core/vm, crypto/bn256: switch over to cloudflare library (#16203)

* core/vm, crypto/bn256: switch over to cloudflare library

* crypto/bn256: unmarshal constraint + start pure go impl

* crypto/bn256: combo cloudflare and google lib

* travis: drop 386 test job
This commit is contained in:
Péter Szilágyi 2018-03-05 14:33:45 +02:00 committed by GitHub
parent 223fe3f26e
commit bd6879ac51
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
33 changed files with 2799 additions and 58 deletions

@ -251,26 +251,12 @@ func (c *bigModExp) Run(input []byte) ([]byte, error) {
return common.LeftPadBytes(base.Exp(base, exp, mod).Bytes(), int(modLen)), nil
}
var (
// errNotOnCurve is returned if a point being unmarshalled as a bn256 elliptic
// curve point is not on the curve.
errNotOnCurve = errors.New("point not on elliptic curve")
// errInvalidCurvePoint is returned if a point being unmarshalled as a bn256
// elliptic curve point is invalid.
errInvalidCurvePoint = errors.New("invalid elliptic curve point")
)
// newCurvePoint unmarshals a binary blob into a bn256 elliptic curve point,
// returning it, or an error if the point is invalid.
func newCurvePoint(blob []byte) (*bn256.G1, error) {
p, onCurve := new(bn256.G1).Unmarshal(blob)
if !onCurve {
return nil, errNotOnCurve
}
gx, gy, _, _ := p.CurvePoints()
if gx.Cmp(bn256.P) >= 0 || gy.Cmp(bn256.P) >= 0 {
return nil, errInvalidCurvePoint
p := new(bn256.G1)
if _, err := p.Unmarshal(blob); err != nil {
return nil, err
}
return p, nil
}
@ -278,14 +264,9 @@ func newCurvePoint(blob []byte) (*bn256.G1, error) {
// newTwistPoint unmarshals a binary blob into a bn256 elliptic curve point,
// returning it, or an error if the point is invalid.
func newTwistPoint(blob []byte) (*bn256.G2, error) {
p, onCurve := new(bn256.G2).Unmarshal(blob)
if !onCurve {
return nil, errNotOnCurve
}
x2, y2, _, _ := p.CurvePoints()
if x2.Real().Cmp(bn256.P) >= 0 || x2.Imag().Cmp(bn256.P) >= 0 ||
y2.Real().Cmp(bn256.P) >= 0 || y2.Imag().Cmp(bn256.P) >= 0 {
return nil, errInvalidCurvePoint
p := new(bn256.G2)
if _, err := p.Unmarshal(blob); err != nil {
return nil, err
}
return p, nil
}

@ -0,0 +1,63 @@
// Copyright 2018 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
// +build amd64,!appengine,!gccgo
// Package bn256 implements the Optimal Ate pairing over a 256-bit Barreto-Naehrig curve.
package bn256
import (
"math/big"
"github.com/ethereum/go-ethereum/crypto/bn256/cloudflare"
)
// G1 is an abstract cyclic group. The zero value is suitable for use as the
// output of an operation, but cannot be used as an input.
type G1 struct {
bn256.G1
}
// Add sets e to a+b and then returns e.
func (e *G1) Add(a, b *G1) *G1 {
e.G1.Add(&a.G1, &b.G1)
return e
}
// ScalarMult sets e to a*k and then returns e.
func (e *G1) ScalarMult(a *G1, k *big.Int) *G1 {
e.G1.ScalarMult(&a.G1, k)
return e
}
// G2 is an abstract cyclic group. The zero value is suitable for use as the
// output of an operation, but cannot be used as an input.
type G2 struct {
bn256.G2
}
// PairingCheck calculates the Optimal Ate pairing for a set of points.
func PairingCheck(a []*G1, b []*G2) bool {
as := make([]*bn256.G1, len(a))
for i, p := range a {
as[i] = &p.G1
}
bs := make([]*bn256.G2, len(b))
for i, p := range b {
bs[i] = &p.G2
}
return bn256.PairingCheck(as, bs)
}

@ -0,0 +1,63 @@
// Copyright 2018 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
// +build !amd64 appengine gccgo
// Package bn256 implements the Optimal Ate pairing over a 256-bit Barreto-Naehrig curve.
package bn256
import (
"math/big"
"github.com/ethereum/go-ethereum/crypto/bn256/google"
)
// G1 is an abstract cyclic group. The zero value is suitable for use as the
// output of an operation, but cannot be used as an input.
type G1 struct {
bn256.G1
}
// Add sets e to a+b and then returns e.
func (e *G1) Add(a, b *G1) *G1 {
e.G1.Add(&a.G1, &b.G1)
return e
}
// ScalarMult sets e to a*k and then returns e.
func (e *G1) ScalarMult(a *G1, k *big.Int) *G1 {
e.G1.ScalarMult(&a.G1, k)
return e
}
// G2 is an abstract cyclic group. The zero value is suitable for use as the
// output of an operation, but cannot be used as an input.
type G2 struct {
bn256.G2
}
// PairingCheck calculates the Optimal Ate pairing for a set of points.
func PairingCheck(a []*G1, b []*G2) bool {
as := make([]*bn256.G1, len(a))
for i, p := range a {
as[i] = &p.G1
}
bs := make([]*bn256.G2, len(b))
for i, p := range b {
bs[i] = &p.G2
}
return bn256.PairingCheck(as, bs)
}

@ -0,0 +1,481 @@
// Package bn256 implements a particular bilinear group at the 128-bit security
// level.
//
// Bilinear groups are the basis of many of the new cryptographic protocols that
// have been proposed over the past decade. They consist of a triplet of groups
// (G₁, G₂ and GT) such that there exists a function e(g₁ˣ,g₂ʸ)=gTˣʸ (where gₓ
// is a generator of the respective group). That function is called a pairing
// function.
//
// This package specifically implements the Optimal Ate pairing over a 256-bit
// Barreto-Naehrig curve as described in
// http://cryptojedi.org/papers/dclxvi-20100714.pdf. Its output is compatible
// with the implementation described in that paper.
package bn256
import (
"crypto/rand"
"errors"
"io"
"math/big"
)
func randomK(r io.Reader) (k *big.Int, err error) {
for {
k, err = rand.Int(r, Order)
if k.Sign() > 0 || err != nil {
return
}
}
}
// G1 is an abstract cyclic group. The zero value is suitable for use as the
// output of an operation, but cannot be used as an input.
type G1 struct {
p *curvePoint
}
// RandomG1 returns x and g₁ˣ where x is a random, non-zero number read from r.
func RandomG1(r io.Reader) (*big.Int, *G1, error) {
k, err := randomK(r)
if err != nil {
return nil, nil, err
}
return k, new(G1).ScalarBaseMult(k), nil
}
func (g *G1) String() string {
return "bn256.G1" + g.p.String()
}
// ScalarBaseMult sets e to g*k where g is the generator of the group and then
// returns e.
func (e *G1) ScalarBaseMult(k *big.Int) *G1 {
if e.p == nil {
e.p = &curvePoint{}
}
e.p.Mul(curveGen, k)
return e
}
// ScalarMult sets e to a*k and then returns e.
func (e *G1) ScalarMult(a *G1, k *big.Int) *G1 {
if e.p == nil {
e.p = &curvePoint{}
}
e.p.Mul(a.p, k)
return e
}
// Add sets e to a+b and then returns e.
func (e *G1) Add(a, b *G1) *G1 {
if e.p == nil {
e.p = &curvePoint{}
}
e.p.Add(a.p, b.p)
return e
}
// Neg sets e to -a and then returns e.
func (e *G1) Neg(a *G1) *G1 {
if e.p == nil {
e.p = &curvePoint{}
}
e.p.Neg(a.p)
return e
}
// Set sets e to a and then returns e.
func (e *G1) Set(a *G1) *G1 {
if e.p == nil {
e.p = &curvePoint{}
}
e.p.Set(a.p)
return e
}
// Marshal converts e to a byte slice.
func (e *G1) Marshal() []byte {
// Each value is a 256-bit number.
const numBytes = 256 / 8
e.p.MakeAffine()
ret := make([]byte, numBytes*2)
if e.p.IsInfinity() {
return ret
}
temp := &gfP{}
montDecode(temp, &e.p.x)
temp.Marshal(ret)
montDecode(temp, &e.p.y)
temp.Marshal(ret[numBytes:])
return ret
}
// Unmarshal sets e to the result of converting the output of Marshal back into
// a group element and then returns e.
func (e *G1) Unmarshal(m []byte) ([]byte, error) {
// Each value is a 256-bit number.
const numBytes = 256 / 8
if len(m) < 2*numBytes {
return nil, errors.New("bn256: not enough data")
}
// Unmarshal the points and check their caps
if e.p == nil {
e.p = &curvePoint{}
} else {
e.p.x, e.p.y = gfP{0}, gfP{0}
}
var err error
if err = e.p.x.Unmarshal(m); err != nil {
return nil, err
}
if err = e.p.y.Unmarshal(m[numBytes:]); err != nil {
return nil, err
}
// Encode into Montgomery form and ensure it's on the curve
montEncode(&e.p.x, &e.p.x)
montEncode(&e.p.y, &e.p.y)
zero := gfP{0}
if e.p.x == zero && e.p.y == zero {
// This is the point at infinity.
e.p.y = *newGFp(1)
e.p.z = gfP{0}
e.p.t = gfP{0}
} else {
e.p.z = *newGFp(1)
e.p.t = *newGFp(1)
if !e.p.IsOnCurve() {
return nil, errors.New("bn256: malformed point")
}
}
return m[2*numBytes:], nil
}
// G2 is an abstract cyclic group. The zero value is suitable for use as the
// output of an operation, but cannot be used as an input.
type G2 struct {
p *twistPoint
}
// RandomG2 returns x and g₂ˣ where x is a random, non-zero number read from r.
func RandomG2(r io.Reader) (*big.Int, *G2, error) {
k, err := randomK(r)
if err != nil {
return nil, nil, err
}
return k, new(G2).ScalarBaseMult(k), nil
}
func (e *G2) String() string {
return "bn256.G2" + e.p.String()
}
// ScalarBaseMult sets e to g*k where g is the generator of the group and then
// returns out.
func (e *G2) ScalarBaseMult(k *big.Int) *G2 {
if e.p == nil {
e.p = &twistPoint{}
}
e.p.Mul(twistGen, k)
return e
}
// ScalarMult sets e to a*k and then returns e.
func (e *G2) ScalarMult(a *G2, k *big.Int) *G2 {
if e.p == nil {
e.p = &twistPoint{}
}
e.p.Mul(a.p, k)
return e
}
// Add sets e to a+b and then returns e.
func (e *G2) Add(a, b *G2) *G2 {
if e.p == nil {
e.p = &twistPoint{}
}
e.p.Add(a.p, b.p)
return e
}
// Neg sets e to -a and then returns e.
func (e *G2) Neg(a *G2) *G2 {
if e.p == nil {
e.p = &twistPoint{}
}
e.p.Neg(a.p)
return e
}
// Set sets e to a and then returns e.
func (e *G2) Set(a *G2) *G2 {
if e.p == nil {
e.p = &twistPoint{}
}
e.p.Set(a.p)
return e
}
// Marshal converts e into a byte slice.
func (e *G2) Marshal() []byte {
// Each value is a 256-bit number.
const numBytes = 256 / 8
if e.p == nil {
e.p = &twistPoint{}
}
e.p.MakeAffine()
ret := make([]byte, numBytes*4)
if e.p.IsInfinity() {
return ret
}
temp := &gfP{}
montDecode(temp, &e.p.x.x)
temp.Marshal(ret)
montDecode(temp, &e.p.x.y)
temp.Marshal(ret[numBytes:])
montDecode(temp, &e.p.y.x)
temp.Marshal(ret[2*numBytes:])
montDecode(temp, &e.p.y.y)
temp.Marshal(ret[3*numBytes:])
return ret
}
// Unmarshal sets e to the result of converting the output of Marshal back into
// a group element and then returns e.
func (e *G2) Unmarshal(m []byte) ([]byte, error) {
// Each value is a 256-bit number.
const numBytes = 256 / 8
if len(m) < 4*numBytes {
return nil, errors.New("bn256: not enough data")
}
// Unmarshal the points and check their caps
if e.p == nil {
e.p = &twistPoint{}
}
var err error
if err = e.p.x.x.Unmarshal(m); err != nil {
return nil, err
}
if err = e.p.x.y.Unmarshal(m[numBytes:]); err != nil {
return nil, err
}
if err = e.p.y.x.Unmarshal(m[2*numBytes:]); err != nil {
return nil, err
}
if err = e.p.y.y.Unmarshal(m[3*numBytes:]); err != nil {
return nil, err
}
// Encode into Montgomery form and ensure it's on the curve
montEncode(&e.p.x.x, &e.p.x.x)
montEncode(&e.p.x.y, &e.p.x.y)
montEncode(&e.p.y.x, &e.p.y.x)
montEncode(&e.p.y.y, &e.p.y.y)
if e.p.x.IsZero() && e.p.y.IsZero() {
// This is the point at infinity.
e.p.y.SetOne()
e.p.z.SetZero()
e.p.t.SetZero()
} else {
e.p.z.SetOne()
e.p.t.SetOne()
if !e.p.IsOnCurve() {
return nil, errors.New("bn256: malformed point")
}
}
return m[4*numBytes:], nil
}
// GT is an abstract cyclic group. The zero value is suitable for use as the
// output of an operation, but cannot be used as an input.
type GT struct {
p *gfP12
}
// Pair calculates an Optimal Ate pairing.
func Pair(g1 *G1, g2 *G2) *GT {
return &GT{optimalAte(g2.p, g1.p)}
}
// PairingCheck calculates the Optimal Ate pairing for a set of points.
func PairingCheck(a []*G1, b []*G2) bool {
acc := new(gfP12)
acc.SetOne()
for i := 0; i < len(a); i++ {
if a[i].p.IsInfinity() || b[i].p.IsInfinity() {
continue
}
acc.Mul(acc, miller(b[i].p, a[i].p))
}
return finalExponentiation(acc).IsOne()
}
// Miller applies Miller's algorithm, which is a bilinear function from the
// source groups to F_p^12. Miller(g1, g2).Finalize() is equivalent to Pair(g1,
// g2).
func Miller(g1 *G1, g2 *G2) *GT {
return &GT{miller(g2.p, g1.p)}
}
func (g *GT) String() string {
return "bn256.GT" + g.p.String()
}
// ScalarMult sets e to a*k and then returns e.
func (e *GT) ScalarMult(a *GT, k *big.Int) *GT {
if e.p == nil {
e.p = &gfP12{}
}
e.p.Exp(a.p, k)
return e
}
// Add sets e to a+b and then returns e.
func (e *GT) Add(a, b *GT) *GT {
if e.p == nil {
e.p = &gfP12{}
}
e.p.Mul(a.p, b.p)
return e
}
// Neg sets e to -a and then returns e.
func (e *GT) Neg(a *GT) *GT {
if e.p == nil {
e.p = &gfP12{}
}
e.p.Conjugate(a.p)
return e
}
// Set sets e to a and then returns e.
func (e *GT) Set(a *GT) *GT {
if e.p == nil {
e.p = &gfP12{}
}
e.p.Set(a.p)
return e
}
// Finalize is a linear function from F_p^12 to GT.
func (e *GT) Finalize() *GT {
ret := finalExponentiation(e.p)
e.p.Set(ret)
return e
}
// Marshal converts e into a byte slice.
func (e *GT) Marshal() []byte {
// Each value is a 256-bit number.
const numBytes = 256 / 8
ret := make([]byte, numBytes*12)
temp := &gfP{}
montDecode(temp, &e.p.x.x.x)
temp.Marshal(ret)
montDecode(temp, &e.p.x.x.y)
temp.Marshal(ret[numBytes:])
montDecode(temp, &e.p.x.y.x)
temp.Marshal(ret[2*numBytes:])
montDecode(temp, &e.p.x.y.y)
temp.Marshal(ret[3*numBytes:])
montDecode(temp, &e.p.x.z.x)
temp.Marshal(ret[4*numBytes:])
montDecode(temp, &e.p.x.z.y)
temp.Marshal(ret[5*numBytes:])
montDecode(temp, &e.p.y.x.x)
temp.Marshal(ret[6*numBytes:])
montDecode(temp, &e.p.y.x.y)
temp.Marshal(ret[7*numBytes:])
montDecode(temp, &e.p.y.y.x)
temp.Marshal(ret[8*numBytes:])
montDecode(temp, &e.p.y.y.y)
temp.Marshal(ret[9*numBytes:])
montDecode(temp, &e.p.y.z.x)
temp.Marshal(ret[10*numBytes:])
montDecode(temp, &e.p.y.z.y)
temp.Marshal(ret[11*numBytes:])
return ret
}
// Unmarshal sets e to the result of converting the output of Marshal back into
// a group element and then returns e.
func (e *GT) Unmarshal(m []byte) ([]byte, error) {
// Each value is a 256-bit number.
const numBytes = 256 / 8
if len(m) < 12*numBytes {
return nil, errors.New("bn256: not enough data")
}
if e.p == nil {
e.p = &gfP12{}
}
var err error
if err = e.p.x.x.x.Unmarshal(m); err != nil {
return nil, err
}
if err = e.p.x.x.y.Unmarshal(m[numBytes:]); err != nil {
return nil, err
}
if err = e.p.x.y.x.Unmarshal(m[2*numBytes:]); err != nil {
return nil, err
}
if err = e.p.x.y.y.Unmarshal(m[3*numBytes:]); err != nil {
return nil, err
}
if err = e.p.x.z.x.Unmarshal(m[4*numBytes:]); err != nil {
return nil, err
}
if err = e.p.x.z.y.Unmarshal(m[5*numBytes:]); err != nil {
return nil, err
}
if err = e.p.y.x.x.Unmarshal(m[6*numBytes:]); err != nil {
return nil, err
}
if err = e.p.y.x.y.Unmarshal(m[7*numBytes:]); err != nil {
return nil, err
}
if err = e.p.y.y.x.Unmarshal(m[8*numBytes:]); err != nil {
return nil, err
}
if err = e.p.y.y.y.Unmarshal(m[9*numBytes:]); err != nil {
return nil, err
}
if err = e.p.y.z.x.Unmarshal(m[10*numBytes:]); err != nil {
return nil, err
}
if err = e.p.y.z.y.Unmarshal(m[11*numBytes:]); err != nil {
return nil, err
}
montEncode(&e.p.x.x.x, &e.p.x.x.x)
montEncode(&e.p.x.x.y, &e.p.x.x.y)
montEncode(&e.p.x.y.x, &e.p.x.y.x)
montEncode(&e.p.x.y.y, &e.p.x.y.y)
montEncode(&e.p.x.z.x, &e.p.x.z.x)
montEncode(&e.p.x.z.y, &e.p.x.z.y)
montEncode(&e.p.y.x.x, &e.p.y.x.x)
montEncode(&e.p.y.x.y, &e.p.y.x.y)
montEncode(&e.p.y.y.x, &e.p.y.y.x)
montEncode(&e.p.y.y.y, &e.p.y.y.y)
montEncode(&e.p.y.z.x, &e.p.y.z.x)
montEncode(&e.p.y.z.y, &e.p.y.z.y)
return m[12*numBytes:], nil
}

@ -0,0 +1,118 @@
// +build amd64,!appengine,!gccgo
package bn256
import (
"bytes"
"crypto/rand"
"testing"
)
func TestG1Marshal(t *testing.T) {
_, Ga, err := RandomG1(rand.Reader)
if err != nil {
t.Fatal(err)
}
ma := Ga.Marshal()
Gb := new(G1)
_, err = Gb.Unmarshal(ma)
if err != nil {
t.Fatal(err)
}
mb := Gb.Marshal()
if !bytes.Equal(ma, mb) {
t.Fatal("bytes are different")
}
}
func TestG2Marshal(t *testing.T) {
_, Ga, err := RandomG2(rand.Reader)
if err != nil {
t.Fatal(err)
}
ma := Ga.Marshal()
Gb := new(G2)
_, err = Gb.Unmarshal(ma)
if err != nil {
t.Fatal(err)
}
mb := Gb.Marshal()
if !bytes.Equal(ma, mb) {
t.Fatal("bytes are different")
}
}
func TestBilinearity(t *testing.T) {
for i := 0; i < 2; i++ {
a, p1, _ := RandomG1(rand.Reader)
b, p2, _ := RandomG2(rand.Reader)
e1 := Pair(p1, p2)
e2 := Pair(&G1{curveGen}, &G2{twistGen})
e2.ScalarMult(e2, a)
e2.ScalarMult(e2, b)
if *e1.p != *e2.p {
t.Fatalf("bad pairing result: %s", e1)
}
}
}
func TestTripartiteDiffieHellman(t *testing.T) {
a, _ := rand.Int(rand.Reader, Order)
b, _ := rand.Int(rand.Reader, Order)
c, _ := rand.Int(rand.Reader, Order)
pa, pb, pc := new(G1), new(G1), new(G1)
qa, qb, qc := new(G2), new(G2), new(G2)
pa.Unmarshal(new(G1).ScalarBaseMult(a).Marshal())
qa.Unmarshal(new(G2).ScalarBaseMult(a).Marshal())
pb.Unmarshal(new(G1).ScalarBaseMult(b).Marshal())
qb.Unmarshal(new(G2).ScalarBaseMult(b).Marshal())
pc.Unmarshal(new(G1).ScalarBaseMult(c).Marshal())
qc.Unmarshal(new(G2).ScalarBaseMult(c).Marshal())
k1 := Pair(pb, qc)
k1.ScalarMult(k1, a)
k1Bytes := k1.Marshal()
k2 := Pair(pc, qa)
k2.ScalarMult(k2, b)
k2Bytes := k2.Marshal()
k3 := Pair(pa, qb)
k3.ScalarMult(k3, c)
k3Bytes := k3.Marshal()
if !bytes.Equal(k1Bytes, k2Bytes) || !bytes.Equal(k2Bytes, k3Bytes) {
t.Errorf("keys didn't agree")
}
}
func BenchmarkG1(b *testing.B) {
x, _ := rand.Int(rand.Reader, Order)
b.ResetTimer()
for i := 0; i < b.N; i++ {
new(G1).ScalarBaseMult(x)
}
}
func BenchmarkG2(b *testing.B) {
x, _ := rand.Int(rand.Reader, Order)
b.ResetTimer()
for i := 0; i < b.N; i++ {
new(G2).ScalarBaseMult(x)
}
}
func BenchmarkPairing(b *testing.B) {
for i := 0; i < b.N; i++ {
Pair(&G1{curveGen}, &G2{twistGen})
}
}

@ -0,0 +1,59 @@
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package bn256
import (
"math/big"
)
func bigFromBase10(s string) *big.Int {
n, _ := new(big.Int).SetString(s, 10)
return n
}
// u is the BN parameter that determines the prime: 1868033³.
var u = bigFromBase10("4965661367192848881")
// Order is the number of elements in both G₁ and G₂: 36u⁴+36u³+18u²+6u+1.
var Order = bigFromBase10("21888242871839275222246405745257275088548364400416034343698204186575808495617")
// P is a prime over which we form a basic field: 36u⁴+36u³+24u²+6u+1.
var P = bigFromBase10("21888242871839275222246405745257275088696311157297823662689037894645226208583")
// p2 is p, represented as little-endian 64-bit words.
var p2 = [4]uint64{0x3c208c16d87cfd47, 0x97816a916871ca8d, 0xb85045b68181585d, 0x30644e72e131a029}
// np is the negative inverse of p, mod 2^256.
var np = [4]uint64{0x87d20782e4866389, 0x9ede7d651eca6ac9, 0xd8afcbd01833da80, 0xf57a22b791888c6b}
// rN1 is R^-1 where R = 2^256 mod p.
var rN1 = &gfP{0xed84884a014afa37, 0xeb2022850278edf8, 0xcf63e9cfb74492d9, 0x2e67157159e5c639}
// r2 is R^2 where R = 2^256 mod p.
var r2 = &gfP{0xf32cfc5b538afa89, 0xb5e71911d44501fb, 0x47ab1eff0a417ff6, 0x06d89f71cab8351f}
// r3 is R^3 where R = 2^256 mod p.
var r3 = &gfP{0xb1cd6dafda1530df, 0x62f210e6a7283db6, 0xef7f0b0c0ada0afb, 0x20fd6e902d592544}
// xiToPMinus1Over6 is ξ^((p-1)/6) where ξ = i+9.
var xiToPMinus1Over6 = &gfP2{gfP{0xa222ae234c492d72, 0xd00f02a4565de15b, 0xdc2ff3a253dfc926, 0x10a75716b3899551}, gfP{0xaf9ba69633144907, 0xca6b1d7387afb78a, 0x11bded5ef08a2087, 0x02f34d751a1f3a7c}}
// xiToPMinus1Over3 is ξ^((p-1)/3) where ξ = i+9.
var xiToPMinus1Over3 = &gfP2{gfP{0x6e849f1ea0aa4757, 0xaa1c7b6d89f89141, 0xb6e713cdfae0ca3a, 0x26694fbb4e82ebc3}, gfP{0xb5773b104563ab30, 0x347f91c8a9aa6454, 0x7a007127242e0991, 0x1956bcd8118214ec}}
// xiToPMinus1Over2 is ξ^((p-1)/2) where ξ = i+9.
var xiToPMinus1Over2 = &gfP2{gfP{0xa1d77ce45ffe77c7, 0x07affd117826d1db, 0x6d16bd27bb7edc6b, 0x2c87200285defecc}, gfP{0xe4bbdd0c2936b629, 0xbb30f162e133bacb, 0x31a9d1b6f9645366, 0x253570bea500f8dd}}
// xiToPSquaredMinus1Over3 is ξ^((p²-1)/3) where ξ = i+9.
var xiToPSquaredMinus1Over3 = &gfP{0x3350c88e13e80b9c, 0x7dce557cdb5e56b9, 0x6001b4b8b615564a, 0x2682e617020217e0}
// xiTo2PSquaredMinus2Over3 is ξ^((2p²-2)/3) where ξ = i+9 (a cubic root of unity, mod p).
var xiTo2PSquaredMinus2Over3 = &gfP{0x71930c11d782e155, 0xa6bb947cffbe3323, 0xaa303344d4741444, 0x2c3b3f0d26594943}
// xiToPSquaredMinus1Over6 is ξ^((1p²-1)/6) where ξ = i+9 (a cubic root of -1, mod p).
var xiToPSquaredMinus1Over6 = &gfP{0xca8d800500fa1bf2, 0xf0c5d61468b39769, 0x0e201271ad0d4418, 0x04290f65bad856e6}
// xiTo2PMinus2Over3 is ξ^((2p-2)/3) where ξ = i+9.
var xiTo2PMinus2Over3 = &gfP2{gfP{0x5dddfd154bd8c949, 0x62cb29a5a4445b60, 0x37bc870a0c7dd2b9, 0x24830a9d3171f0fd}, gfP{0x7361d77f843abe92, 0xa5bb2bd3273411fb, 0x9c941f314b3e2399, 0x15df9cddbb9fd3ec}}

@ -0,0 +1,229 @@
package bn256
import (
"math/big"
)
// curvePoint implements the elliptic curve y²=x³+3. Points are kept in Jacobian
// form and t=z² when valid. G₁ is the set of points of this curve on GF(p).
type curvePoint struct {
x, y, z, t gfP
}
var curveB = newGFp(3)
// curveGen is the generator of G₁.
var curveGen = &curvePoint{
x: *newGFp(1),
y: *newGFp(2),
z: *newGFp(1),
t: *newGFp(1),
}
func (c *curvePoint) String() string {
c.MakeAffine()
x, y := &gfP{}, &gfP{}
montDecode(x, &c.x)
montDecode(y, &c.y)
return "(" + x.String() + ", " + y.String() + ")"
}
func (c *curvePoint) Set(a *curvePoint) {
c.x.Set(&a.x)
c.y.Set(&a.y)
c.z.Set(&a.z)
c.t.Set(&a.t)
}
// IsOnCurve returns true iff c is on the curve.
func (c *curvePoint) IsOnCurve() bool {
c.MakeAffine()
if c.IsInfinity() {
return true
}
y2, x3 := &gfP{}, &gfP{}
gfpMul(y2, &c.y, &c.y)
gfpMul(x3, &c.x, &c.x)
gfpMul(x3, x3, &c.x)
gfpAdd(x3, x3, curveB)
return *y2 == *x3
}
func (c *curvePoint) SetInfinity() {
c.x = gfP{0}
c.y = *newGFp(1)
c.z = gfP{0}
c.t = gfP{0}
}
func (c *curvePoint) IsInfinity() bool {
return c.z == gfP{0}
}
func (c *curvePoint) Add(a, b *curvePoint) {
if a.IsInfinity() {
c.Set(b)
return
}
if b.IsInfinity() {
c.Set(a)
return
}
// See http://hyperelliptic.org/EFD/g1p/auto-code/shortw/jacobian-0/addition/add-2007-bl.op3
// Normalize the points by replacing a = [x1:y1:z1] and b = [x2:y2:z2]
// by [u1:s1:z1·z2] and [u2:s2:z1·z2]
// where u1 = x1·z2², s1 = y1·z2³ and u1 = x2·z1², s2 = y2·z1³
z12, z22 := &gfP{}, &gfP{}
gfpMul(z12, &a.z, &a.z)
gfpMul(z22, &b.z, &b.z)
u1, u2 := &gfP{}, &gfP{}
gfpMul(u1, &a.x, z22)
gfpMul(u2, &b.x, z12)
t, s1 := &gfP{}, &gfP{}
gfpMul(t, &b.z, z22)
gfpMul(s1, &a.y, t)
s2 := &gfP{}
gfpMul(t, &a.z, z12)
gfpMul(s2, &b.y, t)
// Compute x = (2h)²(s²-u1-u2)
// where s = (s2-s1)/(u2-u1) is the slope of the line through
// (u1,s1) and (u2,s2). The extra factor 2h = 2(u2-u1) comes from the value of z below.
// This is also:
// 4(s2-s1)² - 4h²(u1+u2) = 4(s2-s1)² - 4h³ - 4h²(2u1)
// = r² - j - 2v
// with the notations below.
h := &gfP{}
gfpSub(h, u2, u1)
xEqual := *h == gfP{0}
gfpAdd(t, h, h)
// i = 4h²
i := &gfP{}
gfpMul(i, t, t)
// j = 4h³
j := &gfP{}
gfpMul(j, h, i)
gfpSub(t, s2, s1)
yEqual := *t == gfP{0}
if xEqual && yEqual {
c.Double(a)
return
}
r := &gfP{}
gfpAdd(r, t, t)
v := &gfP{}
gfpMul(v, u1, i)
// t4 = 4(s2-s1)²
t4, t6 := &gfP{}, &gfP{}
gfpMul(t4, r, r)
gfpAdd(t, v, v)
gfpSub(t6, t4, j)
gfpSub(&c.x, t6, t)
// Set y = -(2h)³(s1 + s*(x/4h²-u1))
// This is also
// y = - 2·s1·j - (s2-s1)(2x - 2i·u1) = r(v-x) - 2·s1·j
gfpSub(t, v, &c.x) // t7
gfpMul(t4, s1, j) // t8
gfpAdd(t6, t4, t4) // t9
gfpMul(t4, r, t) // t10
gfpSub(&c.y, t4, t6)
// Set z = 2(u2-u1)·z1·z2 = 2h·z1·z2
gfpAdd(t, &a.z, &b.z) // t11
gfpMul(t4, t, t) // t12
gfpSub(t, t4, z12) // t13
gfpSub(t4, t, z22) // t14
gfpMul(&c.z, t4, h)
}
func (c *curvePoint) Double(a *curvePoint) {
// See http://hyperelliptic.org/EFD/g1p/auto-code/shortw/jacobian-0/doubling/dbl-2009-l.op3
A, B, C := &gfP{}, &gfP{}, &gfP{}
gfpMul(A, &a.x, &a.x)
gfpMul(B, &a.y, &a.y)
gfpMul(C, B, B)
t, t2 := &gfP{}, &gfP{}
gfpAdd(t, &a.x, B)
gfpMul(t2, t, t)
gfpSub(t, t2, A)
gfpSub(t2, t, C)
d, e, f := &gfP{}, &gfP{}, &gfP{}
gfpAdd(d, t2, t2)
gfpAdd(t, A, A)
gfpAdd(e, t, A)
gfpMul(f, e, e)
gfpAdd(t, d, d)
gfpSub(&c.x, f, t)
gfpAdd(t, C, C)
gfpAdd(t2, t, t)
gfpAdd(t, t2, t2)
gfpSub(&c.y, d, &c.x)
gfpMul(t2, e, &c.y)
gfpSub(&c.y, t2, t)
gfpMul(t, &a.y, &a.z)
gfpAdd(&c.z, t, t)
}
func (c *curvePoint) Mul(a *curvePoint, scalar *big.Int) {
sum, t := &curvePoint{}, &curvePoint{}
sum.SetInfinity()
for i := scalar.BitLen(); i >= 0; i-- {
t.Double(sum)
if scalar.Bit(i) != 0 {
sum.Add(t, a)
} else {
sum.Set(t)
}
}
c.Set(sum)
}
func (c *curvePoint) MakeAffine() {
if c.z == *newGFp(1) {
return
} else if c.z == *newGFp(0) {
c.x = gfP{0}
c.y = *newGFp(1)
c.t = gfP{0}
return
}
zInv := &gfP{}
zInv.Invert(&c.z)
t, zInv2 := &gfP{}, &gfP{}
gfpMul(t, &c.y, zInv)
gfpMul(zInv2, zInv, zInv)
gfpMul(&c.x, &c.x, zInv2)
gfpMul(&c.y, t, zInv2)
c.z = *newGFp(1)
c.t = *newGFp(1)
}
func (c *curvePoint) Neg(a *curvePoint) {
c.x.Set(&a.x)
gfpNeg(&c.y, &a.y)
c.z.Set(&a.z)
c.t = gfP{0}
}

@ -0,0 +1,45 @@
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build amd64,!appengine,!gccgo
package bn256
import (
"crypto/rand"
)
func ExamplePair() {
// This implements the tripartite Diffie-Hellman algorithm from "A One
// Round Protocol for Tripartite Diffie-Hellman", A. Joux.
// http://www.springerlink.com/content/cddc57yyva0hburb/fulltext.pdf
// Each of three parties, a, b and c, generate a private value.
a, _ := rand.Int(rand.Reader, Order)
b, _ := rand.Int(rand.Reader, Order)
c, _ := rand.Int(rand.Reader, Order)
// Then each party calculates g₁ and g₂ times their private value.
pa := new(G1).ScalarBaseMult(a)
qa := new(G2).ScalarBaseMult(a)
pb := new(G1).ScalarBaseMult(b)
qb := new(G2).ScalarBaseMult(b)
pc := new(G1).ScalarBaseMult(c)
qc := new(G2).ScalarBaseMult(c)
// Now each party exchanges its public values with the other two and
// all parties can calculate the shared key.
k1 := Pair(pb, qc)
k1.ScalarMult(k1, a)
k2 := Pair(pc, qa)
k2.ScalarMult(k2, b)
k3 := Pair(pa, qb)
k3.ScalarMult(k3, c)
// k1, k2 and k3 will all be equal.
}

@ -0,0 +1,81 @@
package bn256
import (
"errors"
"fmt"
)
type gfP [4]uint64
func newGFp(x int64) (out *gfP) {
if x >= 0 {
out = &gfP{uint64(x)}
} else {
out = &gfP{uint64(-x)}
gfpNeg(out, out)
}
montEncode(out, out)
return out
}
func (e *gfP) String() string {
return fmt.Sprintf("%16.16x%16.16x%16.16x%16.16x", e[3], e[2], e[1], e[0])
}
func (e *gfP) Set(f *gfP) {
e[0] = f[0]
e[1] = f[1]
e[2] = f[2]
e[3] = f[3]
}
func (e *gfP) Invert(f *gfP) {
bits := [4]uint64{0x3c208c16d87cfd45, 0x97816a916871ca8d, 0xb85045b68181585d, 0x30644e72e131a029}
sum, power := &gfP{}, &gfP{}
sum.Set(rN1)
power.Set(f)
for word := 0; word < 4; word++ {
for bit := uint(0); bit < 64; bit++ {
if (bits[word]>>bit)&1 == 1 {
gfpMul(sum, sum, power)
}
gfpMul(power, power, power)
}
}
gfpMul(sum, sum, r3)
e.Set(sum)
}
func (e *gfP) Marshal(out []byte) {
for w := uint(0); w < 4; w++ {
for b := uint(0); b < 8; b++ {
out[8*w+b] = byte(e[3-w] >> (56 - 8*b))
}
}
}
func (e *gfP) Unmarshal(in []byte) error {
// Unmarshal the bytes into little endian form
for w := uint(0); w < 4; w++ {
for b := uint(0); b < 8; b++ {
e[3-w] += uint64(in[8*w+b]) << (56 - 8*b)
}
}
// Ensure the point respects the curve modulus
for i := 3; i >= 0; i-- {
if e[i] < p2[i] {
return nil
}
if e[i] > p2[i] {
return errors.New("bn256: coordinate exceeds modulus")
}
}
return errors.New("bn256: coordinate equals modulus")
}
func montEncode(c, a *gfP) { gfpMul(c, a, r2) }
func montDecode(c, a *gfP) { gfpMul(c, a, &gfP{1}) }

@ -0,0 +1,32 @@
#define storeBlock(a0,a1,a2,a3, r) \
MOVQ a0, 0+r \
MOVQ a1, 8+r \
MOVQ a2, 16+r \
MOVQ a3, 24+r
#define loadBlock(r, a0,a1,a2,a3) \
MOVQ 0+r, a0 \
MOVQ 8+r, a1 \
MOVQ 16+r, a2 \
MOVQ 24+r, a3
#define gfpCarry(a0,a1,a2,a3,a4, b0,b1,b2,b3,b4) \
\ // b = a-p
MOVQ a0, b0 \
MOVQ a1, b1 \
MOVQ a2, b2 \
MOVQ a3, b3 \
MOVQ a4, b4 \
\
SUBQ ·p2+0(SB), b0 \
SBBQ ·p2+8(SB), b1 \
SBBQ ·p2+16(SB), b2 \
SBBQ ·p2+24(SB), b3 \
SBBQ $0, b4 \
\
\ // if b is negative then return a
\ // else return b
CMOVQCC b0, a0 \
CMOVQCC b1, a1 \
CMOVQCC b2, a2 \
CMOVQCC b3, a3

@ -0,0 +1,160 @@
package bn256
// For details of the algorithms used, see "Multiplication and Squaring on
// Pairing-Friendly Fields, Devegili et al.
// http://eprint.iacr.org/2006/471.pdf.
import (
"math/big"
)
// gfP12 implements the field of size p¹² as a quadratic extension of gfP6
// where ω²=τ.
type gfP12 struct {
x, y gfP6 // value is xω + y
}
func (e *gfP12) String() string {
return "(" + e.x.String() + "," + e.y.String() + ")"
}
func (e *gfP12) Set(a *gfP12) *gfP12 {
e.x.Set(&a.x)
e.y.Set(&a.y)
return e
}
func (e *gfP12) SetZero() *gfP12 {
e.x.SetZero()
e.y.SetZero()
return e
}
func (e *gfP12) SetOne() *gfP12 {
e.x.SetZero()
e.y.SetOne()
return e
}
func (e *gfP12) IsZero() bool {
return e.x.IsZero() && e.y.IsZero()
}
func (e *gfP12) IsOne() bool {
return e.x.IsZero() && e.y.IsOne()
}
func (e *gfP12) Conjugate(a *gfP12) *gfP12 {
e.x.Neg(&a.x)
e.y.Set(&a.y)
return e
}
func (e *gfP12) Neg(a *gfP12) *gfP12 {
e.x.Neg(&a.x)
e.y.Neg(&a.y)
return e
}
// Frobenius computes (xω+y)^p = x^p ω·ξ^((p-1)/6) + y^p
func (e *gfP12) Frobenius(a *gfP12) *gfP12 {
e.x.Frobenius(&a.x)
e.y.Frobenius(&a.y)
e.x.MulScalar(&e.x, xiToPMinus1Over6)
return e
}
// FrobeniusP2 computes (xω+y)^p² = x^p² ω·ξ^((p²-1)/6) + y^p²
func (e *gfP12) FrobeniusP2(a *gfP12) *gfP12 {
e.x.FrobeniusP2(&a.x)
e.x.MulGFP(&e.x, xiToPSquaredMinus1Over6)
e.y.FrobeniusP2(&a.y)
return e
}
func (e *gfP12) FrobeniusP4(a *gfP12) *gfP12 {
e.x.FrobeniusP4(&a.x)
e.x.MulGFP(&e.x, xiToPSquaredMinus1Over3)
e.y.FrobeniusP4(&a.y)
return e
}
func (e *gfP12) Add(a, b *gfP12) *gfP12 {
e.x.Add(&a.x, &b.x)
e.y.Add(&a.y, &b.y)
return e
}
func (e *gfP12) Sub(a, b *gfP12) *gfP12 {
e.x.Sub(&a.x, &b.x)
e.y.Sub(&a.y, &b.y)
return e
}
func (e *gfP12) Mul(a, b *gfP12) *gfP12 {
tx := (&gfP6{}).Mul(&a.x, &b.y)
t := (&gfP6{}).Mul(&b.x, &a.y)
tx.Add(tx, t)
ty := (&gfP6{}).Mul(&a.y, &b.y)
t.Mul(&a.x, &b.x).MulTau(t)
e.x.Set(tx)
e.y.Add(ty, t)
return e
}
func (e *gfP12) MulScalar(a *gfP12, b *gfP6) *gfP12 {
e.x.Mul(&e.x, b)
e.y.Mul(&e.y, b)
return e
}
func (c *gfP12) Exp(a *gfP12, power *big.Int) *gfP12 {
sum := (&gfP12{}).SetOne()
t := &gfP12{}
for i := power.BitLen() - 1; i >= 0; i-- {
t.Square(sum)
if power.Bit(i) != 0 {
sum.Mul(t, a)
} else {
sum.Set(t)
}
}
c.Set(sum)
return c
}
func (e *gfP12) Square(a *gfP12) *gfP12 {
// Complex squaring algorithm
v0 := (&gfP6{}).Mul(&a.x, &a.y)
t := (&gfP6{}).MulTau(&a.x)
t.Add(&a.y, t)
ty := (&gfP6{}).Add(&a.x, &a.y)
ty.Mul(ty, t).Sub(ty, v0)
t.MulTau(v0)
ty.Sub(ty, t)
e.x.Add(v0, v0)
e.y.Set(ty)
return e
}
func (e *gfP12) Invert(a *gfP12) *gfP12 {
// See "Implementing cryptographic pairings", M. Scott, section 3.2.
// ftp://136.206.11.249/pub/crypto/pairings.pdf
t1, t2 := &gfP6{}, &gfP6{}
t1.Square(&a.x)
t2.Square(&a.y)
t1.MulTau(t1).Sub(t2, t1)
t2.Invert(t1)
e.x.Neg(&a.x)
e.y.Set(&a.y)
e.MulScalar(e, t2)
return e
}

@ -0,0 +1,156 @@
package bn256
// For details of the algorithms used, see "Multiplication and Squaring on
// Pairing-Friendly Fields, Devegili et al.
// http://eprint.iacr.org/2006/471.pdf.
// gfP2 implements a field of size p² as a quadratic extension of the base field
// where i²=-1.
type gfP2 struct {
x, y gfP // value is xi+y.
}
func gfP2Decode(in *gfP2) *gfP2 {
out := &gfP2{}
montDecode(&out.x, &in.x)
montDecode(&out.y, &in.y)
return out
}
func (e *gfP2) String() string {
return "(" + e.x.String() + ", " + e.y.String() + ")"
}
func (e *gfP2) Set(a *gfP2) *gfP2 {
e.x.Set(&a.x)
e.y.Set(&a.y)
return e
}
func (e *gfP2) SetZero() *gfP2 {
e.x = gfP{0}
e.y = gfP{0}
return e
}
func (e *gfP2) SetOne() *gfP2 {
e.x = gfP{0}
e.y = *newGFp(1)
return e
}
func (e *gfP2) IsZero() bool {
zero := gfP{0}
return e.x == zero && e.y == zero
}
func (e *gfP2) IsOne() bool {
zero, one := gfP{0}, *newGFp(1)
return e.x == zero && e.y == one
}
func (e *gfP2) Conjugate(a *gfP2) *gfP2 {
e.y.Set(&a.y)
gfpNeg(&e.x, &a.x)
return e
}
func (e *gfP2) Neg(a *gfP2) *gfP2 {
gfpNeg(&e.x, &a.x)
gfpNeg(&e.y, &a.y)
return e
}
func (e *gfP2) Add(a, b *gfP2) *gfP2 {
gfpAdd(&e.x, &a.x, &b.x)
gfpAdd(&e.y, &a.y, &b.y)
return e
}
func (e *gfP2) Sub(a, b *gfP2) *gfP2 {
gfpSub(&e.x, &a.x, &b.x)
gfpSub(&e.y, &a.y, &b.y)
return e
}
// See "Multiplication and Squaring in Pairing-Friendly Fields",
// http://eprint.iacr.org/2006/471.pdf
func (e *gfP2) Mul(a, b *gfP2) *gfP2 {
tx, t := &gfP{}, &gfP{}
gfpMul(tx, &a.x, &b.y)
gfpMul(t, &b.x, &a.y)
gfpAdd(tx, tx, t)
ty := &gfP{}
gfpMul(ty, &a.y, &b.y)
gfpMul(t, &a.x, &b.x)
gfpSub(ty, ty, t)
e.x.Set(tx)
e.y.Set(ty)
return e
}
func (e *gfP2) MulScalar(a *gfP2, b *gfP) *gfP2 {
gfpMul(&e.x, &a.x, b)
gfpMul(&e.y, &a.y, b)
return e
}
// MulXi sets e=ξa where ξ=i+9 and then returns e.
func (e *gfP2) MulXi(a *gfP2) *gfP2 {
// (xi+y)(i+9) = (9x+y)i+(9y-x)
tx := &gfP{}
gfpAdd(tx, &a.x, &a.x)
gfpAdd(tx, tx, tx)
gfpAdd(tx, tx, tx)
gfpAdd(tx, tx, &a.x)
gfpAdd(tx, tx, &a.y)
ty := &gfP{}
gfpAdd(ty, &a.y, &a.y)
gfpAdd(ty, ty, ty)
gfpAdd(ty, ty, ty)
gfpAdd(ty, ty, &a.y)
gfpSub(ty, ty, &a.x)
e.x.Set(tx)
e.y.Set(ty)
return e
}
func (e *gfP2) Square(a *gfP2) *gfP2 {
// Complex squaring algorithm:
// (xi+y)² = (x+y)(y-x) + 2*i*x*y
tx, ty := &gfP{}, &gfP{}
gfpSub(tx, &a.y, &a.x)
gfpAdd(ty, &a.x, &a.y)
gfpMul(ty, tx, ty)
gfpMul(tx, &a.x, &a.y)
gfpAdd(tx, tx, tx)
e.x.Set(tx)
e.y.Set(ty)
return e
}
func (e *gfP2) Invert(a *gfP2) *gfP2 {
// See "Implementing cryptographic pairings", M. Scott, section 3.2.
// ftp://136.206.11.249/pub/crypto/pairings.pdf
t1, t2 := &gfP{}, &gfP{}
gfpMul(t1, &a.x, &a.x)
gfpMul(t2, &a.y, &a.y)
gfpAdd(t1, t1, t2)
inv := &gfP{}
inv.Invert(t1)
gfpNeg(t1, &a.x)
gfpMul(&e.x, t1, inv)
gfpMul(&e.y, &a.y, inv)
return e
}

@ -0,0 +1,213 @@
package bn256
// For details of the algorithms used, see "Multiplication and Squaring on
// Pairing-Friendly Fields, Devegili et al.
// http://eprint.iacr.org/2006/471.pdf.
// gfP6 implements the field of size p⁶ as a cubic extension of gfP2 where τ³=ξ
// and ξ=i+3.
type gfP6 struct {
x, y, z gfP2 // value is xτ² + yτ + z
}
func (e *gfP6) String() string {
return "(" + e.x.String() + ", " + e.y.String() + ", " + e.z.String() + ")"
}
func (e *gfP6) Set(a *gfP6) *gfP6 {
e.x.Set(&a.x)
e.y.Set(&a.y)
e.z.Set(&a.z)
return e
}
func (e *gfP6) SetZero() *gfP6 {
e.x.SetZero()
e.y.SetZero()
e.z.SetZero()
return e
}
func (e *gfP6) SetOne() *gfP6 {
e.x.SetZero()
e.y.SetZero()
e.z.SetOne()
return e
}
func (e *gfP6) IsZero() bool {
return e.x.IsZero() && e.y.IsZero() && e.z.IsZero()
}
func (e *gfP6) IsOne() bool {
return e.x.IsZero() && e.y.IsZero() && e.z.IsOne()
}
func (e *gfP6) Neg(a *gfP6) *gfP6 {
e.x.Neg(&a.x)
e.y.Neg(&a.y)
e.z.Neg(&a.z)
return e
}
func (e *gfP6) Frobenius(a *gfP6) *gfP6 {
e.x.Conjugate(&a.x)
e.y.Conjugate(&a.y)
e.z.Conjugate(&a.z)
e.x.Mul(&e.x, xiTo2PMinus2Over3)
e.y.Mul(&e.y, xiToPMinus1Over3)
return e
}
// FrobeniusP2 computes (xτ²+yτ+z)^(p²) = xτ^(2p²) + yτ^(p²) + z
func (e *gfP6) FrobeniusP2(a *gfP6) *gfP6 {
// τ^(2p²) = τ²τ^(2p²-2) = τ²ξ^((2p²-2)/3)
e.x.MulScalar(&a.x, xiTo2PSquaredMinus2Over3)
// τ^(p²) = ττ^(p²-1) = τξ^((p²-1)/3)
e.y.MulScalar(&a.y, xiToPSquaredMinus1Over3)
e.z.Set(&a.z)
return e
}
func (e *gfP6) FrobeniusP4(a *gfP6) *gfP6 {
e.x.MulScalar(&a.x, xiToPSquaredMinus1Over3)
e.y.MulScalar(&a.y, xiTo2PSquaredMinus2Over3)
e.z.Set(&a.z)
return e
}
func (e *gfP6) Add(a, b *gfP6) *gfP6 {
e.x.Add(&a.x, &b.x)
e.y.Add(&a.y, &b.y)
e.z.Add(&a.z, &b.z)
return e
}
func (e *gfP6) Sub(a, b *gfP6) *gfP6 {
e.x.Sub(&a.x, &b.x)
e.y.Sub(&a.y, &b.y)
e.z.Sub(&a.z, &b.z)
return e
}
func (e *gfP6) Mul(a, b *gfP6) *gfP6 {
// "Multiplication and Squaring on Pairing-Friendly Fields"
// Section 4, Karatsuba method.
// http://eprint.iacr.org/2006/471.pdf
v0 := (&gfP2{}).Mul(&a.z, &b.z)
v1 := (&gfP2{}).Mul(&a.y, &b.y)
v2 := (&gfP2{}).Mul(&a.x, &b.x)
t0 := (&gfP2{}).Add(&a.x, &a.y)
t1 := (&gfP2{}).Add(&b.x, &b.y)
tz := (&gfP2{}).Mul(t0, t1)
tz.Sub(tz, v1).Sub(tz, v2).MulXi(tz).Add(tz, v0)
t0.Add(&a.y, &a.z)
t1.Add(&b.y, &b.z)
ty := (&gfP2{}).Mul(t0, t1)
t0.MulXi(v2)
ty.Sub(ty, v0).Sub(ty, v1).Add(ty, t0)
t0.Add(&a.x, &a.z)
t1.Add(&b.x, &b.z)
tx := (&gfP2{}).Mul(t0, t1)
tx.Sub(tx, v0).Add(tx, v1).Sub(tx, v2)
e.x.Set(tx)
e.y.Set(ty)
e.z.Set(tz)
return e
}
func (e *gfP6) MulScalar(a *gfP6, b *gfP2) *gfP6 {
e.x.Mul(&a.x, b)
e.y.Mul(&a.y, b)
e.z.Mul(&a.z, b)
return e
}
func (e *gfP6) MulGFP(a *gfP6, b *gfP) *gfP6 {
e.x.MulScalar(&a.x, b)
e.y.MulScalar(&a.y, b)
e.z.MulScalar(&a.z, b)
return e
}
// MulTau computes τ·(aτ²+bτ+c) = bτ²+cτ+aξ
func (e *gfP6) MulTau(a *gfP6) *gfP6 {
tz := (&gfP2{}).MulXi(&a.x)
ty := (&gfP2{}).Set(&a.y)
e.y.Set(&a.z)
e.x.Set(ty)
e.z.Set(tz)
return e
}
func (e *gfP6) Square(a *gfP6) *gfP6 {
v0 := (&gfP2{}).Square(&a.z)
v1 := (&gfP2{}).Square(&a.y)
v2 := (&gfP2{}).Square(&a.x)
c0 := (&gfP2{}).Add(&a.x, &a.y)
c0.Square(c0).Sub(c0, v1).Sub(c0, v2).MulXi(c0).Add(c0, v0)
c1 := (&gfP2{}).Add(&a.y, &a.z)
c1.Square(c1).Sub(c1, v0).Sub(c1, v1)
xiV2 := (&gfP2{}).MulXi(v2)
c1.Add(c1, xiV2)
c2 := (&gfP2{}).Add(&a.x, &a.z)
c2.Square(c2).Sub(c2, v0).Add(c2, v1).Sub(c2, v2)
e.x.Set(c2)
e.y.Set(c1)
e.z.Set(c0)
return e
}
func (e *gfP6) Invert(a *gfP6) *gfP6 {
// See "Implementing cryptographic pairings", M. Scott, section 3.2.
// ftp://136.206.11.249/pub/crypto/pairings.pdf
// Here we can give a short explanation of how it works: let j be a cubic root of
// unity in GF(p²) so that 1+j+j²=0.
// Then (xτ² + yτ + z)(xj²τ² + yjτ + z)(xjτ² + yj²τ + z)
// = (xτ² + yτ + z)(Cτ²+Bτ+A)
// = (x³ξ²+y³ξ+z³-3ξxyz) = F is an element of the base field (the norm).
//
// On the other hand (xj²τ² + yjτ + z)(xjτ² + yj²τ + z)
// = τ²(y²-ξxz) + τ(ξx²-yz) + (z²-ξxy)
//
// So that's why A = (z²-ξxy), B = (ξx²-yz), C = (y²-ξxz)
t1 := (&gfP2{}).Mul(&a.x, &a.y)
t1.MulXi(t1)
A := (&gfP2{}).Square(&a.z)
A.Sub(A, t1)
B := (&gfP2{}).Square(&a.x)
B.MulXi(B)
t1.Mul(&a.y, &a.z)
B.Sub(B, t1)
C := (&gfP2{}).Square(&a.y)
t1.Mul(&a.x, &a.z)
C.Sub(C, t1)
F := (&gfP2{}).Mul(C, &a.y)
F.MulXi(F)
t1.Mul(A, &a.z)
F.Add(F, t1)
t1.Mul(B, &a.x).MulXi(t1)
F.Add(F, t1)
F.Invert(F)
e.x.Mul(C, F)
e.y.Mul(B, F)
e.z.Mul(A, F)
return e
}

@ -0,0 +1,15 @@
// +build amd64,!appengine,!gccgo
package bn256
// go:noescape
func gfpNeg(c, a *gfP)
//go:noescape
func gfpAdd(c, a, b *gfP)
//go:noescape
func gfpSub(c, a, b *gfP)
//go:noescape
func gfpMul(c, a, b *gfP)

@ -0,0 +1,97 @@
// +build amd64,!appengine,!gccgo
#include "gfp.h"
#include "mul.h"
#include "mul_bmi2.h"
TEXT ·gfpNeg(SB),0,$0-16
MOVQ ·p2+0(SB), R8
MOVQ ·p2+8(SB), R9
MOVQ ·p2+16(SB), R10
MOVQ ·p2+24(SB), R11
MOVQ a+8(FP), DI
SUBQ 0(DI), R8
SBBQ 8(DI), R9
SBBQ 16(DI), R10
SBBQ 24(DI), R11
MOVQ $0, AX
gfpCarry(R8,R9,R10,R11,AX, R12,R13,R14,R15,BX)
MOVQ c+0(FP), DI
storeBlock(R8,R9,R10,R11, 0(DI))
RET
TEXT ·gfpAdd(SB),0,$0-24
MOVQ a+8(FP), DI
MOVQ b+16(FP), SI
loadBlock(0(DI), R8,R9,R10,R11)
MOVQ $0, R12
ADDQ 0(SI), R8
ADCQ 8(SI), R9
ADCQ 16(SI), R10
ADCQ 24(SI), R11
ADCQ $0, R12
gfpCarry(R8,R9,R10,R11,R12, R13,R14,R15,AX,BX)
MOVQ c+0(FP), DI
storeBlock(R8,R9,R10,R11, 0(DI))
RET
TEXT ·gfpSub(SB),0,$0-24
MOVQ a+8(FP), DI
MOVQ b+16(FP), SI
loadBlock(0(DI), R8,R9,R10,R11)
MOVQ ·p2+0(SB), R12
MOVQ ·p2+8(SB), R13
MOVQ ·p2+16(SB), R14
MOVQ ·p2+24(SB), R15
MOVQ $0, AX
SUBQ 0(SI), R8
SBBQ 8(SI), R9
SBBQ 16(SI), R10
SBBQ 24(SI), R11
CMOVQCC AX, R12
CMOVQCC AX, R13
CMOVQCC AX, R14
CMOVQCC AX, R15
ADDQ R12, R8
ADCQ R13, R9
ADCQ R14, R10
ADCQ R15, R11
MOVQ c+0(FP), DI
storeBlock(R8,R9,R10,R11, 0(DI))
RET
TEXT ·gfpMul(SB),0,$160-24
MOVQ a+8(FP), DI
MOVQ b+16(FP), SI
// Jump to a slightly different implementation if MULX isn't supported.
CMPB runtime·support_bmi2(SB), $0
JE nobmi2Mul
mulBMI2(0(DI),8(DI),16(DI),24(DI), 0(SI))
storeBlock( R8, R9,R10,R11, 0(SP))
storeBlock(R12,R13,R14,R15, 32(SP))
gfpReduceBMI2()
JMP end
nobmi2Mul:
mul(0(DI),8(DI),16(DI),24(DI), 0(SI), 0(SP))
gfpReduce(0(SP))
end:
MOVQ c+0(FP), DI
storeBlock(R12,R13,R14,R15, 0(DI))
RET

@ -0,0 +1,19 @@
// +build !amd64 appengine gccgo
package bn256
func gfpNeg(c, a *gfP) {
panic("unsupported architecture")
}
func gfpAdd(c, a, b *gfP) {
panic("unsupported architecture")
}
func gfpSub(c, a, b *gfP) {
panic("unsupported architecture")
}
func gfpMul(c, a, b *gfP) {
panic("unsupported architecture")
}

@ -0,0 +1,62 @@
// +build amd64,!appengine,!gccgo
package bn256
import (
"testing"
)
// Tests that negation works the same way on both assembly-optimized and pure Go
// implementation.
func TestGFpNeg(t *testing.T) {
n := &gfP{0x0123456789abcdef, 0xfedcba9876543210, 0xdeadbeefdeadbeef, 0xfeebdaedfeebdaed}
w := &gfP{0xfedcba9876543211, 0x0123456789abcdef, 0x2152411021524110, 0x0114251201142512}
h := &gfP{}
gfpNeg(h, n)
if *h != *w {
t.Errorf("negation mismatch: have %#x, want %#x", *h, *w)
}
}
// Tests that addition works the same way on both assembly-optimized and pure Go
// implementation.
func TestGFpAdd(t *testing.T) {
a := &gfP{0x0123456789abcdef, 0xfedcba9876543210, 0xdeadbeefdeadbeef, 0xfeebdaedfeebdaed}
b := &gfP{0xfedcba9876543210, 0x0123456789abcdef, 0xfeebdaedfeebdaed, 0xdeadbeefdeadbeef}
w := &gfP{0xc3df73e9278302b8, 0x687e956e978e3572, 0x254954275c18417f, 0xad354b6afc67f9b4}
h := &gfP{}
gfpAdd(h, a, b)
if *h != *w {
t.Errorf("addition mismatch: have %#x, want %#x", *h, *w)
}
}
// Tests that subtraction works the same way on both assembly-optimized and pure Go
// implementation.
func TestGFpSub(t *testing.T) {
a := &gfP{0x0123456789abcdef, 0xfedcba9876543210, 0xdeadbeefdeadbeef, 0xfeebdaedfeebdaed}
b := &gfP{0xfedcba9876543210, 0x0123456789abcdef, 0xfeebdaedfeebdaed, 0xdeadbeefdeadbeef}
w := &gfP{0x02468acf13579bdf, 0xfdb97530eca86420, 0xdfc1e401dfc1e402, 0x203e1bfe203e1bfd}
h := &gfP{}
gfpSub(h, a, b)
if *h != *w {
t.Errorf("subtraction mismatch: have %#x, want %#x", *h, *w)
}
}
// Tests that multiplication works the same way on both assembly-optimized and pure Go
// implementation.
func TestGFpMul(t *testing.T) {
a := &gfP{0x0123456789abcdef, 0xfedcba9876543210, 0xdeadbeefdeadbeef, 0xfeebdaedfeebdaed}
b := &gfP{0xfedcba9876543210, 0x0123456789abcdef, 0xfeebdaedfeebdaed, 0xdeadbeefdeadbeef}
w := &gfP{0xcbcbd377f7ad22d3, 0x3b89ba5d849379bf, 0x87b61627bd38b6d2, 0xc44052a2a0e654b2}
h := &gfP{}
gfpMul(h, a, b)
if *h != *w {
t.Errorf("multiplication mismatch: have %#x, want %#x", *h, *w)
}
}

@ -0,0 +1,73 @@
// +build amd64,!appengine,!gccgo
package bn256
import (
"testing"
"crypto/rand"
)
func TestRandomG2Marshal(t *testing.T) {
for i := 0; i < 10; i++ {
n, g2, err := RandomG2(rand.Reader)
if err != nil {
t.Error(err)
continue
}
t.Logf("%d: %x\n", n, g2.Marshal())
}
}
func TestPairings(t *testing.T) {
a1 := new(G1).ScalarBaseMult(bigFromBase10("1"))
a2 := new(G1).ScalarBaseMult(bigFromBase10("2"))
a37 := new(G1).ScalarBaseMult(bigFromBase10("37"))
an1 := new(G1).ScalarBaseMult(bigFromBase10("21888242871839275222246405745257275088548364400416034343698204186575808495616"))
b0 := new(G2).ScalarBaseMult(bigFromBase10("0"))
b1 := new(G2).ScalarBaseMult(bigFromBase10("1"))
b2 := new(G2).ScalarBaseMult(bigFromBase10("2"))
b27 := new(G2).ScalarBaseMult(bigFromBase10("27"))
b999 := new(G2).ScalarBaseMult(bigFromBase10("999"))
bn1 := new(G2).ScalarBaseMult(bigFromBase10("21888242871839275222246405745257275088548364400416034343698204186575808495616"))
p1 := Pair(a1, b1)
pn1 := Pair(a1, bn1)
np1 := Pair(an1, b1)
if pn1.String() != np1.String() {
t.Error("Pairing mismatch: e(a, -b) != e(-a, b)")
}
if !PairingCheck([]*G1{a1, an1}, []*G2{b1, b1}) {
t.Error("MultiAte check gave false negative!")
}
p0 := new(GT).Add(p1, pn1)
p0_2 := Pair(a1, b0)
if p0.String() != p0_2.String() {
t.Error("Pairing mismatch: e(a, b) * e(a, -b) != 1")
}
p0_3 := new(GT).ScalarMult(p1, bigFromBase10("21888242871839275222246405745257275088548364400416034343698204186575808495617"))
if p0.String() != p0_3.String() {
t.Error("Pairing mismatch: e(a, b) has wrong order")
}
p2 := Pair(a2, b1)
p2_2 := Pair(a1, b2)
p2_3 := new(GT).ScalarMult(p1, bigFromBase10("2"))
if p2.String() != p2_2.String() {
t.Error("Pairing mismatch: e(a, b * 2) != e(a * 2, b)")
}
if p2.String() != p2_3.String() {
t.Error("Pairing mismatch: e(a, b * 2) != e(a, b) ** 2")
}
if p2.String() == p1.String() {
t.Error("Pairing is degenerate!")
}
if PairingCheck([]*G1{a1, a1}, []*G2{b1, b1}) {
t.Error("MultiAte check gave false positive!")
}
p999 := Pair(a37, b27)
p999_2 := Pair(a1, b999)
if p999.String() != p999_2.String() {
t.Error("Pairing mismatch: e(a * 37, b * 27) != e(a, b * 999)")
}
}

@ -0,0 +1,181 @@
#define mul(a0,a1,a2,a3, rb, stack) \
MOVQ a0, AX \
MULQ 0+rb \
MOVQ AX, R8 \
MOVQ DX, R9 \
MOVQ a0, AX \
MULQ 8+rb \
ADDQ AX, R9 \
ADCQ $0, DX \
MOVQ DX, R10 \
MOVQ a0, AX \
MULQ 16+rb \
ADDQ AX, R10 \
ADCQ $0, DX \
MOVQ DX, R11 \
MOVQ a0, AX \
MULQ 24+rb \
ADDQ AX, R11 \
ADCQ $0, DX \
MOVQ DX, R12 \
\
storeBlock(R8,R9,R10,R11, 0+stack) \
MOVQ R12, 32+stack \
\
MOVQ a1, AX \
MULQ 0+rb \
MOVQ AX, R8 \
MOVQ DX, R9 \
MOVQ a1, AX \
MULQ 8+rb \
ADDQ AX, R9 \
ADCQ $0, DX \
MOVQ DX, R10 \
MOVQ a1, AX \
MULQ 16+rb \
ADDQ AX, R10 \
ADCQ $0, DX \
MOVQ DX, R11 \
MOVQ a1, AX \
MULQ 24+rb \
ADDQ AX, R11 \
ADCQ $0, DX \
MOVQ DX, R12 \
\
ADDQ 8+stack, R8 \
ADCQ 16+stack, R9 \
ADCQ 24+stack, R10 \
ADCQ 32+stack, R11 \
ADCQ $0, R12 \
storeBlock(R8,R9,R10,R11, 8+stack) \
MOVQ R12, 40+stack \
\
MOVQ a2, AX \
MULQ 0+rb \
MOVQ AX, R8 \
MOVQ DX, R9 \
MOVQ a2, AX \
MULQ 8+rb \
ADDQ AX, R9 \
ADCQ $0, DX \
MOVQ DX, R10 \
MOVQ a2, AX \
MULQ 16+rb \
ADDQ AX, R10 \
ADCQ $0, DX \
MOVQ DX, R11 \
MOVQ a2, AX \
MULQ 24+rb \
ADDQ AX, R11 \
ADCQ $0, DX \
MOVQ DX, R12 \
\
ADDQ 16+stack, R8 \
ADCQ 24+stack, R9 \
ADCQ 32+stack, R10 \
ADCQ 40+stack, R11 \
ADCQ $0, R12 \
storeBlock(R8,R9,R10,R11, 16+stack) \
MOVQ R12, 48+stack \
\
MOVQ a3, AX \
MULQ 0+rb \
MOVQ AX, R8 \
MOVQ DX, R9 \
MOVQ a3, AX \
MULQ 8+rb \
ADDQ AX, R9 \
ADCQ $0, DX \
MOVQ DX, R10 \
MOVQ a3, AX \
MULQ 16+rb \
ADDQ AX, R10 \
ADCQ $0, DX \
MOVQ DX, R11 \
MOVQ a3, AX \
MULQ 24+rb \
ADDQ AX, R11 \
ADCQ $0, DX \
MOVQ DX, R12 \
\
ADDQ 24+stack, R8 \
ADCQ 32+stack, R9 \
ADCQ 40+stack, R10 \
ADCQ 48+stack, R11 \
ADCQ $0, R12 \
storeBlock(R8,R9,R10,R11, 24+stack) \
MOVQ R12, 56+stack
#define gfpReduce(stack) \
\ // m = (T * N') mod R, store m in R8:R9:R10:R11
MOVQ ·np+0(SB), AX \
MULQ 0+stack \
MOVQ AX, R8 \
MOVQ DX, R9 \
MOVQ ·np+0(SB), AX \
MULQ 8+stack \
ADDQ AX, R9 \
ADCQ $0, DX \
MOVQ DX, R10 \
MOVQ ·np+0(SB), AX \
MULQ 16+stack \
ADDQ AX, R10 \
ADCQ $0, DX \
MOVQ DX, R11 \
MOVQ ·np+0(SB), AX \
MULQ 24+stack \
ADDQ AX, R11 \
\
MOVQ ·np+8(SB), AX \
MULQ 0+stack \
MOVQ AX, R12 \
MOVQ DX, R13 \
MOVQ ·np+8(SB), AX \
MULQ 8+stack \
ADDQ AX, R13 \
ADCQ $0, DX \
MOVQ DX, R14 \
MOVQ ·np+8(SB), AX \
MULQ 16+stack \
ADDQ AX, R14 \
\
ADDQ R12, R9 \
ADCQ R13, R10 \
ADCQ R14, R11 \
\
MOVQ ·np+16(SB), AX \
MULQ 0+stack \
MOVQ AX, R12 \
MOVQ DX, R13 \
MOVQ ·np+16(SB), AX \
MULQ 8+stack \
ADDQ AX, R13 \
\
ADDQ R12, R10 \
ADCQ R13, R11 \
\
MOVQ ·np+24(SB), AX \
MULQ 0+stack \
ADDQ AX, R11 \
\
storeBlock(R8,R9,R10,R11, 64+stack) \
\
\ // m * N
mul(·p2+0(SB),·p2+8(SB),·p2+16(SB),·p2+24(SB), 64+stack, 96+stack) \
\
\ // Add the 512-bit intermediate to m*N
loadBlock(96+stack, R8,R9,R10,R11) \
loadBlock(128+stack, R12,R13,R14,R15) \
\
MOVQ $0, AX \
ADDQ 0+stack, R8 \
ADCQ 8+stack, R9 \
ADCQ 16+stack, R10 \
ADCQ 24+stack, R11 \
ADCQ 32+stack, R12 \
ADCQ 40+stack, R13 \
ADCQ 48+stack, R14 \
ADCQ 56+stack, R15 \
ADCQ $0, AX \
\
gfpCarry(R12,R13,R14,R15,AX, R8,R9,R10,R11,BX)

@ -0,0 +1,112 @@
#define mulBMI2(a0,a1,a2,a3, rb) \
MOVQ a0, DX \
MOVQ $0, R13 \
MULXQ 0+rb, R8, R9 \
MULXQ 8+rb, AX, R10 \
ADDQ AX, R9 \
MULXQ 16+rb, AX, R11 \
ADCQ AX, R10 \
MULXQ 24+rb, AX, R12 \
ADCQ AX, R11 \
ADCQ $0, R12 \
ADCQ $0, R13 \
\
MOVQ a1, DX \
MOVQ $0, R14 \
MULXQ 0+rb, AX, BX \
ADDQ AX, R9 \
ADCQ BX, R10 \
MULXQ 16+rb, AX, BX \
ADCQ AX, R11 \
ADCQ BX, R12 \
ADCQ $0, R13 \
MULXQ 8+rb, AX, BX \
ADDQ AX, R10 \
ADCQ BX, R11 \
MULXQ 24+rb, AX, BX \
ADCQ AX, R12 \
ADCQ BX, R13 \
ADCQ $0, R14 \
\
MOVQ a2, DX \
MOVQ $0, R15 \
MULXQ 0+rb, AX, BX \
ADDQ AX, R10 \
ADCQ BX, R11 \
MULXQ 16+rb, AX, BX \
ADCQ AX, R12 \
ADCQ BX, R13 \
ADCQ $0, R14 \
MULXQ 8+rb, AX, BX \
ADDQ AX, R11 \
ADCQ BX, R12 \
MULXQ 24+rb, AX, BX \
ADCQ AX, R13 \
ADCQ BX, R14 \
ADCQ $0, R15 \
\
MOVQ a3, DX \
MULXQ 0+rb, AX, BX \
ADDQ AX, R11 \
ADCQ BX, R12 \
MULXQ 16+rb, AX, BX \
ADCQ AX, R13 \
ADCQ BX, R14 \
ADCQ $0, R15 \
MULXQ 8+rb, AX, BX \
ADDQ AX, R12 \
ADCQ BX, R13 \
MULXQ 24+rb, AX, BX \
ADCQ AX, R14 \
ADCQ BX, R15
#define gfpReduceBMI2() \
\ // m = (T * N') mod R, store m in R8:R9:R10:R11
MOVQ ·np+0(SB), DX \
MULXQ 0(SP), R8, R9 \
MULXQ 8(SP), AX, R10 \
ADDQ AX, R9 \
MULXQ 16(SP), AX, R11 \
ADCQ AX, R10 \
MULXQ 24(SP), AX, BX \
ADCQ AX, R11 \
\
MOVQ ·np+8(SB), DX \
MULXQ 0(SP), AX, BX \
ADDQ AX, R9 \
ADCQ BX, R10 \
MULXQ 16(SP), AX, BX \
ADCQ AX, R11 \
MULXQ 8(SP), AX, BX \
ADDQ AX, R10 \
ADCQ BX, R11 \
\
MOVQ ·np+16(SB), DX \
MULXQ 0(SP), AX, BX \
ADDQ AX, R10 \
ADCQ BX, R11 \
MULXQ 8(SP), AX, BX \
ADDQ AX, R11 \
\
MOVQ ·np+24(SB), DX \
MULXQ 0(SP), AX, BX \
ADDQ AX, R11 \
\
storeBlock(R8,R9,R10,R11, 64(SP)) \
\
\ // m * N
mulBMI2(·p2+0(SB),·p2+8(SB),·p2+16(SB),·p2+24(SB), 64(SP)) \
\
\ // Add the 512-bit intermediate to m*N
MOVQ $0, AX \
ADDQ 0(SP), R8 \
ADCQ 8(SP), R9 \
ADCQ 16(SP), R10 \
ADCQ 24(SP), R11 \
ADCQ 32(SP), R12 \
ADCQ 40(SP), R13 \
ADCQ 48(SP), R14 \
ADCQ 56(SP), R15 \
ADCQ $0, AX \
\
gfpCarry(R12,R13,R14,R15,AX, R8,R9,R10,R11,BX)

@ -0,0 +1,271 @@
package bn256
func lineFunctionAdd(r, p *twistPoint, q *curvePoint, r2 *gfP2) (a, b, c *gfP2, rOut *twistPoint) {
// See the mixed addition algorithm from "Faster Computation of the
// Tate Pairing", http://arxiv.org/pdf/0904.0854v3.pdf
B := (&gfP2{}).Mul(&p.x, &r.t)
D := (&gfP2{}).Add(&p.y, &r.z)
D.Square(D).Sub(D, r2).Sub(D, &r.t).Mul(D, &r.t)
H := (&gfP2{}).Sub(B, &r.x)
I := (&gfP2{}).Square(H)
E := (&gfP2{}).Add(I, I)
E.Add(E, E)
J := (&gfP2{}).Mul(H, E)
L1 := (&gfP2{}).Sub(D, &r.y)
L1.Sub(L1, &r.y)
V := (&gfP2{}).Mul(&r.x, E)
rOut = &twistPoint{}
rOut.x.Square(L1).Sub(&rOut.x, J).Sub(&rOut.x, V).Sub(&rOut.x, V)
rOut.z.Add(&r.z, H).Square(&rOut.z).Sub(&rOut.z, &r.t).Sub(&rOut.z, I)
t := (&gfP2{}).Sub(V, &rOut.x)
t.Mul(t, L1)
t2 := (&gfP2{}).Mul(&r.y, J)
t2.Add(t2, t2)
rOut.y.Sub(t, t2)
rOut.t.Square(&rOut.z)
t.Add(&p.y, &rOut.z).Square(t).Sub(t, r2).Sub(t, &rOut.t)
t2.Mul(L1, &p.x)
t2.Add(t2, t2)
a = (&gfP2{}).Sub(t2, t)
c = (&gfP2{}).MulScalar(&rOut.z, &q.y)
c.Add(c, c)
b = (&gfP2{}).Neg(L1)
b.MulScalar(b, &q.x).Add(b, b)
return
}
func lineFunctionDouble(r *twistPoint, q *curvePoint) (a, b, c *gfP2, rOut *twistPoint) {
// See the doubling algorithm for a=0 from "Faster Computation of the
// Tate Pairing", http://arxiv.org/pdf/0904.0854v3.pdf
A := (&gfP2{}).Square(&r.x)
B := (&gfP2{}).Square(&r.y)
C := (&gfP2{}).Square(B)
D := (&gfP2{}).Add(&r.x, B)
D.Square(D).Sub(D, A).Sub(D, C).Add(D, D)
E := (&gfP2{}).Add(A, A)
E.Add(E, A)
G := (&gfP2{}).Square(E)
rOut = &twistPoint{}
rOut.x.Sub(G, D).Sub(&rOut.x, D)
rOut.z.Add(&r.y, &r.z).Square(&rOut.z).Sub(&rOut.z, B).Sub(&rOut.z, &r.t)
rOut.y.Sub(D, &rOut.x).Mul(&rOut.y, E)
t := (&gfP2{}).Add(C, C)
t.Add(t, t).Add(t, t)
rOut.y.Sub(&rOut.y, t)
rOut.t.Square(&rOut.z)
t.Mul(E, &r.t).Add(t, t)
b = (&gfP2{}).Neg(t)
b.MulScalar(b, &q.x)
a = (&gfP2{}).Add(&r.x, E)
a.Square(a).Sub(a, A).Sub(a, G)
t.Add(B, B).Add(t, t)
a.Sub(a, t)
c = (&gfP2{}).Mul(&rOut.z, &r.t)
c.Add(c, c).MulScalar(c, &q.y)
return
}
func mulLine(ret *gfP12, a, b, c *gfP2) {
a2 := &gfP6{}
a2.y.Set(a)
a2.z.Set(b)
a2.Mul(a2, &ret.x)
t3 := (&gfP6{}).MulScalar(&ret.y, c)
t := (&gfP2{}).Add(b, c)
t2 := &gfP6{}
t2.y.Set(a)
t2.z.Set(t)
ret.x.Add(&ret.x, &ret.y)
ret.y.Set(t3)
ret.x.Mul(&ret.x, t2).Sub(&ret.x, a2).Sub(&ret.x, &ret.y)
a2.MulTau(a2)
ret.y.Add(&ret.y, a2)
}
// sixuPlus2NAF is 6u+2 in non-adjacent form.
var sixuPlus2NAF = []int8{0, 0, 0, 1, 0, 1, 0, -1, 0, 0, 1, -1, 0, 0, 1, 0,
0, 1, 1, 0, -1, 0, 0, 1, 0, -1, 0, 0, 0, 0, 1, 1,
1, 0, 0, -1, 0, 0, 1, 0, 0, 0, 0, 0, -1, 0, 0, 1,
1, 0, 0, -1, 0, 0, 0, 1, 1, 0, -1, 0, 0, 1, 0, 1, 1}
// miller implements the Miller loop for calculating the Optimal Ate pairing.
// See algorithm 1 from http://cryptojedi.org/papers/dclxvi-20100714.pdf
func miller(q *twistPoint, p *curvePoint) *gfP12 {
ret := (&gfP12{}).SetOne()
aAffine := &twistPoint{}
aAffine.Set(q)
aAffine.MakeAffine()
bAffine := &curvePoint{}
bAffine.Set(p)
bAffine.MakeAffine()
minusA := &twistPoint{}
minusA.Neg(aAffine)
r := &twistPoint{}
r.Set(aAffine)
r2 := (&gfP2{}).Square(&aAffine.y)
for i := len(sixuPlus2NAF) - 1; i > 0; i-- {
a, b, c, newR := lineFunctionDouble(r, bAffine)
if i != len(sixuPlus2NAF)-1 {
ret.Square(ret)
}
mulLine(ret, a, b, c)
r = newR
switch sixuPlus2NAF[i-1] {
case 1:
a, b, c, newR = lineFunctionAdd(r, aAffine, bAffine, r2)
case -1:
a, b, c, newR = lineFunctionAdd(r, minusA, bAffine, r2)
default:
continue
}
mulLine(ret, a, b, c)
r = newR
}
// In order to calculate Q1 we have to convert q from the sextic twist
// to the full GF(p^12) group, apply the Frobenius there, and convert
// back.
//
// The twist isomorphism is (x', y') -> (xω², yω³). If we consider just
// x for a moment, then after applying the Frobenius, we have x̄ω^(2p)
// where x̄ is the conjugate of x. If we are going to apply the inverse
// isomorphism we need a value with a single coefficient of ω² so we
// rewrite this as x̄ω^(2p-2)ω². ξ⁶ = ω and, due to the construction of
// p, 2p-2 is a multiple of six. Therefore we can rewrite as
// x̄ξ^((p-1)/3)ω² and applying the inverse isomorphism eliminates the
// ω².
//
// A similar argument can be made for the y value.
q1 := &twistPoint{}
q1.x.Conjugate(&aAffine.x).Mul(&q1.x, xiToPMinus1Over3)
q1.y.Conjugate(&aAffine.y).Mul(&q1.y, xiToPMinus1Over2)
q1.z.SetOne()
q1.t.SetOne()
// For Q2 we are applying the p² Frobenius. The two conjugations cancel
// out and we are left only with the factors from the isomorphism. In
// the case of x, we end up with a pure number which is why
// xiToPSquaredMinus1Over3 is ∈ GF(p). With y we get a factor of -1. We
// ignore this to end up with -Q2.
minusQ2 := &twistPoint{}
minusQ2.x.MulScalar(&aAffine.x, xiToPSquaredMinus1Over3)
minusQ2.y.Set(&aAffine.y)
minusQ2.z.SetOne()
minusQ2.t.SetOne()
r2.Square(&q1.y)
a, b, c, newR := lineFunctionAdd(r, q1, bAffine, r2)
mulLine(ret, a, b, c)
r = newR
r2.Square(&minusQ2.y)
a, b, c, newR = lineFunctionAdd(r, minusQ2, bAffine, r2)
mulLine(ret, a, b, c)
r = newR
return ret
}
// finalExponentiation computes the (p¹²-1)/Order-th power of an element of
// GF(p¹²) to obtain an element of GT (steps 13-15 of algorithm 1 from
// http://cryptojedi.org/papers/dclxvi-20100714.pdf)
func finalExponentiation(in *gfP12) *gfP12 {
t1 := &gfP12{}
// This is the p^6-Frobenius
t1.x.Neg(&in.x)
t1.y.Set(&in.y)
inv := &gfP12{}
inv.Invert(in)
t1.Mul(t1, inv)
t2 := (&gfP12{}).FrobeniusP2(t1)
t1.Mul(t1, t2)
fp := (&gfP12{}).Frobenius(t1)
fp2 := (&gfP12{}).FrobeniusP2(t1)
fp3 := (&gfP12{}).Frobenius(fp2)
fu := (&gfP12{}).Exp(t1, u)
fu2 := (&gfP12{}).Exp(fu, u)
fu3 := (&gfP12{}).Exp(fu2, u)
y3 := (&gfP12{}).Frobenius(fu)
fu2p := (&gfP12{}).Frobenius(fu2)
fu3p := (&gfP12{}).Frobenius(fu3)
y2 := (&gfP12{}).FrobeniusP2(fu2)
y0 := &gfP12{}
y0.Mul(fp, fp2).Mul(y0, fp3)
y1 := (&gfP12{}).Conjugate(t1)
y5 := (&gfP12{}).Conjugate(fu2)
y3.Conjugate(y3)
y4 := (&gfP12{}).Mul(fu, fu2p)
y4.Conjugate(y4)
y6 := (&gfP12{}).Mul(fu3, fu3p)
y6.Conjugate(y6)
t0 := (&gfP12{}).Square(y6)
t0.Mul(t0, y4).Mul(t0, y5)
t1.Mul(y3, y5).Mul(t1, t0)
t0.Mul(t0, y2)
t1.Square(t1).Mul(t1, t0).Square(t1)
t0.Mul(t1, y1)
t1.Mul(t1, y0)
t0.Square(t0).Mul(t0, t1)
return t0
}
func optimalAte(a *twistPoint, b *curvePoint) *gfP12 {
e := miller(a, b)
ret := finalExponentiation(e)
if a.IsInfinity() || b.IsInfinity() {
ret.SetOne()
}
return ret
}

@ -0,0 +1,204 @@
package bn256
import (
"math/big"
)
// twistPoint implements the elliptic curve y²=x³+3/ξ over GF(p²). Points are
// kept in Jacobian form and t=z² when valid. The group G₂ is the set of
// n-torsion points of this curve over GF(p²) (where n = Order)
type twistPoint struct {
x, y, z, t gfP2
}
var twistB = &gfP2{
gfP{0x38e7ecccd1dcff67, 0x65f0b37d93ce0d3e, 0xd749d0dd22ac00aa, 0x0141b9ce4a688d4d},
gfP{0x3bf938e377b802a8, 0x020b1b273633535d, 0x26b7edf049755260, 0x2514c6324384a86d},
}
// twistGen is the generator of group G₂.
var twistGen = &twistPoint{
gfP2{
gfP{0xafb4737da84c6140, 0x6043dd5a5802d8c4, 0x09e950fc52a02f86, 0x14fef0833aea7b6b},
gfP{0x8e83b5d102bc2026, 0xdceb1935497b0172, 0xfbb8264797811adf, 0x19573841af96503b},
},
gfP2{
gfP{0x64095b56c71856ee, 0xdc57f922327d3cbb, 0x55f935be33351076, 0x0da4a0e693fd6482},
gfP{0x619dfa9d886be9f6, 0xfe7fd297f59e9b78, 0xff9e1a62231b7dfe, 0x28fd7eebae9e4206},
},
gfP2{*newGFp(0), *newGFp(1)},
gfP2{*newGFp(0), *newGFp(1)},
}
func (c *twistPoint) String() string {
c.MakeAffine()
x, y := gfP2Decode(&c.x), gfP2Decode(&c.y)
return "(" + x.String() + ", " + y.String() + ")"
}
func (c *twistPoint) Set(a *twistPoint) {
c.x.Set(&a.x)
c.y.Set(&a.y)
c.z.Set(&a.z)
c.t.Set(&a.t)
}
// IsOnCurve returns true iff c is on the curve.
func (c *twistPoint) IsOnCurve() bool {
c.MakeAffine()
if c.IsInfinity() {
return true
}
y2, x3 := &gfP2{}, &gfP2{}
y2.Square(&c.y)
x3.Square(&c.x).Mul(x3, &c.x).Add(x3, twistB)
if *y2 != *x3 {
return false
}
cneg := &twistPoint{}
cneg.Mul(c, Order)
return cneg.z.IsZero()
}
func (c *twistPoint) SetInfinity() {
c.x.SetZero()
c.y.SetOne()
c.z.SetZero()
c.t.SetZero()
}
func (c *twistPoint) IsInfinity() bool {
return c.z.IsZero()
}
func (c *twistPoint) Add(a, b *twistPoint) {
// For additional comments, see the same function in curve.go.
if a.IsInfinity() {
c.Set(b)
return
}
if b.IsInfinity() {
c.Set(a)
return
}
// See http://hyperelliptic.org/EFD/g1p/auto-code/shortw/jacobian-0/addition/add-2007-bl.op3
z12 := (&gfP2{}).Square(&a.z)
z22 := (&gfP2{}).Square(&b.z)
u1 := (&gfP2{}).Mul(&a.x, z22)
u2 := (&gfP2{}).Mul(&b.x, z12)
t := (&gfP2{}).Mul(&b.z, z22)
s1 := (&gfP2{}).Mul(&a.y, t)
t.Mul(&a.z, z12)
s2 := (&gfP2{}).Mul(&b.y, t)
h := (&gfP2{}).Sub(u2, u1)
xEqual := h.IsZero()
t.Add(h, h)
i := (&gfP2{}).Square(t)
j := (&gfP2{}).Mul(h, i)
t.Sub(s2, s1)
yEqual := t.IsZero()
if xEqual && yEqual {
c.Double(a)
return
}
r := (&gfP2{}).Add(t, t)
v := (&gfP2{}).Mul(u1, i)
t4 := (&gfP2{}).Square(r)
t.Add(v, v)
t6 := (&gfP2{}).Sub(t4, j)
c.x.Sub(t6, t)
t.Sub(v, &c.x) // t7
t4.Mul(s1, j) // t8
t6.Add(t4, t4) // t9
t4.Mul(r, t) // t10
c.y.Sub(t4, t6)
t.Add(&a.z, &b.z) // t11
t4.Square(t) // t12
t.Sub(t4, z12) // t13
t4.Sub(t, z22) // t14
c.z.Mul(t4, h)
}
func (c *twistPoint) Double(a *twistPoint) {
// See http://hyperelliptic.org/EFD/g1p/auto-code/shortw/jacobian-0/doubling/dbl-2009-l.op3
A := (&gfP2{}).Square(&a.x)
B := (&gfP2{}).Square(&a.y)
C := (&gfP2{}).Square(B)
t := (&gfP2{}).Add(&a.x, B)
t2 := (&gfP2{}).Square(t)
t.Sub(t2, A)
t2.Sub(t, C)
d := (&gfP2{}).Add(t2, t2)
t.Add(A, A)
e := (&gfP2{}).Add(t, A)
f := (&gfP2{}).Square(e)
t.Add(d, d)
c.x.Sub(f, t)
t.Add(C, C)
t2.Add(t, t)
t.Add(t2, t2)
c.y.Sub(d, &c.x)
t2.Mul(e, &c.y)
c.y.Sub(t2, t)
t.Mul(&a.y, &a.z)
c.z.Add(t, t)
}
func (c *twistPoint) Mul(a *twistPoint, scalar *big.Int) {
sum, t := &twistPoint{}, &twistPoint{}
for i := scalar.BitLen(); i >= 0; i-- {
t.Double(sum)
if scalar.Bit(i) != 0 {
sum.Add(t, a)
} else {
sum.Set(t)
}
}
c.Set(sum)
}
func (c *twistPoint) MakeAffine() {
if c.z.IsOne() {
return
} else if c.z.IsZero() {
c.x.SetZero()
c.y.SetOne()
c.t.SetZero()
return
}
zInv := (&gfP2{}).Invert(&c.z)
t := (&gfP2{}).Mul(&c.y, zInv)
zInv2 := (&gfP2{}).Square(zInv)
c.y.Mul(t, zInv2)
t.Mul(&c.x, zInv2)
c.x.Set(t)
c.z.SetOne()
c.t.SetOne()
}
func (c *twistPoint) Neg(a *twistPoint) {
c.x.Set(&a.x)
c.y.Neg(&a.y)
c.z.Set(&a.z)
c.t.SetZero()
}

@ -18,6 +18,7 @@ package bn256
import (
"crypto/rand"
"errors"
"io"
"math/big"
)
@ -115,21 +116,25 @@ func (n *G1) Marshal() []byte {
// Unmarshal sets e to the result of converting the output of Marshal back into
// a group element and then returns e.
func (e *G1) Unmarshal(m []byte) (*G1, bool) {
func (e *G1) Unmarshal(m []byte) ([]byte, error) {
// Each value is a 256-bit number.
const numBytes = 256 / 8
if len(m) != 2*numBytes {
return nil, false
return nil, errors.New("bn256: not enough data")
}
// Unmarshal the points and check their caps
if e.p == nil {
e.p = newCurvePoint(nil)
}
e.p.x.SetBytes(m[0*numBytes : 1*numBytes])
if e.p.x.Cmp(P) >= 0 {
return nil, errors.New("bn256: coordinate exceeds modulus")
}
e.p.y.SetBytes(m[1*numBytes : 2*numBytes])
if e.p.y.Cmp(P) >= 0 {
return nil, errors.New("bn256: coordinate exceeds modulus")
}
// Ensure the point is on the curve
if e.p.x.Sign() == 0 && e.p.y.Sign() == 0 {
// This is the point at infinity.
e.p.y.SetInt64(1)
@ -140,11 +145,10 @@ func (e *G1) Unmarshal(m []byte) (*G1, bool) {
e.p.t.SetInt64(1)
if !e.p.IsOnCurve() {
return nil, false
return nil, errors.New("bn256: malformed point")
}
}
return e, true
return m[2*numBytes:], nil
}
// G2 is an abstract cyclic group. The zero value is suitable for use as the
@ -233,23 +237,33 @@ func (n *G2) Marshal() []byte {
// Unmarshal sets e to the result of converting the output of Marshal back into
// a group element and then returns e.
func (e *G2) Unmarshal(m []byte) (*G2, bool) {
func (e *G2) Unmarshal(m []byte) ([]byte, error) {
// Each value is a 256-bit number.
const numBytes = 256 / 8
if len(m) != 4*numBytes {
return nil, false
return nil, errors.New("bn256: not enough data")
}
// Unmarshal the points and check their caps
if e.p == nil {
e.p = newTwistPoint(nil)
}
e.p.x.x.SetBytes(m[0*numBytes : 1*numBytes])
if e.p.x.x.Cmp(P) >= 0 {
return nil, errors.New("bn256: coordinate exceeds modulus")
}
e.p.x.y.SetBytes(m[1*numBytes : 2*numBytes])
if e.p.x.y.Cmp(P) >= 0 {
return nil, errors.New("bn256: coordinate exceeds modulus")
}
e.p.y.x.SetBytes(m[2*numBytes : 3*numBytes])
if e.p.y.x.Cmp(P) >= 0 {
return nil, errors.New("bn256: coordinate exceeds modulus")
}
e.p.y.y.SetBytes(m[3*numBytes : 4*numBytes])
if e.p.y.y.Cmp(P) >= 0 {
return nil, errors.New("bn256: coordinate exceeds modulus")
}
// Ensure the point is on the curve
if e.p.x.x.Sign() == 0 &&
e.p.x.y.Sign() == 0 &&
e.p.y.x.Sign() == 0 &&
@ -263,11 +277,10 @@ func (e *G2) Unmarshal(m []byte) (*G2, bool) {
e.p.t.SetOne()
if !e.p.IsOnCurve() {
return nil, false
return nil, errors.New("bn256: malformed point")
}
}
return e, true
return m[4*numBytes:], nil
}
// GT is an abstract cyclic group. The zero value is suitable for use as the

@ -219,15 +219,16 @@ func TestBilinearity(t *testing.T) {
func TestG1Marshal(t *testing.T) {
g := new(G1).ScalarBaseMult(new(big.Int).SetInt64(1))
form := g.Marshal()
_, ok := new(G1).Unmarshal(form)
if !ok {
_, err := new(G1).Unmarshal(form)
if err != nil {
t.Fatalf("failed to unmarshal")
}
g.ScalarBaseMult(Order)
form = g.Marshal()
g2, ok := new(G1).Unmarshal(form)
if !ok {
g2 := new(G1)
if _, err = g2.Unmarshal(form); err != nil {
t.Fatalf("failed to unmarshal ∞")
}
if !g2.p.IsInfinity() {
@ -238,15 +239,15 @@ func TestG1Marshal(t *testing.T) {
func TestG2Marshal(t *testing.T) {
g := new(G2).ScalarBaseMult(new(big.Int).SetInt64(1))
form := g.Marshal()
_, ok := new(G2).Unmarshal(form)
if !ok {
_, err := new(G2).Unmarshal(form)
if err != nil {
t.Fatalf("failed to unmarshal")
}
g.ScalarBaseMult(Order)
form = g.Marshal()
g2, ok := new(G2).Unmarshal(form)
if !ok {
g2 := new(G2)
if _, err = g2.Unmarshal(form); err != nil {
t.Fatalf("failed to unmarshal ∞")
}
if !g2.p.IsInfinity() {
@ -273,12 +274,18 @@ func TestTripartiteDiffieHellman(t *testing.T) {
b, _ := rand.Int(rand.Reader, Order)
c, _ := rand.Int(rand.Reader, Order)
pa, _ := new(G1).Unmarshal(new(G1).ScalarBaseMult(a).Marshal())
qa, _ := new(G2).Unmarshal(new(G2).ScalarBaseMult(a).Marshal())
pb, _ := new(G1).Unmarshal(new(G1).ScalarBaseMult(b).Marshal())
qb, _ := new(G2).Unmarshal(new(G2).ScalarBaseMult(b).Marshal())
pc, _ := new(G1).Unmarshal(new(G1).ScalarBaseMult(c).Marshal())
qc, _ := new(G2).Unmarshal(new(G2).ScalarBaseMult(c).Marshal())
pa := new(G1)
pa.Unmarshal(new(G1).ScalarBaseMult(a).Marshal())
qa := new(G2)
qa.Unmarshal(new(G2).ScalarBaseMult(a).Marshal())
pb := new(G1)
pb.Unmarshal(new(G1).ScalarBaseMult(b).Marshal())
qb := new(G2)
qb.Unmarshal(new(G2).ScalarBaseMult(b).Marshal())
pc := new(G1)
pc.Unmarshal(new(G1).ScalarBaseMult(c).Marshal())
qc := new(G2)
qc.Unmarshal(new(G2).ScalarBaseMult(c).Marshal())
k1 := Pair(pb, qc)
k1.ScalarMult(k1, a)

@ -76,7 +76,13 @@ func (c *twistPoint) IsOnCurve() bool {
yy.Sub(yy, xxx)
yy.Sub(yy, twistB)
yy.Minimal()
return yy.x.Sign() == 0 && yy.y.Sign() == 0
if yy.x.Sign() != 0 || yy.y.Sign() != 0 {
return false
}
cneg := newTwistPoint(pool)
cneg.Mul(c, Order, pool)
return cneg.z.IsZero()
}
func (c *twistPoint) SetInfinity() {