state or account storage trie
type TrieID struct { type TrieID struct {
BlockHash, Root common.Hash BlockHash, Root common.Hash
BlockNumber uint64
AccKey []byte AccKey []byte
} }
@ -56,6 +57,7 @@ type TrieID struct {
func StateTrieID(header *types.Header) *TrieID { func StateTrieID(header *types.Header) *TrieID {
return &TrieID{ return &TrieID{
BlockHash: header.Hash(), BlockHash: header.Hash(),
BlockNumber: header.Number.Uint64(),
AccKey: nil, AccKey: nil,
Root: header.Root, Root: header.Root,
} }
@ -67,6 +69,7 @@ func StateTrieID(header *types.Header) *TrieID {
func StorageTrieID(state *TrieID, addr common.Address, root common.Hash) *TrieID { func StorageTrieID(state *TrieID, addr common.Address, root common.Hash) *TrieID {
return &TrieID{ return &TrieID{
BlockHash: state.BlockHash, BlockHash: state.BlockHash,
BlockNumber: state.BlockNumber,
AccKey: crypto.Keccak256(addr[:]), AccKey: crypto.Keccak256(addr[:]),
Root: root, Root: root,
} }

@ -39,6 +39,7 @@ var (
ErrNoHeader = errors.New("Header not found") ErrNoHeader = errors.New("Header not found")
ChtFrequency = uint64(4096) ChtFrequency = uint64(4096)
ChtConfirmations = uint64(2048)
trustedChtKey = []byte("TrustedCHT") trustedChtKey = []byte("TrustedCHT")
) )

@ -127,7 +127,14 @@ type topicRegisterReq struct {
type topicSearchReq struct { type topicSearchReq struct {
topic Topic topic Topic
found chan<- string found chan<- *Node
lookup chan<- bool
delay time.Duration
}
type topicSearchResult struct {
target lookupInfo
nodes []*Node
} }
type timeoutEvent struct { type timeoutEvent struct {
@ -263,7 +270,9 @@ func (net *Network) lookup(target common.Hash, stopOnMatch bool) []*Node {
break break
} }
// Wait for the next reply. // Wait for the next reply.
for _, n := range <-reply { select {
case nodes := <-reply:
for _, n := range nodes {
if n != nil && !seen[n.ID] { if n != nil && !seen[n.ID] {
seen[n.ID] = true seen[n.ID] = true
result.push(n, bucketSize) result.push(n, bucketSize)
@ -273,6 +282,11 @@ func (net *Network) lookup(target common.Hash, stopOnMatch bool) []*Node {
} }
} }
pendingQueries-- pendingQueries--
case <-time.After(respTimeout):
// forget all pending requests, start new ones
pendingQueries = 0
reply = make(chan []*Node, alpha)
}
} }
return result.entries return result.entries
} }
@ -293,18 +307,20 @@ func (net *Network) RegisterTopic(topic Topic, stop <-chan struct{}) {
} }
} }
func (net *Network) SearchTopic(topic Topic, stop <-chan struct{}, found chan<- string) { func (net *Network) SearchTopic(topic Topic, setPeriod <-chan time.Duration, found chan<- *Node, lookup chan<- bool) {
for {
select { select {
case net.topicSearchReq <- topicSearchReq{topic, found}: case <-net.closed:
return
case delay, ok := <-setPeriod:
select {
case net.topicSearchReq <- topicSearchReq{topic: topic, found: found, lookup: lookup, delay: delay}:
case <-net.closed: case <-net.closed:
return return
} }
select { if !ok {
case <-net.closed: return
case <-stop: }
select {
case net.topicSearchReq <- topicSearchReq{topic, nil}:
case <-net.closed:
} }
} }
} }
@ -347,6 +363,13 @@ func (net *Network) reqTableOp(f func()) (called bool) {
// TODO: external address handling. // TODO: external address handling.
type topicSearchInfo struct {
lookupChn chan<- bool
period time.Duration
}
const maxSearchCount = 5
func (net *Network) loop() { func (net *Network) loop() {
var ( var (
refreshTimer = time.NewTicker(autoRefreshInterval) refreshTimer = time.NewTicker(autoRefreshInterval)
@ -385,10 +408,12 @@ func (net *Network) loop() {
topicRegisterLookupTarget lookupInfo topicRegisterLookupTarget lookupInfo
topicRegisterLookupDone chan []*Node topicRegisterLookupDone chan []*Node
topicRegisterLookupTick = time.NewTimer(0) topicRegisterLookupTick = time.NewTimer(0)
topicSearchLookupTarget lookupInfo
searchReqWhenRefreshDone []topicSearchReq searchReqWhenRefreshDone []topicSearchReq
searchInfo = make(map[Topic]topicSearchInfo)
activeSearchCount int
) )
topicSearchLookupDone := make(chan []*Node, 1) topicSearchLookupDone := make(chan topicSearchResult, 100)
topicSearch := make(chan Topic, 100)
<-topicRegisterLookupTick.C <-topicRegisterLookupTick.C
statsDump := time.NewTicker(10 * time.Second) statsDump := time.NewTicker(10 * time.Second)
@ -504,21 +529,52 @@ loop:
case req := <-net.topicSearchReq: case req := <-net.topicSearchReq:
if refreshDone == nil { if refreshDone == nil {
debugLog("<-net.topicSearchReq") debugLog("<-net.topicSearchReq")
if req.found == nil { info, ok := searchInfo[req.topic]
if ok {
if req.delay == time.Duration(0) {
delete(searchInfo, req.topic)
net.ticketStore.removeSearchTopic(req.topic) net.ticketStore.removeSearchTopic(req.topic)
} else {
info.period = req.delay
searchInfo[req.topic] = info
}
continue continue
} }
if req.delay != time.Duration(0) {
var info topicSearchInfo
info.period = req.delay
info.lookupChn = req.lookup
searchInfo[req.topic] = info
net.ticketStore.addSearchTopic(req.topic, req.found) net.ticketStore.addSearchTopic(req.topic, req.found)
if (topicSearchLookupTarget.target == common.Hash{}) { topicSearch <- req.topic
topicSearchLookupDone <- nil
} }
} else { } else {
searchReqWhenRefreshDone = append(searchReqWhenRefreshDone, req) searchReqWhenRefreshDone = append(searchReqWhenRefreshDone, req)
} }
case nodes := <-topicSearchLookupDone: case topic := <-topicSearch:
debugLog("<-topicSearchLookupDone") if activeSearchCount < maxSearchCount {
net.ticketStore.searchLookupDone(topicSearchLookupTarget, nodes, func(n *Node) []byte { activeSearchCount++
target := net.ticketStore.nextSearchLookup(topic)
go func() {
nodes := net.lookup(target.target, false)
topicSearchLookupDone <- topicSearchResult{target: target, nodes: nodes}
}()
}
period := searchInfo[topic].period
if period != time.Duration(0) {
go func() {
time.Sleep(period)
topicSearch <- topic
}()
}
case res := <-topicSearchLookupDone:
activeSearchCount--
if lookupChn := searchInfo[res.target.topic].lookupChn; lookupChn != nil {
lookupChn <- net.ticketStore.radius[res.target.topic].converged
}
net.ticketStore.searchLookupDone(res.target, res.nodes, func(n *Node) []byte {
net.ping(n, n.addr()) net.ping(n, n.addr())
return n.pingEcho return n.pingEcho
}, func(n *Node, topic Topic) []byte { }, func(n *Node, topic Topic) []byte {
@ -531,11 +587,6 @@ loop:
return nil return nil
} }
}) })
topicSearchLookupTarget = net.ticketStore.nextSearchLookup()
target := topicSearchLookupTarget.target
if (target != common.Hash{}) {
go func() { topicSearchLookupDone <- net.lookup(target, false) }()
}
case <-statsDump.C: case <-statsDump.C:
debugLog("<-statsDump.C") debugLog("<-statsDump.C")

@ -138,16 +138,12 @@ type ticketStore struct {
nextTicketReg mclock.AbsTime nextTicketReg mclock.AbsTime
searchTopicMap map[Topic]searchTopic searchTopicMap map[Topic]searchTopic
searchTopicList []Topic
searchTopicPtr int
nextTopicQueryCleanup mclock.AbsTime nextTopicQueryCleanup mclock.AbsTime
queriesSent map[*Node]map[common.Hash]sentQuery queriesSent map[*Node]map[common.Hash]sentQuery
radiusLookupCnt int
} }
type searchTopic struct { type searchTopic struct {
foundChn chan<- string foundChn chan<- *Node
listIdx int
} }
type sentQuery struct { type sentQuery struct {
@ -183,23 +179,15 @@ func (s *ticketStore) addTopic(t Topic, register bool) {
} }
} }
func (s *ticketStore) addSearchTopic(t Topic, foundChn chan<- string) { func (s *ticketStore) addSearchTopic(t Topic, foundChn chan<- *Node) {
s.addTopic(t, false) s.addTopic(t, false)
if s.searchTopicMap[t].foundChn == nil { if s.searchTopicMap[t].foundChn == nil {
s.searchTopicList = append(s.searchTopicList, t) s.searchTopicMap[t] = searchTopic{foundChn: foundChn}
s.searchTopicMap[t] = searchTopic{foundChn: foundChn, listIdx: len(s.searchTopicList) - 1}
} }
} }
func (s *ticketStore) removeSearchTopic(t Topic) { func (s *ticketStore) removeSearchTopic(t Topic) {
if st := s.searchTopicMap[t]; st.foundChn != nil { if st := s.searchTopicMap[t]; st.foundChn != nil {
lastIdx := len(s.searchTopicList) - 1
lastTopic := s.searchTopicList[lastIdx]
s.searchTopicList[st.listIdx] = lastTopic
sl := s.searchTopicMap[lastTopic]
sl.listIdx = st.listIdx
s.searchTopicMap[lastTopic] = sl
s.searchTopicList = s.searchTopicList[:lastIdx]
delete(s.searchTopicMap, t) delete(s.searchTopicMap, t)
} }
} }
@ -247,20 +235,13 @@ func (s *ticketStore) nextRegisterLookup() (lookup lookupInfo, delay time.Durati
return lookupInfo{}, 40 * time.Second return lookupInfo{}, 40 * time.Second
} }
func (s *ticketStore) nextSearchLookup() lookupInfo { func (s *ticketStore) nextSearchLookup(topic Topic) lookupInfo {
if len(s.searchTopicList) == 0 { tr := s.radius[topic]
return lookupInfo{} target := tr.nextTarget(tr.radiusLookupCnt >= searchForceQuery)
}
if s.searchTopicPtr >= len(s.searchTopicList) {
s.searchTopicPtr = 0
}
topic := s.searchTopicList[s.searchTopicPtr]
s.searchTopicPtr++
target := s.radius[topic].nextTarget(s.radiusLookupCnt >= searchForceQuery)
if target.radiusLookup { if target.radiusLookup {
s.radiusLookupCnt++ tr.radiusLookupCnt++
} else { } else {
s.radiusLookupCnt = 0 tr.radiusLookupCnt = 0
} }
return target return target
} }
@ -662,9 +643,9 @@ func (s *ticketStore) gotTopicNodes(from *Node, hash common.Hash, nodes []rpcNod
if ip.IsUnspecified() || ip.IsLoopback() { if ip.IsUnspecified() || ip.IsLoopback() {
ip = from.IP ip = from.IP
} }
enode := NewNode(node.ID, ip, node.UDP-1, node.TCP-1).String() // subtract one from port while discv5 is running in test mode on UDPport+1 n := NewNode(node.ID, ip, node.UDP-1, node.TCP-1) // subtract one from port while discv5 is running in test mode on UDPport+1
select { select {
case chn <- enode: case chn <- n:
default: default:
return false return false
} }
@ -677,6 +658,8 @@ type topicRadius struct {
topicHashPrefix uint64 topicHashPrefix uint64
radius, minRadius uint64 radius, minRadius uint64
buckets []topicRadiusBucket buckets []topicRadiusBucket
converged bool
radiusLookupCnt int
} }
type topicRadiusEvent int type topicRadiusEvent int
@ -706,7 +689,7 @@ func (b *topicRadiusBucket) update(now mclock.AbsTime) {
b.lastTime = now b.lastTime = now
for target, tm := range b.lookupSent { for target, tm := range b.lookupSent {
if now-tm > mclock.AbsTime(pingTimeout) { if now-tm > mclock.AbsTime(respTimeout) {
b.weights[trNoAdjust] += 1 b.weights[trNoAdjust] += 1
delete(b.lookupSent, target) delete(b.lookupSent, target)
} }
@ -906,6 +889,7 @@ func (r *topicRadius) recalcRadius() (radius uint64, radiusLookup int) {
if radiusLookup == -1 { if radiusLookup == -1 {
// no more radius lookups needed at the moment, return a radius // no more radius lookups needed at the moment, return a radius
r.converged = true
rad := maxBucket rad := maxBucket
if minRadBucket < rad { if minRadBucket < rad {
rad = minRadBucket rad = minRadBucket