accounts/abi: Prevent recalculation of internal fields (#20895)

* accounts/abi: prevent recalculation of ID, Sig and String

* accounts/abi: fixed unpacking of no values

* accounts/abi: multiple fixes to arguments

* accounts/abi: refactored methodName and eventName

This commit moves the complicated logic of how we assign method names
and event names if they already exist into their own functions for
better readability.

* accounts/abi: prevent recalculation of internal

In this commit, I changed the way we calculate the string
representations, sig representations and the id's of methods. Before
that these fields would be recalculated everytime someone called .Sig()
.String() or .ID() on a method or an event.

Additionally this commit fixes issue #20856 as we assign names to inputs
with no name (input with name "" becomes "arg0")

* accounts/abi: added unnamed event params test

* accounts/abi: fixed rebasing errors in method sig

* accounts/abi: fixed rebasing errors in method sig

* accounts/abi: addressed comments

* accounts/abi: added FunctionType enumeration

* accounts/abi/bind: added test for unnamed arguments

* accounts/abi: improved readability in NewMethod, nitpicks

* accounts/abi: method/eventName -> overloadedMethodName
This commit is contained in:
Marius van der Wijden 2020-04-20 09:01:04 +02:00 committed by GitHub
parent ca22d0761b
commit ac9c03f910
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
14 changed files with 279 additions and 239 deletions

@ -76,7 +76,7 @@ func (abi ABI) Pack(name string, args ...interface{}) ([]byte, error) {
return nil, err return nil, err
} }
// Pack up the method ID too if not a constructor and return // Pack up the method ID too if not a constructor and return
return append(method.ID(), arguments...), nil return append(method.ID, arguments...), nil
} }
// Unpack output in v according to the abi specification // Unpack output in v according to the abi specification
@ -139,59 +139,17 @@ func (abi *ABI) UnmarshalJSON(data []byte) error {
for _, field := range fields { for _, field := range fields {
switch field.Type { switch field.Type {
case "constructor": case "constructor":
abi.Constructor = Method{ abi.Constructor = NewMethod("", "", Constructor, field.StateMutability, field.Constant, field.Payable, field.Inputs, nil)
Inputs: field.Inputs,
// Note for constructor the `StateMutability` can only
// be payable or nonpayable according to the output of
// compiler. So constant is always false.
StateMutability: field.StateMutability,
// Legacy fields, keep them for backward compatibility
Constant: field.Constant,
Payable: field.Payable,
}
case "function": case "function":
name := field.Name name := abi.overloadedMethodName(field.Name)
_, ok := abi.Methods[name] abi.Methods[name] = NewMethod(name, field.Name, Function, field.StateMutability, field.Constant, field.Payable, field.Inputs, field.Outputs)
for idx := 0; ok; idx++ {
name = fmt.Sprintf("%s%d", field.Name, idx)
_, ok = abi.Methods[name]
}
abi.Methods[name] = Method{
Name: name,
RawName: field.Name,
StateMutability: field.StateMutability,
Inputs: field.Inputs,
Outputs: field.Outputs,
// Legacy fields, keep them for backward compatibility
Constant: field.Constant,
Payable: field.Payable,
}
case "fallback": case "fallback":
// New introduced function type in v0.6.0, check more detail // New introduced function type in v0.6.0, check more detail
// here https://solidity.readthedocs.io/en/v0.6.0/contracts.html#fallback-function // here https://solidity.readthedocs.io/en/v0.6.0/contracts.html#fallback-function
if abi.HasFallback() { if abi.HasFallback() {
return errors.New("only single fallback is allowed") return errors.New("only single fallback is allowed")
} }
abi.Fallback = Method{ abi.Fallback = NewMethod("", "", Fallback, field.StateMutability, field.Constant, field.Payable, nil, nil)
Name: "",
RawName: "",
// The `StateMutability` can only be payable or nonpayable,
// so the constant is always false.
StateMutability: field.StateMutability,
IsFallback: true,
// Fallback doesn't have any input or output
Inputs: nil,
Outputs: nil,
// Legacy fields, keep them for backward compatibility
Constant: field.Constant,
Payable: field.Payable,
}
case "receive": case "receive":
// New introduced function type in v0.6.0, check more detail // New introduced function type in v0.6.0, check more detail
// here https://solidity.readthedocs.io/en/v0.6.0/contracts.html#fallback-function // here https://solidity.readthedocs.io/en/v0.6.0/contracts.html#fallback-function
@ -201,41 +159,47 @@ func (abi *ABI) UnmarshalJSON(data []byte) error {
if field.StateMutability != "payable" { if field.StateMutability != "payable" {
return errors.New("the statemutability of receive can only be payable") return errors.New("the statemutability of receive can only be payable")
} }
abi.Receive = Method{ abi.Receive = NewMethod("", "", Receive, field.StateMutability, field.Constant, field.Payable, nil, nil)
Name: "",
RawName: "",
// The `StateMutability` can only be payable, so constant
// is always true while payable is always false.
StateMutability: field.StateMutability,
IsReceive: true,
// Receive doesn't have any input or output
Inputs: nil,
Outputs: nil,
// Legacy fields, keep them for backward compatibility
Constant: field.Constant,
Payable: field.Payable,
}
case "event": case "event":
name := field.Name name := abi.overloadedEventName(field.Name)
_, ok := abi.Events[name] abi.Events[name] = NewEvent(name, field.Name, field.Anonymous, field.Inputs)
for idx := 0; ok; idx++ { default:
name = fmt.Sprintf("%s%d", field.Name, idx) return fmt.Errorf("abi: could not recognize type %v of field %v", field.Type, field.Name)
_, ok = abi.Events[name]
}
abi.Events[name] = Event{
Name: name,
RawName: field.Name,
Anonymous: field.Anonymous,
Inputs: field.Inputs,
}
} }
} }
return nil return nil
} }
// overloadedMethodName returns the next available name for a given function.
// Needed since solidity allows for function overload.
//
// e.g. if the abi contains Methods send, send1
// overloadedMethodName would return send2 for input send.
func (abi *ABI) overloadedMethodName(rawName string) string {
name := rawName
_, ok := abi.Methods[name]
for idx := 0; ok; idx++ {
name = fmt.Sprintf("%s%d", rawName, idx)
_, ok = abi.Methods[name]
}
return name
}
// overloadedEventName returns the next available name for a given event.
// Needed since solidity allows for event overload.
//
// e.g. if the abi contains events received, received1
// overloadedEventName would return received2 for input received.
func (abi *ABI) overloadedEventName(rawName string) string {
name := rawName
_, ok := abi.Events[name]
for idx := 0; ok; idx++ {
name = fmt.Sprintf("%s%d", rawName, idx)
_, ok = abi.Events[name]
}
return name
}
// MethodById looks up a method by the 4-byte id // MethodById looks up a method by the 4-byte id
// returns nil if none found // returns nil if none found
func (abi *ABI) MethodById(sigdata []byte) (*Method, error) { func (abi *ABI) MethodById(sigdata []byte) (*Method, error) {
@ -243,7 +207,7 @@ func (abi *ABI) MethodById(sigdata []byte) (*Method, error) {
return nil, fmt.Errorf("data too short (%d bytes) for abi method lookup", len(sigdata)) return nil, fmt.Errorf("data too short (%d bytes) for abi method lookup", len(sigdata))
} }
for _, method := range abi.Methods { for _, method := range abi.Methods {
if bytes.Equal(method.ID(), sigdata[:4]) { if bytes.Equal(method.ID, sigdata[:4]) {
return &method, nil return &method, nil
} }
} }
@ -254,7 +218,7 @@ func (abi *ABI) MethodById(sigdata []byte) (*Method, error) {
// ABI and returns nil if none found. // ABI and returns nil if none found.
func (abi *ABI) EventByID(topic common.Hash) (*Event, error) { func (abi *ABI) EventByID(topic common.Hash) (*Event, error) {
for _, event := range abi.Events { for _, event := range abi.Events {
if bytes.Equal(event.ID().Bytes(), topic.Bytes()) { if bytes.Equal(event.ID.Bytes(), topic.Bytes()) {
return &event, nil return &event, nil
} }
} }
@ -263,10 +227,10 @@ func (abi *ABI) EventByID(topic common.Hash) (*Event, error) {
// HasFallback returns an indicator whether a fallback function is included. // HasFallback returns an indicator whether a fallback function is included.
func (abi *ABI) HasFallback() bool { func (abi *ABI) HasFallback() bool {
return abi.Fallback.IsFallback return abi.Fallback.Type == Fallback
} }
// HasReceive returns an indicator whether a receive function is included. // HasReceive returns an indicator whether a receive function is included.
func (abi *ABI) HasReceive() bool { func (abi *ABI) HasReceive() bool {
return abi.Receive.IsReceive return abi.Receive.Type == Receive
} }

@ -58,20 +58,14 @@ const jsondata2 = `
func TestReader(t *testing.T) { func TestReader(t *testing.T) {
Uint256, _ := NewType("uint256", "", nil) Uint256, _ := NewType("uint256", "", nil)
exp := ABI{ abi := ABI{
Methods: map[string]Method{ Methods: map[string]Method{
"balance": { "balance": NewMethod("balance", "balance", Function, "view", false, false, nil, nil),
"balance", "balance", "view", false, false, false, false, nil, nil, "send": NewMethod("send", "send", Function, "", false, false, []Argument{{"amount", Uint256, false}}, nil),
},
"send": {
"send", "send", "", false, false, false, false, []Argument{
{"amount", Uint256, false},
}, nil,
},
}, },
} }
abi, err := JSON(strings.NewReader(jsondata)) exp, err := JSON(strings.NewReader(jsondata))
if err != nil { if err != nil {
t.Error(err) t.Error(err)
} }
@ -173,22 +167,22 @@ func TestTestSlice(t *testing.T) {
func TestMethodSignature(t *testing.T) { func TestMethodSignature(t *testing.T) {
String, _ := NewType("string", "", nil) String, _ := NewType("string", "", nil)
m := Method{"foo", "foo", "", false, false, false, false, []Argument{{"bar", String, false}, {"baz", String, false}}, nil} m := NewMethod("foo", "foo", Function, "", false, false, []Argument{{"bar", String, false}, {"baz", String, false}}, nil)
exp := "foo(string,string)" exp := "foo(string,string)"
if m.Sig() != exp { if m.Sig != exp {
t.Error("signature mismatch", exp, "!=", m.Sig()) t.Error("signature mismatch", exp, "!=", m.Sig)
} }
idexp := crypto.Keccak256([]byte(exp))[:4] idexp := crypto.Keccak256([]byte(exp))[:4]
if !bytes.Equal(m.ID(), idexp) { if !bytes.Equal(m.ID, idexp) {
t.Errorf("expected ids to match %x != %x", m.ID(), idexp) t.Errorf("expected ids to match %x != %x", m.ID, idexp)
} }
uintt, _ := NewType("uint256", "", nil) uintt, _ := NewType("uint256", "", nil)
m = Method{"foo", "foo", "", false, false, false, false, []Argument{{"bar", uintt, false}}, nil} m = NewMethod("foo", "foo", Function, "", false, false, []Argument{{"bar", uintt, false}}, nil)
exp = "foo(uint256)" exp = "foo(uint256)"
if m.Sig() != exp { if m.Sig != exp {
t.Error("signature mismatch", exp, "!=", m.Sig()) t.Error("signature mismatch", exp, "!=", m.Sig)
} }
// Method with tuple arguments // Method with tuple arguments
@ -204,10 +198,10 @@ func TestMethodSignature(t *testing.T) {
{Name: "y", Type: "int256"}, {Name: "y", Type: "int256"},
}}, }},
}) })
m = Method{"foo", "foo", "", false, false, false, false, []Argument{{"s", s, false}, {"bar", String, false}}, nil} m = NewMethod("foo", "foo", Function, "", false, false, []Argument{{"s", s, false}, {"bar", String, false}}, nil)
exp = "foo((int256,int256[],(int256,int256)[],(int256,int256)[2]),string)" exp = "foo((int256,int256[],(int256,int256)[],(int256,int256)[2]),string)"
if m.Sig() != exp { if m.Sig != exp {
t.Error("signature mismatch", exp, "!=", m.Sig()) t.Error("signature mismatch", exp, "!=", m.Sig)
} }
} }
@ -219,12 +213,12 @@ func TestOverloadedMethodSignature(t *testing.T) {
} }
check := func(name string, expect string, method bool) { check := func(name string, expect string, method bool) {
if method { if method {
if abi.Methods[name].Sig() != expect { if abi.Methods[name].Sig != expect {
t.Fatalf("The signature of overloaded method mismatch, want %s, have %s", expect, abi.Methods[name].Sig()) t.Fatalf("The signature of overloaded method mismatch, want %s, have %s", expect, abi.Methods[name].Sig)
} }
} else { } else {
if abi.Events[name].Sig() != expect { if abi.Events[name].Sig != expect {
t.Fatalf("The signature of overloaded event mismatch, want %s, have %s", expect, abi.Events[name].Sig()) t.Fatalf("The signature of overloaded event mismatch, want %s, have %s", expect, abi.Events[name].Sig)
} }
} }
} }
@ -921,13 +915,13 @@ func TestABI_MethodById(t *testing.T) {
} }
for name, m := range abi.Methods { for name, m := range abi.Methods {
a := fmt.Sprintf("%v", m) a := fmt.Sprintf("%v", m)
m2, err := abi.MethodById(m.ID()) m2, err := abi.MethodById(m.ID)
if err != nil { if err != nil {
t.Fatalf("Failed to look up ABI method: %v", err) t.Fatalf("Failed to look up ABI method: %v", err)
} }
b := fmt.Sprintf("%v", m2) b := fmt.Sprintf("%v", m2)
if a != b { if a != b {
t.Errorf("Method %v (id %x) not 'findable' by id in ABI", name, m.ID()) t.Errorf("Method %v (id %x) not 'findable' by id in ABI", name, m.ID)
} }
} }
// Also test empty // Also test empty
@ -995,8 +989,8 @@ func TestABI_EventById(t *testing.T) {
t.Errorf("We should find a event for topic %s, test #%d", topicID.Hex(), testnum) t.Errorf("We should find a event for topic %s, test #%d", topicID.Hex(), testnum)
} }
if event.ID() != topicID { if event.ID != topicID {
t.Errorf("Event id %s does not match topic %s, test #%d", event.ID().Hex(), topicID.Hex(), testnum) t.Errorf("Event id %s does not match topic %s, test #%d", event.ID.Hex(), topicID.Hex(), testnum)
} }
unknowntopicID := crypto.Keccak256Hash([]byte("unknownEvent")) unknowntopicID := crypto.Keccak256Hash([]byte("unknownEvent"))
@ -1051,3 +1045,28 @@ func TestDoubleDuplicateMethodNames(t *testing.T) {
t.Fatalf("Should not have found extra method") t.Fatalf("Should not have found extra method")
} }
} }
// TestUnnamedEventParam checks that an event with unnamed parameters is
// correctly handled
// The test runs the abi of the following contract.
// contract TestEvent {
// event send(uint256, uint256);
// }
func TestUnnamedEventParam(t *testing.T) {
abiJSON := `[{ "anonymous": false, "inputs": [{ "indexed": false,"internalType": "uint256", "name": "","type": "uint256"},{"indexed": false,"internalType": "uint256","name": "","type": "uint256"}],"name": "send","type": "event"}]`
contractAbi, err := JSON(strings.NewReader(abiJSON))
if err != nil {
t.Fatal(err)
}
event, ok := contractAbi.Events["send"]
if !ok {
t.Fatalf("Could not find event")
}
if event.Inputs[0].Name != "arg0" {
t.Fatalf("Could not find input")
}
if event.Inputs[1].Name != "arg1" {
t.Fatalf("Could not find input")
}
}

@ -92,9 +92,8 @@ func (arguments Arguments) Unpack(v interface{}, data []byte) error {
if len(data) == 0 { if len(data) == 0 {
if len(arguments) != 0 { if len(arguments) != 0 {
return fmt.Errorf("abi: attempting to unmarshall an empty string while arguments are expected") return fmt.Errorf("abi: attempting to unmarshall an empty string while arguments are expected")
} else {
return nil // Nothing to unmarshal, return
} }
return nil // Nothing to unmarshal, return
} }
// make sure the passed value is arguments pointer // make sure the passed value is arguments pointer
if reflect.Ptr != reflect.ValueOf(v).Kind() { if reflect.Ptr != reflect.ValueOf(v).Kind() {
@ -104,6 +103,9 @@ func (arguments Arguments) Unpack(v interface{}, data []byte) error {
if err != nil { if err != nil {
return err return err
} }
if len(marshalledValues) == 0 {
return fmt.Errorf("abi: Unpack(no-values unmarshalled %T)", v)
}
if arguments.isTuple() { if arguments.isTuple() {
return arguments.unpackTuple(v, marshalledValues) return arguments.unpackTuple(v, marshalledValues)
} }
@ -112,18 +114,24 @@ func (arguments Arguments) Unpack(v interface{}, data []byte) error {
// UnpackIntoMap performs the operation hexdata -> mapping of argument name to argument value // UnpackIntoMap performs the operation hexdata -> mapping of argument name to argument value
func (arguments Arguments) UnpackIntoMap(v map[string]interface{}, data []byte) error { func (arguments Arguments) UnpackIntoMap(v map[string]interface{}, data []byte) error {
// Make sure map is not nil
if v == nil {
return fmt.Errorf("abi: cannot unpack into a nil map")
}
if len(data) == 0 { if len(data) == 0 {
if len(arguments) != 0 { if len(arguments) != 0 {
return fmt.Errorf("abi: attempting to unmarshall an empty string while arguments are expected") return fmt.Errorf("abi: attempting to unmarshall an empty string while arguments are expected")
} else {
return nil // Nothing to unmarshal, return
} }
return nil // Nothing to unmarshal, return
} }
marshalledValues, err := arguments.UnpackValues(data) marshalledValues, err := arguments.UnpackValues(data)
if err != nil { if err != nil {
return err return err
} }
return arguments.unpackIntoMap(v, marshalledValues) for i, arg := range arguments.NonIndexed() {
v[arg.Name] = marshalledValues[i]
}
return nil
} }
// unpack sets the unmarshalled value to go format. // unpack sets the unmarshalled value to go format.
@ -195,19 +203,6 @@ func unpack(t *Type, dst interface{}, src interface{}) error {
return nil return nil
} }
// unpackIntoMap unpacks marshalledValues into the provided map[string]interface{}
func (arguments Arguments) unpackIntoMap(v map[string]interface{}, marshalledValues []interface{}) error {
// Make sure map is not nil
if v == nil {
return fmt.Errorf("abi: cannot unpack into a nil map")
}
for i, arg := range arguments.NonIndexed() {
v[arg.Name] = marshalledValues[i]
}
return nil
}
// unpackAtomic unpacks ( hexdata -> go ) a single value // unpackAtomic unpacks ( hexdata -> go ) a single value
func (arguments Arguments) unpackAtomic(v interface{}, marshalledValues interface{}) error { func (arguments Arguments) unpackAtomic(v interface{}, marshalledValues interface{}) error {
if arguments.LengthNonIndexed() == 0 { if arguments.LengthNonIndexed() == 0 {
@ -233,30 +228,28 @@ func (arguments Arguments) unpackAtomic(v interface{}, marshalledValues interfac
// unpackTuple unpacks ( hexdata -> go ) a batch of values. // unpackTuple unpacks ( hexdata -> go ) a batch of values.
func (arguments Arguments) unpackTuple(v interface{}, marshalledValues []interface{}) error { func (arguments Arguments) unpackTuple(v interface{}, marshalledValues []interface{}) error {
var ( var (
value = reflect.ValueOf(v).Elem() value = reflect.ValueOf(v).Elem()
typ = value.Type() typ = value.Type()
kind = value.Kind() kind = value.Kind()
nonIndexedArgs = arguments.NonIndexed()
) )
if err := requireUnpackKind(value, typ, kind, arguments); err != nil { if err := requireUnpackKind(value, len(nonIndexedArgs), arguments); err != nil {
return err return err
} }
// If the interface is a struct, get of abi->struct_field mapping // If the interface is a struct, get of abi->struct_field mapping
var abi2struct map[string]string var abi2struct map[string]string
if kind == reflect.Struct { if kind == reflect.Struct {
var ( argNames := make([]string, len(nonIndexedArgs))
argNames []string for i, arg := range nonIndexedArgs {
err error argNames[i] = arg.Name
)
for _, arg := range arguments.NonIndexed() {
argNames = append(argNames, arg.Name)
} }
abi2struct, err = mapArgNamesToStructFields(argNames, value) var err error
if err != nil { if abi2struct, err = mapArgNamesToStructFields(argNames, value); err != nil {
return err return err
} }
} }
for i, arg := range arguments.NonIndexed() { for i, arg := range nonIndexedArgs {
switch kind { switch kind {
case reflect.Struct: case reflect.Struct:
field := value.FieldByName(abi2struct[arg.Name]) field := value.FieldByName(abi2struct[arg.Name])

@ -264,7 +264,7 @@ func (c *BoundContract) FilterLogs(opts *FilterOpts, name string, query ...[]int
opts = new(FilterOpts) opts = new(FilterOpts)
} }
// Append the event selector to the query parameters and construct the topic set // Append the event selector to the query parameters and construct the topic set
query = append([][]interface{}{{c.abi.Events[name].ID()}}, query...) query = append([][]interface{}{{c.abi.Events[name].ID}}, query...)
topics, err := makeTopics(query...) topics, err := makeTopics(query...)
if err != nil { if err != nil {
@ -313,7 +313,7 @@ func (c *BoundContract) WatchLogs(opts *WatchOpts, name string, query ...[]inter
opts = new(WatchOpts) opts = new(WatchOpts)
} }
// Append the event selector to the query parameters and construct the topic set // Append the event selector to the query parameters and construct the topic set
query = append([][]interface{}{{c.abi.Events[name].ID()}}, query...) query = append([][]interface{}{{c.abi.Events[name].ID}}, query...)
topics, err := makeTopics(query...) topics, err := makeTopics(query...)
if err != nil { if err != nil {

@ -639,9 +639,9 @@ func formatMethod(method abi.Method, structs map[string]*tmplStruct) string {
state = state + " " state = state + " "
} }
identity := fmt.Sprintf("function %v", method.RawName) identity := fmt.Sprintf("function %v", method.RawName)
if method.IsFallback { if method.Type == abi.Fallback {
identity = "fallback" identity = "fallback"
} else if method.IsReceive { } else if method.Type == abi.Receive {
identity = "receive" identity = "receive"
} }
return fmt.Sprintf("%s(%v) %sreturns(%v)", identity, strings.Join(inputs, ", "), state, strings.Join(outputs, ", ")) return fmt.Sprintf("%s(%v) %sreturns(%v)", identity, strings.Join(inputs, ", "), state, strings.Join(outputs, ", "))

@ -199,7 +199,8 @@ var bindTests = []struct {
{"type":"event","name":"indexed","inputs":[{"name":"addr","type":"address","indexed":true},{"name":"num","type":"int256","indexed":true}]}, {"type":"event","name":"indexed","inputs":[{"name":"addr","type":"address","indexed":true},{"name":"num","type":"int256","indexed":true}]},
{"type":"event","name":"mixed","inputs":[{"name":"addr","type":"address","indexed":true},{"name":"num","type":"int256"}]}, {"type":"event","name":"mixed","inputs":[{"name":"addr","type":"address","indexed":true},{"name":"num","type":"int256"}]},
{"type":"event","name":"anonymous","anonymous":true,"inputs":[]}, {"type":"event","name":"anonymous","anonymous":true,"inputs":[]},
{"type":"event","name":"dynamic","inputs":[{"name":"idxStr","type":"string","indexed":true},{"name":"idxDat","type":"bytes","indexed":true},{"name":"str","type":"string"},{"name":"dat","type":"bytes"}]} {"type":"event","name":"dynamic","inputs":[{"name":"idxStr","type":"string","indexed":true},{"name":"idxDat","type":"bytes","indexed":true},{"name":"str","type":"string"},{"name":"dat","type":"bytes"}]},
{"type":"event","name":"unnamed","inputs":[{"name":"","type":"uint256","indexed": true},{"name":"","type":"uint256","indexed":true}]}
] ]
`}, `},
` `
@ -249,6 +250,12 @@ var bindTests = []struct {
fmt.Println(event.Addr) // Make sure the reconstructed indexed fields are present fmt.Println(event.Addr) // Make sure the reconstructed indexed fields are present
fmt.Println(res, str, dat, hash, err) fmt.Println(res, str, dat, hash, err)
oit, err := e.FilterUnnamed(nil, []*big.Int{}, []*big.Int{})
arg0 := oit.Event.Arg0 // Make sure unnamed arguments are handled correctly
arg1 := oit.Event.Arg1 // Make sure unnamed arguments are handled correctly
fmt.Println(arg0, arg1)
} }
// Run a tiny reflection test to ensure disallowed methods don't appear // Run a tiny reflection test to ensure disallowed methods don't appear
if _, ok := reflect.TypeOf(&EventChecker{}).MethodByName("FilterAnonymous"); ok { if _, ok := reflect.TypeOf(&EventChecker{}).MethodByName("FilterAnonymous"); ok {

@ -42,36 +42,59 @@ type Event struct {
RawName string RawName string
Anonymous bool Anonymous bool
Inputs Arguments Inputs Arguments
str string
// Sig contains the string signature according to the ABI spec.
// e.g. event foo(uint32 a, int b) = "foo(uint32,int256)"
// Please note that "int" is substitute for its canonical representation "int256"
Sig string
// ID returns the canonical representation of the event's signature used by the
// abi definition to identify event names and types.
ID common.Hash
}
// NewEvent creates a new Event.
// It sanitizes the input arguments to remove unnamed arguments.
// It also precomputes the id, signature and string representation
// of the event.
func NewEvent(name, rawName string, anonymous bool, inputs Arguments) Event {
// sanitize inputs to remove inputs without names
// and precompute string and sig representation.
names := make([]string, len(inputs))
types := make([]string, len(inputs))
for i, input := range inputs {
if input.Name == "" {
inputs[i] = Argument{
Name: fmt.Sprintf("arg%d", i),
Indexed: input.Indexed,
Type: input.Type,
}
} else {
inputs[i] = input
}
// string representation
names[i] = fmt.Sprintf("%v %v", input.Type, inputs[i].Name)
if input.Indexed {
names[i] = fmt.Sprintf("%v indexed %v", input.Type, inputs[i].Name)
}
// sig representation
types[i] = input.Type.String()
}
str := fmt.Sprintf("event %v(%v)", rawName, strings.Join(names, ", "))
sig := fmt.Sprintf("%v(%v)", rawName, strings.Join(types, ","))
id := common.BytesToHash(crypto.Keccak256([]byte(sig)))
return Event{
Name: name,
RawName: rawName,
Anonymous: anonymous,
Inputs: inputs,
str: str,
Sig: sig,
ID: id,
}
} }
func (e Event) String() string { func (e Event) String() string {
inputs := make([]string, len(e.Inputs)) return e.str
for i, input := range e.Inputs {
inputs[i] = fmt.Sprintf("%v %v", input.Type, input.Name)
if input.Indexed {
inputs[i] = fmt.Sprintf("%v indexed %v", input.Type, input.Name)
}
}
return fmt.Sprintf("event %v(%v)", e.RawName, strings.Join(inputs, ", "))
}
// Sig returns the event string signature according to the ABI spec.
//
// Example
//
// event foo(uint32 a, int b) = "foo(uint32,int256)"
//
// Please note that "int" is substitute for its canonical representation "int256"
func (e Event) Sig() string {
types := make([]string, len(e.Inputs))
for i, input := range e.Inputs {
types[i] = input.Type.String()
}
return fmt.Sprintf("%v(%v)", e.RawName, strings.Join(types, ","))
}
// ID returns the canonical representation of the event's signature used by the
// abi definition to identify event names and types.
func (e Event) ID() common.Hash {
return common.BytesToHash(crypto.Keccak256([]byte(e.Sig())))
} }

@ -104,8 +104,8 @@ func TestEventId(t *testing.T) {
} }
for name, event := range abi.Events { for name, event := range abi.Events {
if event.ID() != test.expectations[name] { if event.ID != test.expectations[name] {
t.Errorf("expected id to be %x, got %x", test.expectations[name], event.ID()) t.Errorf("expected id to be %x, got %x", test.expectations[name], event.ID)
} }
} }
} }

@ -23,6 +23,24 @@ import (
"github.com/ethereum/go-ethereum/crypto" "github.com/ethereum/go-ethereum/crypto"
) )
// FunctionType represents different types of functions a contract might have.
type FunctionType int
const (
// Constructor represents the constructor of the contract.
// The constructor function is called while deploying a contract.
Constructor FunctionType = iota
// Fallback represents the fallback function.
// This function is executed if no other function matches the given function
// signature and no receive function is specified.
Fallback
// Receive represents the receive function.
// This function is executed on plain Ether transfers.
Receive
// Function represents a normal function.
Function
)
// Method represents a callable given a `Name` and whether the method is a constant. // Method represents a callable given a `Name` and whether the method is a constant.
// If the method is `Const` no transaction needs to be created for this // If the method is `Const` no transaction needs to be created for this
// particular Method call. It can easily be simulated using a local VM. // particular Method call. It can easily be simulated using a local VM.
@ -44,6 +62,10 @@ type Method struct {
Name string Name string
RawName string // RawName is the raw method name parsed from ABI RawName string // RawName is the raw method name parsed from ABI
// Type indicates whether the method is a
// special fallback introduced in solidity v0.6.0
Type FunctionType
// StateMutability indicates the mutability state of method, // StateMutability indicates the mutability state of method,
// the default value is nonpayable. It can be empty if the abi // the default value is nonpayable. It can be empty if the abi
// is generated by legacy compiler. // is generated by legacy compiler.
@ -53,69 +75,84 @@ type Method struct {
Constant bool Constant bool
Payable bool Payable bool
// The following two flags indicates whether the method is a
// special fallback introduced in solidity v0.6.0
IsFallback bool
IsReceive bool
Inputs Arguments Inputs Arguments
Outputs Arguments Outputs Arguments
str string
// Sig returns the methods string signature according to the ABI spec.
// e.g. function foo(uint32 a, int b) = "foo(uint32,int256)"
// Please note that "int" is substitute for its canonical representation "int256"
Sig string
// ID returns the canonical representation of the method's signature used by the
// abi definition to identify method names and types.
ID []byte
} }
// Sig returns the methods string signature according to the ABI spec. // NewMethod creates a new Method.
// // A method should always be created using NewMethod.
// Example // It also precomputes the sig representation and the string representation
// // of the method.
// function foo(uint32 a, int b) = "foo(uint32,int256)" func NewMethod(name string, rawName string, funType FunctionType, mutability string, isConst, isPayable bool, inputs Arguments, outputs Arguments) Method {
// var (
// Please note that "int" is substitute for its canonical representation "int256" types = make([]string, len(inputs))
func (method Method) Sig() string { inputNames = make([]string, len(inputs))
// Short circuit if the method is special. Fallback outputNames = make([]string, len(outputs))
// and Receive don't have signature at all. )
if method.IsFallback || method.IsReceive { for i, input := range inputs {
return "" inputNames[i] = fmt.Sprintf("%v %v", input.Type, input.Name)
}
types := make([]string, len(method.Inputs))
for i, input := range method.Inputs {
types[i] = input.Type.String() types[i] = input.Type.String()
} }
return fmt.Sprintf("%v(%v)", method.RawName, strings.Join(types, ",")) for i, output := range outputs {
} outputNames[i] = output.Type.String()
func (method Method) String() string {
inputs := make([]string, len(method.Inputs))
for i, input := range method.Inputs {
inputs[i] = fmt.Sprintf("%v %v", input.Type, input.Name)
}
outputs := make([]string, len(method.Outputs))
for i, output := range method.Outputs {
outputs[i] = output.Type.String()
if len(output.Name) > 0 { if len(output.Name) > 0 {
outputs[i] += fmt.Sprintf(" %v", output.Name) outputNames[i] += fmt.Sprintf(" %v", output.Name)
} }
} }
// calculate the signature and method id. Note only function
// has meaningful signature and id.
var (
sig string
id []byte
)
if funType == Function {
sig = fmt.Sprintf("%v(%v)", rawName, strings.Join(types, ","))
id = crypto.Keccak256([]byte(sig))[:4]
}
// Extract meaningful state mutability of solidity method. // Extract meaningful state mutability of solidity method.
// If it's default value, never print it. // If it's default value, never print it.
state := method.StateMutability state := mutability
if state == "nonpayable" { if state == "nonpayable" {
state = "" state = ""
} }
if state != "" { if state != "" {
state = state + " " state = state + " "
} }
identity := fmt.Sprintf("function %v", method.RawName) identity := fmt.Sprintf("function %v", rawName)
if method.IsFallback { if funType == Fallback {
identity = "fallback" identity = "fallback"
} else if method.IsReceive { } else if funType == Receive {
identity = "receive" identity = "receive"
} else if funType == Constructor {
identity = "constructor"
}
str := fmt.Sprintf("%v(%v) %sreturns(%v)", identity, strings.Join(inputNames, ", "), state, strings.Join(outputNames, ", "))
return Method{
Name: name,
RawName: rawName,
Type: funType,
StateMutability: mutability,
Constant: isConst,
Payable: isPayable,
Inputs: inputs,
Outputs: outputs,
str: str,
Sig: sig,
ID: id,
} }
return fmt.Sprintf("%v(%v) %sreturns(%v)", identity, strings.Join(inputs, ", "), state, strings.Join(outputs, ", "))
} }
// ID returns the canonical representation of the method's signature used by the func (method Method) String() string {
// abi definition to identify method names and types. return method.str
func (method Method) ID() []byte {
return crypto.Keccak256([]byte(method.Sig()))[:4]
} }
// IsConstant returns the indicator whether the method is read-only. // IsConstant returns the indicator whether the method is read-only.

@ -137,7 +137,7 @@ func TestMethodSig(t *testing.T) {
} }
for _, test := range cases { for _, test := range cases {
got := abi.Methods[test.method].Sig() got := abi.Methods[test.method].Sig
if got != test.expect { if got != test.expect {
t.Errorf("expected string to be %s, got %s", test.expect, got) t.Errorf("expected string to be %s, got %s", test.expect, got)
} }

@ -634,7 +634,7 @@ func TestMethodPack(t *testing.T) {
t.Fatal(err) t.Fatal(err)
} }
sig := abi.Methods["slice"].ID() sig := abi.Methods["slice"].ID
sig = append(sig, common.LeftPadBytes([]byte{1}, 32)...) sig = append(sig, common.LeftPadBytes([]byte{1}, 32)...)
sig = append(sig, common.LeftPadBytes([]byte{2}, 32)...) sig = append(sig, common.LeftPadBytes([]byte{2}, 32)...)
@ -648,7 +648,7 @@ func TestMethodPack(t *testing.T) {
} }
var addrA, addrB = common.Address{1}, common.Address{2} var addrA, addrB = common.Address{1}, common.Address{2}
sig = abi.Methods["sliceAddress"].ID() sig = abi.Methods["sliceAddress"].ID
sig = append(sig, common.LeftPadBytes([]byte{32}, 32)...) sig = append(sig, common.LeftPadBytes([]byte{32}, 32)...)
sig = append(sig, common.LeftPadBytes([]byte{2}, 32)...) sig = append(sig, common.LeftPadBytes([]byte{2}, 32)...)
sig = append(sig, common.LeftPadBytes(addrA[:], 32)...) sig = append(sig, common.LeftPadBytes(addrA[:], 32)...)
@ -663,7 +663,7 @@ func TestMethodPack(t *testing.T) {
} }
var addrC, addrD = common.Address{3}, common.Address{4} var addrC, addrD = common.Address{3}, common.Address{4}
sig = abi.Methods["sliceMultiAddress"].ID() sig = abi.Methods["sliceMultiAddress"].ID
sig = append(sig, common.LeftPadBytes([]byte{64}, 32)...) sig = append(sig, common.LeftPadBytes([]byte{64}, 32)...)
sig = append(sig, common.LeftPadBytes([]byte{160}, 32)...) sig = append(sig, common.LeftPadBytes([]byte{160}, 32)...)
sig = append(sig, common.LeftPadBytes([]byte{2}, 32)...) sig = append(sig, common.LeftPadBytes([]byte{2}, 32)...)
@ -681,7 +681,7 @@ func TestMethodPack(t *testing.T) {
t.Errorf("expected %x got %x", sig, packed) t.Errorf("expected %x got %x", sig, packed)
} }
sig = abi.Methods["slice256"].ID() sig = abi.Methods["slice256"].ID
sig = append(sig, common.LeftPadBytes([]byte{1}, 32)...) sig = append(sig, common.LeftPadBytes([]byte{1}, 32)...)
sig = append(sig, common.LeftPadBytes([]byte{2}, 32)...) sig = append(sig, common.LeftPadBytes([]byte{2}, 32)...)
@ -695,7 +695,7 @@ func TestMethodPack(t *testing.T) {
} }
a := [2][2]*big.Int{{big.NewInt(1), big.NewInt(1)}, {big.NewInt(2), big.NewInt(0)}} a := [2][2]*big.Int{{big.NewInt(1), big.NewInt(1)}, {big.NewInt(2), big.NewInt(0)}}
sig = abi.Methods["nestedArray"].ID() sig = abi.Methods["nestedArray"].ID
sig = append(sig, common.LeftPadBytes([]byte{1}, 32)...) sig = append(sig, common.LeftPadBytes([]byte{1}, 32)...)
sig = append(sig, common.LeftPadBytes([]byte{1}, 32)...) sig = append(sig, common.LeftPadBytes([]byte{1}, 32)...)
sig = append(sig, common.LeftPadBytes([]byte{2}, 32)...) sig = append(sig, common.LeftPadBytes([]byte{2}, 32)...)
@ -712,7 +712,7 @@ func TestMethodPack(t *testing.T) {
t.Errorf("expected %x got %x", sig, packed) t.Errorf("expected %x got %x", sig, packed)
} }
sig = abi.Methods["nestedArray2"].ID() sig = abi.Methods["nestedArray2"].ID
sig = append(sig, common.LeftPadBytes([]byte{0x20}, 32)...) sig = append(sig, common.LeftPadBytes([]byte{0x20}, 32)...)
sig = append(sig, common.LeftPadBytes([]byte{0x40}, 32)...) sig = append(sig, common.LeftPadBytes([]byte{0x40}, 32)...)
sig = append(sig, common.LeftPadBytes([]byte{0x80}, 32)...) sig = append(sig, common.LeftPadBytes([]byte{0x80}, 32)...)
@ -728,7 +728,7 @@ func TestMethodPack(t *testing.T) {
t.Errorf("expected %x got %x", sig, packed) t.Errorf("expected %x got %x", sig, packed)
} }
sig = abi.Methods["nestedSlice"].ID() sig = abi.Methods["nestedSlice"].ID
sig = append(sig, common.LeftPadBytes([]byte{0x20}, 32)...) sig = append(sig, common.LeftPadBytes([]byte{0x20}, 32)...)
sig = append(sig, common.LeftPadBytes([]byte{0x02}, 32)...) sig = append(sig, common.LeftPadBytes([]byte{0x02}, 32)...)
sig = append(sig, common.LeftPadBytes([]byte{0x40}, 32)...) sig = append(sig, common.LeftPadBytes([]byte{0x40}, 32)...)

@ -118,18 +118,16 @@ func requireAssignable(dst, src reflect.Value) error {
} }
// requireUnpackKind verifies preconditions for unpacking `args` into `kind` // requireUnpackKind verifies preconditions for unpacking `args` into `kind`
func requireUnpackKind(v reflect.Value, t reflect.Type, k reflect.Kind, func requireUnpackKind(v reflect.Value, minLength int, args Arguments) error {
args Arguments) error { switch v.Kind() {
switch k {
case reflect.Struct: case reflect.Struct:
case reflect.Slice, reflect.Array: case reflect.Slice, reflect.Array:
if minLen := args.LengthNonIndexed(); v.Len() < minLen { if v.Len() < minLength {
return fmt.Errorf("abi: insufficient number of elements in the list/array for unpack, want %d, got %d", return fmt.Errorf("abi: insufficient number of elements in the list/array for unpack, want %d, got %d",
minLen, v.Len()) minLength, v.Len())
} }
default: default:
return fmt.Errorf("abi: cannot unmarshal tuple into %v", t) return fmt.Errorf("abi: cannot unmarshal tuple into %v", v.Type())
} }
return nil return nil
} }
@ -156,9 +154,8 @@ func mapArgNamesToStructFields(argNames []string, value reflect.Value) (map[stri
continue continue
} }
// skip fields that have no abi:"" tag. // skip fields that have no abi:"" tag.
var ok bool tagName, ok := typ.Field(i).Tag.Lookup("abi")
var tagName string if !ok {
if tagName, ok = typ.Field(i).Tag.Lookup("abi"); !ok {
continue continue
} }
// check if tag is empty. // check if tag is empty.

@ -140,7 +140,7 @@ func parseCallData(calldata []byte, abidata string) (*decodedCallData, error) {
return nil, fmt.Errorf("signature %q matches, but arguments mismatch: %v", method.String(), err) return nil, fmt.Errorf("signature %q matches, but arguments mismatch: %v", method.String(), err)
} }
// Everything valid, assemble the call infos for the signer // Everything valid, assemble the call infos for the signer
decoded := decodedCallData{signature: method.Sig(), name: method.RawName} decoded := decodedCallData{signature: method.Sig, name: method.RawName}
for i := 0; i < len(method.Inputs); i++ { for i := 0; i < len(method.Inputs); i++ {
decoded.inputs = append(decoded.inputs, decodedArgument{ decoded.inputs = append(decoded.inputs, decodedArgument{
soltype: method.Inputs[i], soltype: method.Inputs[i],
@ -158,7 +158,7 @@ func parseCallData(calldata []byte, abidata string) (*decodedCallData, error) {
if !bytes.Equal(encoded, argdata) { if !bytes.Equal(encoded, argdata) {
was := common.Bytes2Hex(encoded) was := common.Bytes2Hex(encoded)
exp := common.Bytes2Hex(argdata) exp := common.Bytes2Hex(argdata)
return nil, fmt.Errorf("WARNING: Supplied data is stuffed with extra data. \nWant %s\nHave %s\nfor method %v", exp, was, method.Sig()) return nil, fmt.Errorf("WARNING: Supplied data is stuffed with extra data. \nWant %s\nHave %s\nfor method %v", exp, was, method.Sig)
} }
return &decoded, nil return &decoded, nil
} }

@ -48,8 +48,8 @@ func TestEmbeddedDatabase(t *testing.T) {
t.Errorf("Failed to get method by id (%s): %v", id, err) t.Errorf("Failed to get method by id (%s): %v", id, err)
continue continue
} }
if m.Sig() != selector { if m.Sig != selector {
t.Errorf("Selector mismatch: have %v, want %v", m.Sig(), selector) t.Errorf("Selector mismatch: have %v, want %v", m.Sig, selector)
} }
} }
} }