Merge branch 'poc8' into develop

This commit is contained in:
obscuren 2014-12-05 16:27:48 +01:00
commit f06543fd06
22 changed files with 2073 additions and 2466 deletions

@ -5,10 +5,10 @@ import (
"runtime"
)
// should be used in Peer handleHandshake, incorporate Caps, ProtocolVersion, Pubkey etc.
// ClientIdentity represents the identity of a peer.
type ClientIdentity interface {
String() string
Pubkey() []byte
String() string // human readable identity
Pubkey() []byte // 512-bit public key
}
type SimpleClientIdentity struct {

@ -1,275 +0,0 @@
package p2p
import (
"bytes"
// "fmt"
"net"
"time"
"github.com/ethereum/go-ethereum/ethutil"
)
type Connection struct {
conn net.Conn
// conn NetworkConnection
timeout time.Duration
in chan []byte
out chan []byte
err chan *PeerError
closingIn chan chan bool
closingOut chan chan bool
}
// const readBufferLength = 2 //for testing
const readBufferLength = 1440
const partialsQueueSize = 10
const maxPendingQueueSize = 1
const defaultTimeout = 500
var magicToken = []byte{34, 64, 8, 145}
func (self *Connection) Open() {
go self.startRead()
go self.startWrite()
}
func (self *Connection) Close() {
self.closeIn()
self.closeOut()
}
func (self *Connection) closeIn() {
errc := make(chan bool)
self.closingIn <- errc
<-errc
}
func (self *Connection) closeOut() {
errc := make(chan bool)
self.closingOut <- errc
<-errc
}
func NewConnection(conn net.Conn, errchan chan *PeerError) *Connection {
return &Connection{
conn: conn,
timeout: defaultTimeout,
in: make(chan []byte),
out: make(chan []byte),
err: errchan,
closingIn: make(chan chan bool, 1),
closingOut: make(chan chan bool, 1),
}
}
func (self *Connection) Read() <-chan []byte {
return self.in
}
func (self *Connection) Write() chan<- []byte {
return self.out
}
func (self *Connection) Error() <-chan *PeerError {
return self.err
}
func (self *Connection) startRead() {
payloads := make(chan []byte)
done := make(chan *PeerError)
pending := [][]byte{}
var head []byte
var wait time.Duration // initally 0 (no delay)
read := time.After(wait * time.Millisecond)
for {
// if pending empty, nil channel blocks
var in chan []byte
if len(pending) > 0 {
in = self.in // enable send case
head = pending[0]
} else {
in = nil
}
select {
case <-read:
go self.read(payloads, done)
case err := <-done:
if err == nil { // no error but nothing to read
if len(pending) < maxPendingQueueSize {
wait = 100
} else if wait == 0 {
wait = 100
} else {
wait = 2 * wait
}
} else {
self.err <- err // report error
wait = 100
}
read = time.After(wait * time.Millisecond)
case payload := <-payloads:
pending = append(pending, payload)
if len(pending) < maxPendingQueueSize {
wait = 0
} else {
wait = 100
}
read = time.After(wait * time.Millisecond)
case in <- head:
pending = pending[1:]
case errc := <-self.closingIn:
errc <- true
close(self.in)
return
}
}
}
func (self *Connection) startWrite() {
pending := [][]byte{}
done := make(chan *PeerError)
writing := false
for {
if len(pending) > 0 && !writing {
writing = true
go self.write(pending[0], done)
}
select {
case payload := <-self.out:
pending = append(pending, payload)
case err := <-done:
if err == nil {
pending = pending[1:]
writing = false
} else {
self.err <- err // report error
}
case errc := <-self.closingOut:
errc <- true
close(self.out)
return
}
}
}
func pack(payload []byte) (packet []byte) {
length := ethutil.NumberToBytes(uint32(len(payload)), 32)
// return error if too long?
// Write magic token and payload length (first 8 bytes)
packet = append(magicToken, length...)
packet = append(packet, payload...)
return
}
func avoidPanic(done chan *PeerError) {
if rec := recover(); rec != nil {
err := NewPeerError(MiscError, " %v", rec)
logger.Debugln(err)
done <- err
}
}
func (self *Connection) write(payload []byte, done chan *PeerError) {
defer avoidPanic(done)
var err *PeerError
_, ok := self.conn.Write(pack(payload))
if ok != nil {
err = NewPeerError(WriteError, " %v", ok)
logger.Debugln(err)
}
done <- err
}
func (self *Connection) read(payloads chan []byte, done chan *PeerError) {
//defer avoidPanic(done)
partials := make(chan []byte, partialsQueueSize)
errc := make(chan *PeerError)
go self.readPartials(partials, errc)
packet := []byte{}
length := 8
start := true
var err *PeerError
out:
for {
// appends partials read via connection until packet is
// - either parseable (>=8bytes)
// - or complete (payload fully consumed)
for len(packet) < length {
partial, ok := <-partials
if !ok { // partials channel is closed
err = <-errc
if err == nil && len(packet) > 0 {
if start {
err = NewPeerError(PacketTooShort, "%v", packet)
} else {
err = NewPeerError(PayloadTooShort, "%d < %d", len(packet), length)
}
}
break out
}
packet = append(packet, partial...)
}
if start {
// at least 8 bytes read, can validate packet
if bytes.Compare(magicToken, packet[:4]) != 0 {
err = NewPeerError(MagicTokenMismatch, " received %v", packet[:4])
break
}
length = int(ethutil.BytesToNumber(packet[4:8]))
packet = packet[8:]
if length > 0 {
start = false // now consuming payload
} else { //penalize peer but read on
self.err <- NewPeerError(EmptyPayload, "")
length = 8
}
} else {
// packet complete (payload fully consumed)
payloads <- packet[:length]
packet = packet[length:] // resclice packet
start = true
length = 8
}
}
// this stops partials read via the connection, should we?
//if err != nil {
// select {
// case errc <- err
// default:
//}
done <- err
}
func (self *Connection) readPartials(partials chan []byte, errc chan *PeerError) {
defer close(partials)
for {
// Give buffering some time
self.conn.SetReadDeadline(time.Now().Add(self.timeout * time.Millisecond))
buffer := make([]byte, readBufferLength)
// read partial from connection
bytesRead, err := self.conn.Read(buffer)
if err == nil || err.Error() == "EOF" {
if bytesRead > 0 {
partials <- buffer[:bytesRead]
}
if err != nil && err.Error() == "EOF" {
break
}
} else {
// unexpected error, report to errc
err := NewPeerError(ReadError, " %v", err)
logger.Debugln(err)
errc <- err
return // will close partials channel
}
}
close(errc)
}

@ -1,222 +0,0 @@
package p2p
import (
"bytes"
"fmt"
"io"
"net"
"testing"
"time"
)
type TestNetworkConnection struct {
in chan []byte
current []byte
Out [][]byte
addr net.Addr
}
func NewTestNetworkConnection(addr net.Addr) *TestNetworkConnection {
return &TestNetworkConnection{
in: make(chan []byte),
current: []byte{},
Out: [][]byte{},
addr: addr,
}
}
func (self *TestNetworkConnection) In(latency time.Duration, packets ...[]byte) {
time.Sleep(latency)
for _, s := range packets {
self.in <- s
}
}
func (self *TestNetworkConnection) Read(buff []byte) (n int, err error) {
if len(self.current) == 0 {
select {
case self.current = <-self.in:
default:
return 0, io.EOF
}
}
length := len(self.current)
if length > len(buff) {
copy(buff[:], self.current[:len(buff)])
self.current = self.current[len(buff):]
return len(buff), nil
} else {
copy(buff[:length], self.current[:])
self.current = []byte{}
return length, io.EOF
}
}
func (self *TestNetworkConnection) Write(buff []byte) (n int, err error) {
self.Out = append(self.Out, buff)
fmt.Printf("net write %v\n%v\n", len(self.Out), buff)
return len(buff), nil
}
func (self *TestNetworkConnection) Close() (err error) {
return
}
func (self *TestNetworkConnection) LocalAddr() (addr net.Addr) {
return
}
func (self *TestNetworkConnection) RemoteAddr() (addr net.Addr) {
return self.addr
}
func (self *TestNetworkConnection) SetDeadline(t time.Time) (err error) {
return
}
func (self *TestNetworkConnection) SetReadDeadline(t time.Time) (err error) {
return
}
func (self *TestNetworkConnection) SetWriteDeadline(t time.Time) (err error) {
return
}
func setupConnection() (*Connection, *TestNetworkConnection) {
addr := &TestAddr{"test:30303"}
net := NewTestNetworkConnection(addr)
conn := NewConnection(net, NewPeerErrorChannel())
conn.Open()
return conn, net
}
func TestReadingNilPacket(t *testing.T) {
conn, net := setupConnection()
go net.In(0, []byte{})
// time.Sleep(10 * time.Millisecond)
select {
case packet := <-conn.Read():
t.Errorf("read %v", packet)
case err := <-conn.Error():
t.Errorf("incorrect error %v", err)
default:
}
conn.Close()
}
func TestReadingShortPacket(t *testing.T) {
conn, net := setupConnection()
go net.In(0, []byte{0})
select {
case packet := <-conn.Read():
t.Errorf("read %v", packet)
case err := <-conn.Error():
if err.Code != PacketTooShort {
t.Errorf("incorrect error %v, expected %v", err.Code, PacketTooShort)
}
}
conn.Close()
}
func TestReadingInvalidPacket(t *testing.T) {
conn, net := setupConnection()
go net.In(0, []byte{1, 0, 0, 0, 0, 0, 0, 0})
select {
case packet := <-conn.Read():
t.Errorf("read %v", packet)
case err := <-conn.Error():
if err.Code != MagicTokenMismatch {
t.Errorf("incorrect error %v, expected %v", err.Code, MagicTokenMismatch)
}
}
conn.Close()
}
func TestReadingInvalidPayload(t *testing.T) {
conn, net := setupConnection()
go net.In(0, []byte{34, 64, 8, 145, 0, 0, 0, 2, 0})
select {
case packet := <-conn.Read():
t.Errorf("read %v", packet)
case err := <-conn.Error():
if err.Code != PayloadTooShort {
t.Errorf("incorrect error %v, expected %v", err.Code, PayloadTooShort)
}
}
conn.Close()
}
func TestReadingEmptyPayload(t *testing.T) {
conn, net := setupConnection()
go net.In(0, []byte{34, 64, 8, 145, 0, 0, 0, 0})
time.Sleep(10 * time.Millisecond)
select {
case packet := <-conn.Read():
t.Errorf("read %v", packet)
default:
}
select {
case err := <-conn.Error():
code := err.Code
if code != EmptyPayload {
t.Errorf("incorrect error, expected EmptyPayload, got %v", code)
}
default:
t.Errorf("no error, expected EmptyPayload")
}
conn.Close()
}
func TestReadingCompletePacket(t *testing.T) {
conn, net := setupConnection()
go net.In(0, []byte{34, 64, 8, 145, 0, 0, 0, 1, 1})
time.Sleep(10 * time.Millisecond)
select {
case packet := <-conn.Read():
if bytes.Compare(packet, []byte{1}) != 0 {
t.Errorf("incorrect payload read")
}
case err := <-conn.Error():
t.Errorf("incorrect error %v", err)
default:
t.Errorf("nothing read")
}
conn.Close()
}
func TestReadingTwoCompletePackets(t *testing.T) {
conn, net := setupConnection()
go net.In(0, []byte{34, 64, 8, 145, 0, 0, 0, 1, 0, 34, 64, 8, 145, 0, 0, 0, 1, 1})
for i := 0; i < 2; i++ {
time.Sleep(10 * time.Millisecond)
select {
case packet := <-conn.Read():
if bytes.Compare(packet, []byte{byte(i)}) != 0 {
t.Errorf("incorrect payload read")
}
case err := <-conn.Error():
t.Errorf("incorrect error %v", err)
default:
t.Errorf("nothing read")
}
}
conn.Close()
}
func TestWriting(t *testing.T) {
conn, net := setupConnection()
conn.Write() <- []byte{0}
time.Sleep(10 * time.Millisecond)
if len(net.Out) == 0 {
t.Errorf("no output")
} else {
out := net.Out[0]
if bytes.Compare(out, []byte{34, 64, 8, 145, 0, 0, 0, 1, 0}) != 0 {
t.Errorf("incorrect packet %v", out)
}
}
conn.Close()
}
// hello packet with client id ABC: 0x22 40 08 91 00 00 00 08 84 00 00 00 43414243

@ -1,75 +1,155 @@
package p2p
import (
// "fmt"
"bytes"
"encoding/binary"
"io"
"io/ioutil"
"math/big"
"github.com/ethereum/go-ethereum/ethutil"
"github.com/ethereum/go-ethereum/rlp"
)
type MsgCode uint8
// Msg defines the structure of a p2p message.
//
// Note that a Msg can only be sent once since the Payload reader is
// consumed during sending. It is not possible to create a Msg and
// send it any number of times. If you want to reuse an encoded
// structure, encode the payload into a byte array and create a
// separate Msg with a bytes.Reader as Payload for each send.
type Msg struct {
code MsgCode // this is the raw code as per adaptive msg code scheme
data *ethutil.Value
encoded []byte
Code uint64
Size uint32 // size of the paylod
Payload io.Reader
}
func (self *Msg) Code() MsgCode {
return self.code
}
func (self *Msg) Data() *ethutil.Value {
return self.data
}
func NewMsg(code MsgCode, params ...interface{}) (msg *Msg, err error) {
// // data := [][]interface{}{}
// data := []interface{}{}
// for _, value := range params {
// if encodable, ok := value.(ethutil.RlpEncodeDecode); ok {
// data = append(data, encodable.RlpValue())
// } else if raw, ok := value.([]interface{}); ok {
// data = append(data, raw)
// } else {
// // data = append(data, interface{}(raw))
// err = fmt.Errorf("Unable to encode object of type %T", value)
// return
// }
// }
return &Msg{
code: code,
data: ethutil.NewValue(interface{}(params)),
}, nil
}
func NewMsgFromBytes(encoded []byte) (msg *Msg, err error) {
value := ethutil.NewValueFromBytes(encoded)
// Type of message
code := value.Get(0).Uint()
// Actual data
data := value.SliceFrom(1)
msg = &Msg{
code: MsgCode(code),
data: data,
// data: ethutil.NewValue(data),
encoded: encoded,
// NewMsg creates an RLP-encoded message with the given code.
func NewMsg(code uint64, params ...interface{}) Msg {
buf := new(bytes.Buffer)
for _, p := range params {
buf.Write(ethutil.Encode(p))
}
return
return Msg{Code: code, Size: uint32(buf.Len()), Payload: buf}
}
func (self *Msg) Decode(offset MsgCode) {
self.code = self.code - offset
}
// encode takes an offset argument to implement adaptive message coding
// the encoded message is memoized to make msgs relayed to several peers more efficient
func (self *Msg) Encode(offset MsgCode) (res []byte) {
if len(self.encoded) == 0 {
res = ethutil.NewValue(append([]interface{}{byte(self.code + offset)}, self.data.Slice()...)).Encode()
self.encoded = res
} else {
res = self.encoded
func encodePayload(params ...interface{}) []byte {
buf := new(bytes.Buffer)
for _, p := range params {
buf.Write(ethutil.Encode(p))
}
return
return buf.Bytes()
}
// Decode parse the RLP content of a message into
// the given value, which must be a pointer.
//
// For the decoding rules, please see package rlp.
func (msg Msg) Decode(val interface{}) error {
s := rlp.NewListStream(msg.Payload, uint64(msg.Size))
return s.Decode(val)
}
// Discard reads any remaining payload data into a black hole.
func (msg Msg) Discard() error {
_, err := io.Copy(ioutil.Discard, msg.Payload)
return err
}
type MsgReader interface {
ReadMsg() (Msg, error)
}
type MsgWriter interface {
// WriteMsg sends an existing message.
// The Payload reader of the message is consumed.
// Note that messages can be sent only once.
WriteMsg(Msg) error
// EncodeMsg writes an RLP-encoded message with the given
// code and data elements.
EncodeMsg(code uint64, data ...interface{}) error
}
// MsgReadWriter provides reading and writing of encoded messages.
type MsgReadWriter interface {
MsgReader
MsgWriter
}
var magicToken = []byte{34, 64, 8, 145}
func writeMsg(w io.Writer, msg Msg) error {
// TODO: handle case when Size + len(code) + len(listhdr) overflows uint32
code := ethutil.Encode(uint32(msg.Code))
listhdr := makeListHeader(msg.Size + uint32(len(code)))
payloadLen := uint32(len(listhdr)) + uint32(len(code)) + msg.Size
start := make([]byte, 8)
copy(start, magicToken)
binary.BigEndian.PutUint32(start[4:], payloadLen)
for _, b := range [][]byte{start, listhdr, code} {
if _, err := w.Write(b); err != nil {
return err
}
}
_, err := io.CopyN(w, msg.Payload, int64(msg.Size))
return err
}
func makeListHeader(length uint32) []byte {
if length < 56 {
return []byte{byte(length + 0xc0)}
}
enc := big.NewInt(int64(length)).Bytes()
lenb := byte(len(enc)) + 0xf7
return append([]byte{lenb}, enc...)
}
// readMsg reads a message header from r.
// It takes an rlp.ByteReader to ensure that the decoding doesn't buffer.
func readMsg(r rlp.ByteReader) (msg Msg, err error) {
// read magic and payload size
start := make([]byte, 8)
if _, err = io.ReadFull(r, start); err != nil {
return msg, newPeerError(errRead, "%v", err)
}
if !bytes.HasPrefix(start, magicToken) {
return msg, newPeerError(errMagicTokenMismatch, "got %x, want %x", start[:4], magicToken)
}
size := binary.BigEndian.Uint32(start[4:])
// decode start of RLP message to get the message code
posr := &postrack{r, 0}
s := rlp.NewStream(posr)
if _, err := s.List(); err != nil {
return msg, err
}
code, err := s.Uint()
if err != nil {
return msg, err
}
payloadsize := size - posr.p
return Msg{code, payloadsize, io.LimitReader(r, int64(payloadsize))}, nil
}
// postrack wraps an rlp.ByteReader with a position counter.
type postrack struct {
r rlp.ByteReader
p uint32
}
func (r *postrack) Read(buf []byte) (int, error) {
n, err := r.r.Read(buf)
r.p += uint32(n)
return n, err
}
func (r *postrack) ReadByte() (byte, error) {
b, err := r.r.ReadByte()
if err == nil {
r.p++
}
return b, err
}

@ -1,38 +1,70 @@
package p2p
import (
"bytes"
"io/ioutil"
"testing"
"github.com/ethereum/go-ethereum/ethutil"
)
func TestNewMsg(t *testing.T) {
msg, _ := NewMsg(3, 1, "000")
if msg.Code() != 3 {
t.Errorf("incorrect code %v", msg.Code())
msg := NewMsg(3, 1, "000")
if msg.Code != 3 {
t.Errorf("incorrect code %d, want %d", msg.Code)
}
data0 := msg.Data().Get(0).Uint()
data1 := string(msg.Data().Get(1).Bytes())
if data0 != 1 {
t.Errorf("incorrect data %v", data0)
if msg.Size != 5 {
t.Errorf("incorrect size %d, want %d", msg.Size, 5)
}
if data1 != "000" {
t.Errorf("incorrect data %v", data1)
pl, _ := ioutil.ReadAll(msg.Payload)
expect := []byte{0x01, 0x83, 0x30, 0x30, 0x30}
if !bytes.Equal(pl, expect) {
t.Errorf("incorrect payload content, got %x, want %x", pl, expect)
}
}
func TestEncodeDecodeMsg(t *testing.T) {
msg, _ := NewMsg(3, 1, "000")
encoded := msg.Encode(3)
msg, _ = NewMsgFromBytes(encoded)
msg.Decode(3)
if msg.Code() != 3 {
t.Errorf("incorrect code %v", msg.Code())
msg := NewMsg(3, 1, "000")
buf := new(bytes.Buffer)
if err := writeMsg(buf, msg); err != nil {
t.Fatalf("encodeMsg error: %v", err)
}
data0 := msg.Data().Get(0).Uint()
data1 := msg.Data().Get(1).Str()
if data0 != 1 {
t.Errorf("incorrect data %v", data0)
// t.Logf("encoded: %x", buf.Bytes())
decmsg, err := readMsg(buf)
if err != nil {
t.Fatalf("readMsg error: %v", err)
}
if data1 != "000" {
t.Errorf("incorrect data %v", data1)
if decmsg.Code != 3 {
t.Errorf("incorrect code %d, want %d", decmsg.Code, 3)
}
if decmsg.Size != 5 {
t.Errorf("incorrect size %d, want %d", decmsg.Size, 5)
}
var data struct {
I int
S string
}
if err := decmsg.Decode(&data); err != nil {
t.Fatalf("Decode error: %v", err)
}
if data.I != 1 {
t.Errorf("incorrect data.I: got %v, expected %d", data.I, 1)
}
if data.S != "000" {
t.Errorf("incorrect data.S: got %q, expected %q", data.S, "000")
}
}
func TestDecodeRealMsg(t *testing.T) {
data := ethutil.Hex2Bytes("2240089100000080f87e8002b5457468657265756d282b2b292f5065657220536572766572204f6e652f76302e372e382f52656c656173652f4c696e75782f672b2bc082765fb84086dd80b7aefd6a6d2e3b93f4f300a86bfb6ef7bdc97cb03f793db6bb")
msg, err := readMsg(bytes.NewReader(data))
if err != nil {
t.Fatalf("unexpected error: %v", err)
}
if msg.Code != 0 {
t.Errorf("incorrect code %d, want %d", msg.Code, 0)
}
}

@ -1,220 +0,0 @@
package p2p
import (
"fmt"
"sync"
"time"
)
const (
handlerTimeout = 1000
)
type Handlers map[string](func(p *Peer) Protocol)
type Messenger struct {
conn *Connection
peer *Peer
handlers Handlers
protocolLock sync.RWMutex
protocols []Protocol
offsets []MsgCode // offsets for adaptive message idss
protocolTable map[string]int
quit chan chan bool
err chan *PeerError
pulse chan bool
}
func NewMessenger(peer *Peer, conn *Connection, errchan chan *PeerError, handlers Handlers) *Messenger {
baseProtocol := NewBaseProtocol(peer)
return &Messenger{
conn: conn,
peer: peer,
offsets: []MsgCode{baseProtocol.Offset()},
handlers: handlers,
protocols: []Protocol{baseProtocol},
protocolTable: make(map[string]int),
err: errchan,
pulse: make(chan bool, 1),
quit: make(chan chan bool, 1),
}
}
func (self *Messenger) Start() {
self.conn.Open()
go self.messenger()
self.protocolLock.RLock()
defer self.protocolLock.RUnlock()
self.protocols[0].Start()
}
func (self *Messenger) Stop() {
// close pulse to stop ping pong monitoring
close(self.pulse)
self.protocolLock.RLock()
defer self.protocolLock.RUnlock()
for _, protocol := range self.protocols {
protocol.Stop() // could be parallel
}
q := make(chan bool)
self.quit <- q
<-q
self.conn.Close()
}
func (self *Messenger) messenger() {
in := self.conn.Read()
for {
select {
case payload, ok := <-in:
//dispatches message to the protocol asynchronously
if ok {
go self.handle(payload)
} else {
return
}
case q := <-self.quit:
q <- true
return
}
}
}
// handles each message by dispatching to the appropriate protocol
// using adaptive message codes
// this function is started as a separate go routine for each message
// it waits for the protocol response
// then encodes and sends outgoing messages to the connection's write channel
func (self *Messenger) handle(payload []byte) {
// send ping to heartbeat channel signalling time of last message
// select {
// case self.pulse <- true:
// default:
// }
self.pulse <- true
// initialise message from payload
msg, err := NewMsgFromBytes(payload)
if err != nil {
self.err <- NewPeerError(MiscError, " %v", err)
return
}
// retrieves protocol based on message Code
protocol, offset, peerErr := self.getProtocol(msg.Code())
if err != nil {
self.err <- peerErr
return
}
// reset message code based on adaptive offset
msg.Decode(offset)
// dispatches
response := make(chan *Msg)
go protocol.HandleIn(msg, response)
// protocol reponse timeout to prevent leaks
timer := time.After(handlerTimeout * time.Millisecond)
for {
select {
case outgoing, ok := <-response:
// we check if response channel is not closed
if ok {
self.conn.Write() <- outgoing.Encode(offset)
} else {
return
}
case <-timer:
return
}
}
}
// negotiated protocols
// stores offsets needed for adaptive message id scheme
// based on offsets set at handshake
// get the right protocol to handle the message
func (self *Messenger) getProtocol(code MsgCode) (Protocol, MsgCode, *PeerError) {
self.protocolLock.RLock()
defer self.protocolLock.RUnlock()
base := MsgCode(0)
for index, offset := range self.offsets {
if code < offset {
return self.protocols[index], base, nil
}
base = offset
}
return nil, MsgCode(0), NewPeerError(InvalidMsgCode, " %v", code)
}
func (self *Messenger) PingPong(timeout time.Duration, gracePeriod time.Duration, pingCallback func(), timeoutCallback func()) {
fmt.Printf("pingpong keepalive started at %v", time.Now())
timer := time.After(timeout)
pinged := false
for {
select {
case _, ok := <-self.pulse:
if ok {
pinged = false
timer = time.After(timeout)
} else {
// pulse is closed, stop monitoring
return
}
case <-timer:
if pinged {
fmt.Printf("timeout at %v", time.Now())
timeoutCallback()
return
} else {
fmt.Printf("pinged at %v", time.Now())
pingCallback()
timer = time.After(gracePeriod)
pinged = true
}
}
}
}
func (self *Messenger) AddProtocols(protocols []string) {
self.protocolLock.Lock()
defer self.protocolLock.Unlock()
i := len(self.offsets)
offset := self.offsets[i-1]
for _, name := range protocols {
protocolFunc, ok := self.handlers[name]
if ok {
protocol := protocolFunc(self.peer)
self.protocolTable[name] = i
i++
offset += protocol.Offset()
fmt.Println("offset ", name, offset)
self.offsets = append(self.offsets, offset)
self.protocols = append(self.protocols, protocol)
protocol.Start()
} else {
fmt.Println("no ", name)
// protocol not handled
}
}
}
func (self *Messenger) Write(protocol string, msg *Msg) error {
self.protocolLock.RLock()
defer self.protocolLock.RUnlock()
i := 0
offset := MsgCode(0)
if len(protocol) > 0 {
var ok bool
i, ok = self.protocolTable[protocol]
if !ok {
return fmt.Errorf("protocol %v not handled by peer", protocol)
}
offset = self.offsets[i-1]
}
handler := self.protocols[i]
// checking if protocol status/caps allows the message to be sent out
if handler.HandleOut(msg) {
self.conn.Write() <- msg.Encode(offset)
}
return nil
}

@ -1,147 +0,0 @@
package p2p
import (
// "fmt"
"bytes"
"testing"
"time"
"github.com/ethereum/go-ethereum/ethutil"
)
func setupMessenger(handlers Handlers) (*TestNetworkConnection, chan *PeerError, *Messenger) {
errchan := NewPeerErrorChannel()
addr := &TestAddr{"test:30303"}
net := NewTestNetworkConnection(addr)
conn := NewConnection(net, errchan)
mess := NewMessenger(nil, conn, errchan, handlers)
mess.Start()
return net, errchan, mess
}
type TestProtocol struct {
Msgs []*Msg
}
func (self *TestProtocol) Start() {
}
func (self *TestProtocol) Stop() {
}
func (self *TestProtocol) Offset() MsgCode {
return MsgCode(5)
}
func (self *TestProtocol) HandleIn(msg *Msg, response chan *Msg) {
self.Msgs = append(self.Msgs, msg)
close(response)
}
func (self *TestProtocol) HandleOut(msg *Msg) bool {
if msg.Code() > 3 {
return false
} else {
return true
}
}
func (self *TestProtocol) Name() string {
return "a"
}
func Packet(offset MsgCode, code MsgCode, params ...interface{}) []byte {
msg, _ := NewMsg(code, params...)
encoded := msg.Encode(offset)
packet := []byte{34, 64, 8, 145}
packet = append(packet, ethutil.NumberToBytes(uint32(len(encoded)), 32)...)
return append(packet, encoded...)
}
func TestRead(t *testing.T) {
handlers := make(Handlers)
testProtocol := &TestProtocol{Msgs: []*Msg{}}
handlers["a"] = func(p *Peer) Protocol { return testProtocol }
net, _, mess := setupMessenger(handlers)
mess.AddProtocols([]string{"a"})
defer mess.Stop()
wait := 1 * time.Millisecond
packet := Packet(16, 1, uint32(1), "000")
go net.In(0, packet)
time.Sleep(wait)
if len(testProtocol.Msgs) != 1 {
t.Errorf("msg not relayed to correct protocol")
} else {
if testProtocol.Msgs[0].Code() != 1 {
t.Errorf("incorrect msg code relayed to protocol")
}
}
}
func TestWrite(t *testing.T) {
handlers := make(Handlers)
testProtocol := &TestProtocol{Msgs: []*Msg{}}
handlers["a"] = func(p *Peer) Protocol { return testProtocol }
net, _, mess := setupMessenger(handlers)
mess.AddProtocols([]string{"a"})
defer mess.Stop()
wait := 1 * time.Millisecond
msg, _ := NewMsg(3, uint32(1), "000")
err := mess.Write("b", msg)
if err == nil {
t.Errorf("expect error for unknown protocol")
}
err = mess.Write("a", msg)
if err != nil {
t.Errorf("expect no error for known protocol: %v", err)
} else {
time.Sleep(wait)
if len(net.Out) != 1 {
t.Errorf("msg not written")
} else {
out := net.Out[0]
packet := Packet(16, 3, uint32(1), "000")
if bytes.Compare(out, packet) != 0 {
t.Errorf("incorrect packet %v", out)
}
}
}
}
func TestPulse(t *testing.T) {
net, _, mess := setupMessenger(make(Handlers))
defer mess.Stop()
ping := false
timeout := false
pingTimeout := 10 * time.Millisecond
gracePeriod := 200 * time.Millisecond
go mess.PingPong(pingTimeout, gracePeriod, func() { ping = true }, func() { timeout = true })
net.In(0, Packet(0, 1))
if ping {
t.Errorf("ping sent too early")
}
time.Sleep(pingTimeout + 100*time.Millisecond)
if !ping {
t.Errorf("no ping sent after timeout")
}
if timeout {
t.Errorf("timeout too early")
}
ping = false
net.In(0, Packet(0, 1))
time.Sleep(pingTimeout + 100*time.Millisecond)
if !ping {
t.Errorf("no ping sent after timeout")
}
if timeout {
t.Errorf("timeout too early")
}
ping = false
time.Sleep(gracePeriod)
if ping {
t.Errorf("ping called twice")
}
if !timeout {
t.Errorf("no timeout after grace period")
}
}

@ -3,6 +3,7 @@ package p2p
import (
"fmt"
"net"
"time"
natpmp "github.com/jackpal/go-nat-pmp"
)
@ -13,38 +14,37 @@ import (
// + Register for changes to the external address.
// + Re-register port mapping when router reboots.
// + A mechanism for keeping a port mapping registered.
// + Discover gateway address automatically.
type natPMPClient struct {
client *natpmp.Client
}
func NewNatPMP(gateway net.IP) (nat NAT) {
// PMP returns a NAT traverser that uses NAT-PMP. The provided gateway
// address should be the IP of your router.
func PMP(gateway net.IP) (nat NAT) {
return &natPMPClient{natpmp.NewClient(gateway)}
}
func (n *natPMPClient) GetExternalAddress() (addr net.IP, err error) {
response, err := n.client.GetExternalAddress()
if err != nil {
return
}
ip := response.ExternalIPAddress
addr = net.IPv4(ip[0], ip[1], ip[2], ip[3])
return
func (*natPMPClient) String() string {
return "NAT-PMP"
}
func (n *natPMPClient) AddPortMapping(protocol string, externalPort, internalPort int,
description string, timeout int) (mappedExternalPort int, err error) {
if timeout <= 0 {
err = fmt.Errorf("timeout must not be <= 0")
return
func (n *natPMPClient) GetExternalAddress() (net.IP, error) {
response, err := n.client.GetExternalAddress()
if err != nil {
return nil, err
}
return response.ExternalIPAddress[:], nil
}
func (n *natPMPClient) AddPortMapping(protocol string, extport, intport int, name string, lifetime time.Duration) error {
if lifetime <= 0 {
return fmt.Errorf("lifetime must not be <= 0")
}
// Note order of port arguments is switched between our AddPortMapping and the client's AddPortMapping.
response, err := n.client.AddPortMapping(protocol, internalPort, externalPort, timeout)
if err != nil {
return
}
mappedExternalPort = int(response.MappedExternalPort)
return
_, err := n.client.AddPortMapping(protocol, intport, extport, int(lifetime/time.Second))
return err
}
func (n *natPMPClient) DeletePortMapping(protocol string, externalPort, internalPort int) (err error) {

@ -7,6 +7,7 @@ import (
"bytes"
"encoding/xml"
"errors"
"fmt"
"net"
"net/http"
"os"
@ -15,28 +16,46 @@ import (
"time"
)
const (
upnpDiscoverAttempts = 3
upnpDiscoverTimeout = 5 * time.Second
)
// UPNP returns a NAT port mapper that uses UPnP. It will attempt to
// discover the address of your router using UDP broadcasts.
func UPNP() NAT {
return &upnpNAT{}
}
type upnpNAT struct {
serviceURL string
ourIP string
}
func upnpDiscover(attempts int) (nat NAT, err error) {
func (n *upnpNAT) String() string {
return "UPNP"
}
func (n *upnpNAT) discover() error {
if n.serviceURL != "" {
// already discovered
return nil
}
ssdp, err := net.ResolveUDPAddr("udp4", "239.255.255.250:1900")
if err != nil {
return
return err
}
// TODO: try on all network interfaces simultaneously.
// Broadcasting on 0.0.0.0 could select a random interface
// to send on (platform specific).
conn, err := net.ListenPacket("udp4", ":0")
if err != nil {
return
}
socket := conn.(*net.UDPConn)
defer socket.Close()
err = socket.SetDeadline(time.Now().Add(10 * time.Second))
if err != nil {
return
return err
}
defer conn.Close()
conn.SetDeadline(time.Now().Add(10 * time.Second))
st := "ST: urn:schemas-upnp-org:device:InternetGatewayDevice:1\r\n"
buf := bytes.NewBufferString(
"M-SEARCH * HTTP/1.1\r\n" +
@ -46,19 +65,16 @@ func upnpDiscover(attempts int) (nat NAT, err error) {
"MX: 2\r\n\r\n")
message := buf.Bytes()
answerBytes := make([]byte, 1024)
for i := 0; i < attempts; i++ {
_, err = socket.WriteToUDP(message, ssdp)
for i := 0; i < upnpDiscoverAttempts; i++ {
_, err = conn.WriteTo(message, ssdp)
if err != nil {
return
return err
}
var n int
n, _, err = socket.ReadFromUDP(answerBytes)
nn, _, err := conn.ReadFrom(answerBytes)
if err != nil {
continue
// socket.Close()
// return
}
answer := string(answerBytes[0:n])
answer := string(answerBytes[0:nn])
if strings.Index(answer, "\r\n"+st) < 0 {
continue
}
@ -79,17 +95,81 @@ func upnpDiscover(attempts int) (nat NAT, err error) {
var serviceURL string
serviceURL, err = getServiceURL(locURL)
if err != nil {
return
return err
}
var ourIP string
ourIP, err = getOurIP()
if err != nil {
return
return err
}
nat = &upnpNAT{serviceURL: serviceURL, ourIP: ourIP}
n.serviceURL = serviceURL
n.ourIP = ourIP
return nil
}
return errors.New("UPnP port discovery failed.")
}
func (n *upnpNAT) GetExternalAddress() (addr net.IP, err error) {
if err := n.discover(); err != nil {
return nil, err
}
info, err := n.getStatusInfo()
return net.ParseIP(info.externalIpAddress), err
}
func (n *upnpNAT) AddPortMapping(protocol string, extport, intport int, description string, lifetime time.Duration) error {
if err := n.discover(); err != nil {
return err
}
// A single concatenation would break ARM compilation.
message := "<u:AddPortMapping xmlns:u=\"urn:schemas-upnp-org:service:WANIPConnection:1\">\r\n" +
"<NewRemoteHost></NewRemoteHost><NewExternalPort>" + strconv.Itoa(extport)
message += "</NewExternalPort><NewProtocol>" + protocol + "</NewProtocol>"
message += "<NewInternalPort>" + strconv.Itoa(extport) + "</NewInternalPort>" +
"<NewInternalClient>" + n.ourIP + "</NewInternalClient>" +
"<NewEnabled>1</NewEnabled><NewPortMappingDescription>"
message += description +
"</NewPortMappingDescription><NewLeaseDuration>" + fmt.Sprint(lifetime/time.Second) +
"</NewLeaseDuration></u:AddPortMapping>"
// TODO: check response to see if the port was forwarded
_, err := soapRequest(n.serviceURL, "AddPortMapping", message)
return err
}
func (n *upnpNAT) DeletePortMapping(protocol string, externalPort, internalPort int) error {
if err := n.discover(); err != nil {
return err
}
message := "<u:DeletePortMapping xmlns:u=\"urn:schemas-upnp-org:service:WANIPConnection:1\">\r\n" +
"<NewRemoteHost></NewRemoteHost><NewExternalPort>" + strconv.Itoa(externalPort) +
"</NewExternalPort><NewProtocol>" + protocol + "</NewProtocol>" +
"</u:DeletePortMapping>"
// TODO: check response to see if the port was deleted
_, err := soapRequest(n.serviceURL, "DeletePortMapping", message)
return err
}
type statusInfo struct {
externalIpAddress string
}
func (n *upnpNAT) getStatusInfo() (info statusInfo, err error) {
message := "<u:GetStatusInfo xmlns:u=\"urn:schemas-upnp-org:service:WANIPConnection:1\">\r\n" +
"</u:GetStatusInfo>"
var response *http.Response
response, err = soapRequest(n.serviceURL, "GetStatusInfo", message)
if err != nil {
return
}
err = errors.New("UPnP port discovery failed.")
// TODO: Write a soap reply parser. It has to eat the Body and envelope tags...
response.Body.Close()
return
}
@ -259,77 +339,3 @@ func soapRequest(url, function, message string) (r *http.Response, err error) {
}
return
}
type statusInfo struct {
externalIpAddress string
}
func (n *upnpNAT) getStatusInfo() (info statusInfo, err error) {
message := "<u:GetStatusInfo xmlns:u=\"urn:schemas-upnp-org:service:WANIPConnection:1\">\r\n" +
"</u:GetStatusInfo>"
var response *http.Response
response, err = soapRequest(n.serviceURL, "GetStatusInfo", message)
if err != nil {
return
}
// TODO: Write a soap reply parser. It has to eat the Body and envelope tags...
response.Body.Close()
return
}
func (n *upnpNAT) GetExternalAddress() (addr net.IP, err error) {
info, err := n.getStatusInfo()
if err != nil {
return
}
addr = net.ParseIP(info.externalIpAddress)
return
}
func (n *upnpNAT) AddPortMapping(protocol string, externalPort, internalPort int, description string, timeout int) (mappedExternalPort int, err error) {
// A single concatenation would break ARM compilation.
message := "<u:AddPortMapping xmlns:u=\"urn:schemas-upnp-org:service:WANIPConnection:1\">\r\n" +
"<NewRemoteHost></NewRemoteHost><NewExternalPort>" + strconv.Itoa(externalPort)
message += "</NewExternalPort><NewProtocol>" + protocol + "</NewProtocol>"
message += "<NewInternalPort>" + strconv.Itoa(internalPort) + "</NewInternalPort>" +
"<NewInternalClient>" + n.ourIP + "</NewInternalClient>" +
"<NewEnabled>1</NewEnabled><NewPortMappingDescription>"
message += description +
"</NewPortMappingDescription><NewLeaseDuration>" + strconv.Itoa(timeout) +
"</NewLeaseDuration></u:AddPortMapping>"
var response *http.Response
response, err = soapRequest(n.serviceURL, "AddPortMapping", message)
if err != nil {
return
}
// TODO: check response to see if the port was forwarded
// log.Println(message, response)
mappedExternalPort = externalPort
_ = response
return
}
func (n *upnpNAT) DeletePortMapping(protocol string, externalPort, internalPort int) (err error) {
message := "<u:DeletePortMapping xmlns:u=\"urn:schemas-upnp-org:service:WANIPConnection:1\">\r\n" +
"<NewRemoteHost></NewRemoteHost><NewExternalPort>" + strconv.Itoa(externalPort) +
"</NewExternalPort><NewProtocol>" + protocol + "</NewProtocol>" +
"</u:DeletePortMapping>"
var response *http.Response
response, err = soapRequest(n.serviceURL, "DeletePortMapping", message)
if err != nil {
return
}
// TODO: check response to see if the port was deleted
// log.Println(message, response)
_ = response
return
}

@ -1,196 +0,0 @@
package p2p
import (
"fmt"
"math/rand"
"net"
"strconv"
"time"
)
const (
DialerTimeout = 180 //seconds
KeepAlivePeriod = 60 //minutes
portMappingUpdateInterval = 900 // seconds = 15 mins
upnpDiscoverAttempts = 3
)
// Dialer is not an interface in net, so we define one
// *net.Dialer conforms to this
type Dialer interface {
Dial(network, address string) (net.Conn, error)
}
type Network interface {
Start() error
Listener(net.Addr) (net.Listener, error)
Dialer(net.Addr) (Dialer, error)
NewAddr(string, int) (addr net.Addr, err error)
ParseAddr(string) (addr net.Addr, err error)
}
type NAT interface {
GetExternalAddress() (addr net.IP, err error)
AddPortMapping(protocol string, externalPort, internalPort int, description string, timeout int) (mappedExternalPort int, err error)
DeletePortMapping(protocol string, externalPort, internalPort int) (err error)
}
type TCPNetwork struct {
nat NAT
natType NATType
quit chan chan bool
ports chan string
}
type NATType int
const (
NONE = iota
UPNP
PMP
)
const (
portMappingTimeout = 1200 // 20 mins
)
func NewTCPNetwork(natType NATType) (net *TCPNetwork) {
return &TCPNetwork{
natType: natType,
ports: make(chan string),
}
}
func (self *TCPNetwork) Dialer(addr net.Addr) (Dialer, error) {
return &net.Dialer{
Timeout: DialerTimeout * time.Second,
// KeepAlive: KeepAlivePeriod * time.Minute,
LocalAddr: addr,
}, nil
}
func (self *TCPNetwork) Listener(addr net.Addr) (net.Listener, error) {
if self.natType == UPNP {
_, port, _ := net.SplitHostPort(addr.String())
if self.quit == nil {
self.quit = make(chan chan bool)
go self.updatePortMappings()
}
self.ports <- port
}
return net.Listen(addr.Network(), addr.String())
}
func (self *TCPNetwork) Start() (err error) {
switch self.natType {
case NONE:
case UPNP:
nat, uerr := upnpDiscover(upnpDiscoverAttempts)
if uerr != nil {
err = fmt.Errorf("UPNP failed: ", uerr)
} else {
self.nat = nat
}
case PMP:
err = fmt.Errorf("PMP not implemented")
default:
err = fmt.Errorf("Invalid NAT type: %v", self.natType)
}
return
}
func (self *TCPNetwork) Stop() {
q := make(chan bool)
self.quit <- q
<-q
}
func (self *TCPNetwork) addPortMapping(lport int) (err error) {
_, err = self.nat.AddPortMapping("TCP", lport, lport, "p2p listen port", portMappingTimeout)
if err != nil {
logger.Errorf("unable to add port mapping on %v: %v", lport, err)
} else {
logger.Debugf("succesfully added port mapping on %v", lport)
}
return
}
func (self *TCPNetwork) updatePortMappings() {
timer := time.NewTimer(portMappingUpdateInterval * time.Second)
lports := []int{}
out:
for {
select {
case port := <-self.ports:
int64lport, _ := strconv.ParseInt(port, 10, 16)
lport := int(int64lport)
if err := self.addPortMapping(lport); err != nil {
lports = append(lports, lport)
}
case <-timer.C:
for lport := range lports {
if err := self.addPortMapping(lport); err != nil {
}
}
case errc := <-self.quit:
errc <- true
break out
}
}
timer.Stop()
for lport := range lports {
if err := self.nat.DeletePortMapping("TCP", lport, lport); err != nil {
logger.Debugf("unable to remove port mapping on %v: %v", lport, err)
} else {
logger.Debugf("succesfully removed port mapping on %v", lport)
}
}
}
func (self *TCPNetwork) NewAddr(host string, port int) (net.Addr, error) {
ip, err := self.lookupIP(host)
if err == nil {
return &net.TCPAddr{
IP: ip,
Port: port,
}, nil
}
return nil, err
}
func (self *TCPNetwork) ParseAddr(address string) (net.Addr, error) {
host, port, err := net.SplitHostPort(address)
if err == nil {
iport, _ := strconv.Atoi(port)
addr, e := self.NewAddr(host, iport)
return addr, e
}
return nil, err
}
func (*TCPNetwork) lookupIP(host string) (ip net.IP, err error) {
if ip = net.ParseIP(host); ip != nil {
return
}
var ips []net.IP
ips, err = net.LookupIP(host)
if err != nil {
logger.Warnln(err)
return
}
if len(ips) == 0 {
err = fmt.Errorf("No IP addresses available for %v", host)
logger.Warnln(err)
return
}
if len(ips) > 1 {
// Pick a random IP address, simulating round-robin DNS.
rand.Seed(time.Now().UTC().UnixNano())
ip = ips[rand.Intn(len(ips))]
} else {
ip = ips[0]
}
return
}

@ -1,83 +1,455 @@
package p2p
import (
"bufio"
"bytes"
"fmt"
"io"
"io/ioutil"
"net"
"strconv"
"sort"
"sync"
"time"
"github.com/ethereum/go-ethereum/event"
"github.com/ethereum/go-ethereum/logger"
)
type Peer struct {
// quit chan chan bool
Inbound bool // inbound (via listener) or outbound (via dialout)
Address net.Addr
Host []byte
Port uint16
Pubkey []byte
Id string
Caps []string
peerErrorChan chan *PeerError
messenger *Messenger
peerErrorHandler *PeerErrorHandler
server *Server
// peerAddr is the structure of a peer list element.
// It is also a valid net.Addr.
type peerAddr struct {
IP net.IP
Port uint64
Pubkey []byte // optional
}
func (self *Peer) Messenger() *Messenger {
return self.messenger
}
func (self *Peer) PeerErrorChan() chan *PeerError {
return self.peerErrorChan
}
func (self *Peer) Server() *Server {
return self.server
}
func NewPeer(conn net.Conn, address net.Addr, inbound bool, server *Server) *Peer {
peerErrorChan := NewPeerErrorChannel()
host, port, _ := net.SplitHostPort(address.String())
intport, _ := strconv.Atoi(port)
peer := &Peer{
Inbound: inbound,
Address: address,
Port: uint16(intport),
Host: net.ParseIP(host),
peerErrorChan: peerErrorChan,
server: server,
func newPeerAddr(addr net.Addr, pubkey []byte) *peerAddr {
n := addr.Network()
if n != "tcp" && n != "tcp4" && n != "tcp6" {
// for testing with non-TCP
return &peerAddr{net.ParseIP("127.0.0.1"), 30303, pubkey}
}
connection := NewConnection(conn, peerErrorChan)
peer.messenger = NewMessenger(peer, connection, peerErrorChan, server.Handlers())
peer.peerErrorHandler = NewPeerErrorHandler(address, server.PeerDisconnect(), peerErrorChan, server.Blacklist())
ta := addr.(*net.TCPAddr)
return &peerAddr{ta.IP, uint64(ta.Port), pubkey}
}
func (d peerAddr) Network() string {
if d.IP.To4() != nil {
return "tcp4"
} else {
return "tcp6"
}
}
func (d peerAddr) String() string {
return fmt.Sprintf("%v:%d", d.IP, d.Port)
}
func (d peerAddr) RlpData() interface{} {
return []interface{}{d.IP, d.Port, d.Pubkey}
}
// Peer represents a remote peer.
type Peer struct {
// Peers have all the log methods.
// Use them to display messages related to the peer.
*logger.Logger
infolock sync.Mutex
identity ClientIdentity
caps []Cap
listenAddr *peerAddr // what remote peer is listening on
dialAddr *peerAddr // non-nil if dialing
// The mutex protects the connection
// so only one protocol can write at a time.
writeMu sync.Mutex
conn net.Conn
bufconn *bufio.ReadWriter
// These fields maintain the running protocols.
protocols []Protocol
runBaseProtocol bool // for testing
runlock sync.RWMutex // protects running
running map[string]*proto
protoWG sync.WaitGroup
protoErr chan error
closed chan struct{}
disc chan DiscReason
activity event.TypeMux // for activity events
slot int // index into Server peer list
// These fields are kept so base protocol can access them.
// TODO: this should be one or more interfaces
ourID ClientIdentity // client id of the Server
ourListenAddr *peerAddr // listen addr of Server, nil if not listening
newPeerAddr chan<- *peerAddr // tell server about received peers
otherPeers func() []*Peer // should return the list of all peers
pubkeyHook func(*peerAddr) error // called at end of handshake to validate pubkey
}
// NewPeer returns a peer for testing purposes.
func NewPeer(id ClientIdentity, caps []Cap) *Peer {
conn, _ := net.Pipe()
peer := newPeer(conn, nil, nil)
peer.setHandshakeInfo(id, nil, caps)
close(peer.closed)
return peer
}
func (self *Peer) String() string {
var kind string
if self.Inbound {
kind = "inbound"
} else {
func newServerPeer(server *Server, conn net.Conn, dialAddr *peerAddr) *Peer {
p := newPeer(conn, server.Protocols, dialAddr)
p.ourID = server.Identity
p.newPeerAddr = server.peerConnect
p.otherPeers = server.Peers
p.pubkeyHook = server.verifyPeer
p.runBaseProtocol = true
// laddr can be updated concurrently by NAT traversal.
// newServerPeer must be called with the server lock held.
if server.laddr != nil {
p.ourListenAddr = newPeerAddr(server.laddr, server.Identity.Pubkey())
}
return p
}
func newPeer(conn net.Conn, protocols []Protocol, dialAddr *peerAddr) *Peer {
p := &Peer{
Logger: logger.NewLogger("P2P " + conn.RemoteAddr().String()),
conn: conn,
dialAddr: dialAddr,
bufconn: bufio.NewReadWriter(bufio.NewReader(conn), bufio.NewWriter(conn)),
protocols: protocols,
running: make(map[string]*proto),
disc: make(chan DiscReason),
protoErr: make(chan error),
closed: make(chan struct{}),
}
return p
}
// Identity returns the client identity of the remote peer. The
// identity can be nil if the peer has not yet completed the
// handshake.
func (p *Peer) Identity() ClientIdentity {
p.infolock.Lock()
defer p.infolock.Unlock()
return p.identity
}
// Caps returns the capabilities (supported subprotocols) of the remote peer.
func (p *Peer) Caps() []Cap {
p.infolock.Lock()
defer p.infolock.Unlock()
return p.caps
}
func (p *Peer) setHandshakeInfo(id ClientIdentity, laddr *peerAddr, caps []Cap) {
p.infolock.Lock()
p.identity = id
p.listenAddr = laddr
p.caps = caps
p.infolock.Unlock()
}
// RemoteAddr returns the remote address of the network connection.
func (p *Peer) RemoteAddr() net.Addr {
return p.conn.RemoteAddr()
}
// LocalAddr returns the local address of the network connection.
func (p *Peer) LocalAddr() net.Addr {
return p.conn.LocalAddr()
}
// Disconnect terminates the peer connection with the given reason.
// It returns immediately and does not wait until the connection is closed.
func (p *Peer) Disconnect(reason DiscReason) {
select {
case p.disc <- reason:
case <-p.closed:
}
}
// String implements fmt.Stringer.
func (p *Peer) String() string {
kind := "inbound"
p.infolock.Lock()
if p.dialAddr != nil {
kind = "outbound"
}
return fmt.Sprintf("%v:%v (%s) v%v %v", self.Host, self.Port, kind, self.Id, self.Caps)
p.infolock.Unlock()
return fmt.Sprintf("Peer(%p %v %s)", p, p.conn.RemoteAddr(), kind)
}
func (self *Peer) Write(protocol string, msg *Msg) error {
return self.messenger.Write(protocol, msg)
const (
// maximum amount of time allowed for reading a message
msgReadTimeout = 5 * time.Second
// maximum amount of time allowed for writing a message
msgWriteTimeout = 5 * time.Second
// messages smaller than this many bytes will be read at
// once before passing them to a protocol.
wholePayloadSize = 64 * 1024
)
var (
inactivityTimeout = 2 * time.Second
disconnectGracePeriod = 2 * time.Second
)
func (p *Peer) loop() (reason DiscReason, err error) {
defer p.activity.Stop()
defer p.closeProtocols()
defer close(p.closed)
defer p.conn.Close()
// read loop
readMsg := make(chan Msg)
readErr := make(chan error)
readNext := make(chan bool, 1)
protoDone := make(chan struct{}, 1)
go p.readLoop(readMsg, readErr, readNext)
readNext <- true
if p.runBaseProtocol {
p.startBaseProtocol()
}
loop:
for {
select {
case msg := <-readMsg:
// a new message has arrived.
var wait bool
if wait, err = p.dispatch(msg, protoDone); err != nil {
p.Errorf("msg dispatch error: %v\n", err)
reason = discReasonForError(err)
break loop
}
if !wait {
// Msg has already been read completely, continue with next message.
readNext <- true
}
p.activity.Post(time.Now())
case <-protoDone:
// protocol has consumed the message payload,
// we can continue reading from the socket.
readNext <- true
case err := <-readErr:
// read failed. there is no need to run the
// polite disconnect sequence because the connection
// is probably dead anyway.
// TODO: handle write errors as well
return DiscNetworkError, err
case err = <-p.protoErr:
reason = discReasonForError(err)
break loop
case reason = <-p.disc:
break loop
}
}
// wait for read loop to return.
close(readNext)
<-readErr
// tell the remote end to disconnect
done := make(chan struct{})
go func() {
p.conn.SetDeadline(time.Now().Add(disconnectGracePeriod))
p.writeMsg(NewMsg(discMsg, reason), disconnectGracePeriod)
io.Copy(ioutil.Discard, p.conn)
close(done)
}()
select {
case <-done:
case <-time.After(disconnectGracePeriod):
}
return reason, err
}
func (self *Peer) Start() {
self.peerErrorHandler.Start()
self.messenger.Start()
func (p *Peer) readLoop(msgc chan<- Msg, errc chan<- error, unblock <-chan bool) {
for _ = range unblock {
p.conn.SetReadDeadline(time.Now().Add(msgReadTimeout))
if msg, err := readMsg(p.bufconn); err != nil {
errc <- err
} else {
msgc <- msg
}
}
close(errc)
}
func (self *Peer) Stop() {
self.peerErrorHandler.Stop()
self.messenger.Stop()
// q := make(chan bool)
// self.quit <- q
// <-q
func (p *Peer) dispatch(msg Msg, protoDone chan struct{}) (wait bool, err error) {
proto, err := p.getProto(msg.Code)
if err != nil {
return false, err
}
if msg.Size <= wholePayloadSize {
// optimization: msg is small enough, read all
// of it and move on to the next message
buf, err := ioutil.ReadAll(msg.Payload)
if err != nil {
return false, err
}
msg.Payload = bytes.NewReader(buf)
proto.in <- msg
} else {
wait = true
pr := &eofSignal{msg.Payload, protoDone}
msg.Payload = pr
proto.in <- msg
}
return wait, nil
}
func (p *Peer) Encode() []interface{} {
return []interface{}{p.Host, p.Port, p.Pubkey}
func (p *Peer) startBaseProtocol() {
p.runlock.Lock()
defer p.runlock.Unlock()
p.running[""] = p.startProto(0, Protocol{
Length: baseProtocolLength,
Run: runBaseProtocol,
})
}
// startProtocols starts matching named subprotocols.
func (p *Peer) startSubprotocols(caps []Cap) {
sort.Sort(capsByName(caps))
p.runlock.Lock()
defer p.runlock.Unlock()
offset := baseProtocolLength
outer:
for _, cap := range caps {
for _, proto := range p.protocols {
if proto.Name == cap.Name &&
proto.Version == cap.Version &&
p.running[cap.Name] == nil {
p.running[cap.Name] = p.startProto(offset, proto)
offset += proto.Length
continue outer
}
}
}
}
func (p *Peer) startProto(offset uint64, impl Protocol) *proto {
rw := &proto{
in: make(chan Msg),
offset: offset,
maxcode: impl.Length,
peer: p,
}
p.protoWG.Add(1)
go func() {
err := impl.Run(p, rw)
if err == nil {
p.Infof("protocol %q returned", impl.Name)
err = newPeerError(errMisc, "protocol returned")
} else {
p.Errorf("protocol %q error: %v\n", impl.Name, err)
}
select {
case p.protoErr <- err:
case <-p.closed:
}
p.protoWG.Done()
}()
return rw
}
// getProto finds the protocol responsible for handling
// the given message code.
func (p *Peer) getProto(code uint64) (*proto, error) {
p.runlock.RLock()
defer p.runlock.RUnlock()
for _, proto := range p.running {
if code >= proto.offset && code < proto.offset+proto.maxcode {
return proto, nil
}
}
return nil, newPeerError(errInvalidMsgCode, "%d", code)
}
func (p *Peer) closeProtocols() {
p.runlock.RLock()
for _, p := range p.running {
close(p.in)
}
p.runlock.RUnlock()
p.protoWG.Wait()
}
// writeProtoMsg sends the given message on behalf of the given named protocol.
func (p *Peer) writeProtoMsg(protoName string, msg Msg) error {
p.runlock.RLock()
proto, ok := p.running[protoName]
p.runlock.RUnlock()
if !ok {
return fmt.Errorf("protocol %s not handled by peer", protoName)
}
if msg.Code >= proto.maxcode {
return newPeerError(errInvalidMsgCode, "code %x is out of range for protocol %q", msg.Code, protoName)
}
msg.Code += proto.offset
return p.writeMsg(msg, msgWriteTimeout)
}
// writeMsg writes a message to the connection.
func (p *Peer) writeMsg(msg Msg, timeout time.Duration) error {
p.writeMu.Lock()
defer p.writeMu.Unlock()
p.conn.SetWriteDeadline(time.Now().Add(timeout))
if err := writeMsg(p.bufconn, msg); err != nil {
return newPeerError(errWrite, "%v", err)
}
return p.bufconn.Flush()
}
type proto struct {
name string
in chan Msg
maxcode, offset uint64
peer *Peer
}
func (rw *proto) WriteMsg(msg Msg) error {
if msg.Code >= rw.maxcode {
return newPeerError(errInvalidMsgCode, "not handled")
}
msg.Code += rw.offset
return rw.peer.writeMsg(msg, msgWriteTimeout)
}
func (rw *proto) EncodeMsg(code uint64, data ...interface{}) error {
return rw.WriteMsg(NewMsg(code, data))
}
func (rw *proto) ReadMsg() (Msg, error) {
msg, ok := <-rw.in
if !ok {
return msg, io.EOF
}
msg.Code -= rw.offset
return msg, nil
}
// eofSignal wraps a reader with eof signaling.
// the eof channel is closed when the wrapped reader
// reaches EOF.
type eofSignal struct {
wrapped io.Reader
eof chan<- struct{}
}
func (r *eofSignal) Read(buf []byte) (int, error) {
n, err := r.wrapped.Read(buf)
if err != nil {
r.eof <- struct{}{} // tell Peer that msg has been consumed
}
return n, err
}

@ -4,73 +4,121 @@ import (
"fmt"
)
type ErrorCode int
const errorChanCapacity = 10
const (
PacketTooShort = iota
PayloadTooShort
MagicTokenMismatch
EmptyPayload
ReadError
WriteError
MiscError
InvalidMsgCode
InvalidMsg
P2PVersionMismatch
PubkeyMissing
PubkeyInvalid
PubkeyForbidden
ProtocolBreach
PortMismatch
PingTimeout
InvalidGenesis
InvalidNetworkId
InvalidProtocolVersion
errMagicTokenMismatch = iota
errRead
errWrite
errMisc
errInvalidMsgCode
errInvalidMsg
errP2PVersionMismatch
errPubkeyMissing
errPubkeyInvalid
errPubkeyForbidden
errProtocolBreach
errPingTimeout
errInvalidNetworkId
errInvalidProtocolVersion
)
var errorToString = map[ErrorCode]string{
PacketTooShort: "Packet too short",
PayloadTooShort: "Payload too short",
MagicTokenMismatch: "Magic token mismatch",
EmptyPayload: "Empty payload",
ReadError: "Read error",
WriteError: "Write error",
MiscError: "Misc error",
InvalidMsgCode: "Invalid message code",
InvalidMsg: "Invalid message",
P2PVersionMismatch: "P2P Version Mismatch",
PubkeyMissing: "Public key missing",
PubkeyInvalid: "Public key invalid",
PubkeyForbidden: "Public key forbidden",
ProtocolBreach: "Protocol Breach",
PortMismatch: "Port mismatch",
PingTimeout: "Ping timeout",
InvalidGenesis: "Invalid genesis block",
InvalidNetworkId: "Invalid network id",
InvalidProtocolVersion: "Invalid protocol version",
var errorToString = map[int]string{
errMagicTokenMismatch: "Magic token mismatch",
errRead: "Read error",
errWrite: "Write error",
errMisc: "Misc error",
errInvalidMsgCode: "Invalid message code",
errInvalidMsg: "Invalid message",
errP2PVersionMismatch: "P2P Version Mismatch",
errPubkeyMissing: "Public key missing",
errPubkeyInvalid: "Public key invalid",
errPubkeyForbidden: "Public key forbidden",
errProtocolBreach: "Protocol Breach",
errPingTimeout: "Ping timeout",
errInvalidNetworkId: "Invalid network id",
errInvalidProtocolVersion: "Invalid protocol version",
}
type PeerError struct {
Code ErrorCode
type peerError struct {
Code int
message string
}
func NewPeerError(code ErrorCode, format string, v ...interface{}) *PeerError {
func newPeerError(code int, format string, v ...interface{}) *peerError {
desc, ok := errorToString[code]
if !ok {
panic("invalid error code")
}
format = desc + ": " + format
message := fmt.Sprintf(format, v...)
return &PeerError{code, message}
err := &peerError{code, desc}
if format != "" {
err.message += ": " + fmt.Sprintf(format, v...)
}
return err
}
func (self *PeerError) Error() string {
func (self *peerError) Error() string {
return self.message
}
func NewPeerErrorChannel() chan *PeerError {
return make(chan *PeerError, errorChanCapacity)
type DiscReason byte
const (
DiscRequested DiscReason = 0x00
DiscNetworkError = 0x01
DiscProtocolError = 0x02
DiscUselessPeer = 0x03
DiscTooManyPeers = 0x04
DiscAlreadyConnected = 0x05
DiscIncompatibleVersion = 0x06
DiscInvalidIdentity = 0x07
DiscQuitting = 0x08
DiscUnexpectedIdentity = 0x09
DiscSelf = 0x0a
DiscReadTimeout = 0x0b
DiscSubprotocolError = 0x10
)
var discReasonToString = [DiscSubprotocolError + 1]string{
DiscRequested: "Disconnect requested",
DiscNetworkError: "Network error",
DiscProtocolError: "Breach of protocol",
DiscUselessPeer: "Useless peer",
DiscTooManyPeers: "Too many peers",
DiscAlreadyConnected: "Already connected",
DiscIncompatibleVersion: "Incompatible P2P protocol version",
DiscInvalidIdentity: "Invalid node identity",
DiscQuitting: "Client quitting",
DiscUnexpectedIdentity: "Unexpected identity",
DiscSelf: "Connected to self",
DiscReadTimeout: "Read timeout",
DiscSubprotocolError: "Subprotocol error",
}
func (d DiscReason) String() string {
if len(discReasonToString) < int(d) {
return fmt.Sprintf("Unknown Reason(%d)", d)
}
return discReasonToString[d]
}
func discReasonForError(err error) DiscReason {
peerError, ok := err.(*peerError)
if !ok {
return DiscSubprotocolError
}
switch peerError.Code {
case errP2PVersionMismatch:
return DiscIncompatibleVersion
case errPubkeyMissing, errPubkeyInvalid:
return DiscInvalidIdentity
case errPubkeyForbidden:
return DiscUselessPeer
case errInvalidMsgCode, errMagicTokenMismatch, errProtocolBreach:
return DiscProtocolError
case errPingTimeout:
return DiscReadTimeout
case errRead, errWrite, errMisc:
return DiscNetworkError
default:
return DiscSubprotocolError
}
}

@ -1,101 +0,0 @@
package p2p
import (
"net"
)
const (
severityThreshold = 10
)
type DisconnectRequest struct {
addr net.Addr
reason DiscReason
}
type PeerErrorHandler struct {
quit chan chan bool
address net.Addr
peerDisconnect chan DisconnectRequest
severity int
peerErrorChan chan *PeerError
blacklist Blacklist
}
func NewPeerErrorHandler(address net.Addr, peerDisconnect chan DisconnectRequest, peerErrorChan chan *PeerError, blacklist Blacklist) *PeerErrorHandler {
return &PeerErrorHandler{
quit: make(chan chan bool),
address: address,
peerDisconnect: peerDisconnect,
peerErrorChan: peerErrorChan,
blacklist: blacklist,
}
}
func (self *PeerErrorHandler) Start() {
go self.listen()
}
func (self *PeerErrorHandler) Stop() {
q := make(chan bool)
self.quit <- q
<-q
}
func (self *PeerErrorHandler) listen() {
for {
select {
case peerError, ok := <-self.peerErrorChan:
if ok {
logger.Debugf("error %v\n", peerError)
go self.handle(peerError)
} else {
return
}
case q := <-self.quit:
q <- true
return
}
}
}
func (self *PeerErrorHandler) handle(peerError *PeerError) {
reason := DiscReason(' ')
switch peerError.Code {
case P2PVersionMismatch:
reason = DiscIncompatibleVersion
case PubkeyMissing, PubkeyInvalid:
reason = DiscInvalidIdentity
case PubkeyForbidden:
reason = DiscUselessPeer
case InvalidMsgCode, PacketTooShort, PayloadTooShort, MagicTokenMismatch, EmptyPayload, ProtocolBreach:
reason = DiscProtocolError
case PingTimeout:
reason = DiscReadTimeout
case WriteError, MiscError:
reason = DiscNetworkError
case InvalidGenesis, InvalidNetworkId, InvalidProtocolVersion:
reason = DiscSubprotocolError
default:
self.severity += self.getSeverity(peerError)
}
if self.severity >= severityThreshold {
reason = DiscSubprotocolError
}
if reason != DiscReason(' ') {
self.peerDisconnect <- DisconnectRequest{
addr: self.address,
reason: reason,
}
}
}
func (self *PeerErrorHandler) getSeverity(peerError *PeerError) int {
switch peerError.Code {
case ReadError:
return 4 //tolerate 3 :)
default:
return 1
}
}

@ -1,34 +0,0 @@
package p2p
import (
// "fmt"
"net"
"testing"
"time"
)
func TestPeerErrorHandler(t *testing.T) {
address := &net.TCPAddr{IP: net.IP([]byte{1, 2, 3, 4}), Port: 30303}
peerDisconnect := make(chan DisconnectRequest)
peerErrorChan := NewPeerErrorChannel()
peh := NewPeerErrorHandler(address, peerDisconnect, peerErrorChan, NewBlacklist())
peh.Start()
defer peh.Stop()
for i := 0; i < 11; i++ {
select {
case <-peerDisconnect:
t.Errorf("expected no disconnect request")
default:
}
peerErrorChan <- NewPeerError(MiscError, "")
}
time.Sleep(1 * time.Millisecond)
select {
case request := <-peerDisconnect:
if request.addr.String() != address.String() {
t.Errorf("incorrect address %v != %v", request.addr, address)
}
default:
t.Errorf("expected disconnect request")
}
}

@ -1,96 +1,239 @@
package p2p
import (
"bufio"
"bytes"
"fmt"
// "net"
"encoding/hex"
"io/ioutil"
"net"
"reflect"
"testing"
"time"
)
func TestPeer(t *testing.T) {
handlers := make(Handlers)
testProtocol := &TestProtocol{Msgs: []*Msg{}}
handlers["aaa"] = func(p *Peer) Protocol { return testProtocol }
handlers["ccc"] = func(p *Peer) Protocol { return testProtocol }
addr := &TestAddr{"test:30"}
conn := NewTestNetworkConnection(addr)
_, server := SetupTestServer(handlers)
server.Handshake()
peer := NewPeer(conn, addr, true, server)
// peer.Messenger().AddProtocols([]string{"aaa", "ccc"})
peer.Start()
defer peer.Stop()
time.Sleep(2 * time.Millisecond)
if len(conn.Out) != 1 {
t.Errorf("handshake not sent")
} else {
out := conn.Out[0]
packet := Packet(0, HandshakeMsg, P2PVersion, []byte(peer.server.identity.String()), []interface{}{peer.server.protocols}, peer.server.port, peer.server.identity.Pubkey()[1:])
if bytes.Compare(out, packet) != 0 {
t.Errorf("incorrect handshake packet %v != %v", out, packet)
}
}
packet := Packet(0, HandshakeMsg, P2PVersion, []byte("peer"), []interface{}{"bbb", "aaa", "ccc"}, 30, []byte("0000000000000000000000000000000000000000000000000000000000000000"))
conn.In(0, packet)
time.Sleep(10 * time.Millisecond)
pro, _ := peer.Messenger().protocols[0].(*BaseProtocol)
if pro.state != handshakeReceived {
t.Errorf("handshake not received")
}
if peer.Port != 30 {
t.Errorf("port incorrectly set")
}
if peer.Id != "peer" {
t.Errorf("id incorrectly set")
}
if string(peer.Pubkey) != "0000000000000000000000000000000000000000000000000000000000000000" {
t.Errorf("pubkey incorrectly set")
}
fmt.Println(peer.Caps)
if len(peer.Caps) != 3 || peer.Caps[0] != "aaa" || peer.Caps[1] != "bbb" || peer.Caps[2] != "ccc" {
t.Errorf("protocols incorrectly set")
}
msg, _ := NewMsg(3)
err := peer.Write("aaa", msg)
if err != nil {
t.Errorf("expect no error for known protocol: %v", err)
} else {
time.Sleep(1 * time.Millisecond)
if len(conn.Out) != 2 {
t.Errorf("msg not written")
} else {
out := conn.Out[1]
packet := Packet(16, 3)
if bytes.Compare(out, packet) != 0 {
t.Errorf("incorrect packet %v != %v", out, packet)
var discard = Protocol{
Name: "discard",
Length: 1,
Run: func(p *Peer, rw MsgReadWriter) error {
for {
msg, err := rw.ReadMsg()
if err != nil {
return err
}
if err = msg.Discard(); err != nil {
return err
}
}
}
},
}
msg, _ = NewMsg(2)
err = peer.Write("ccc", msg)
if err != nil {
t.Errorf("expect no error for known protocol: %v", err)
} else {
time.Sleep(1 * time.Millisecond)
if len(conn.Out) != 3 {
t.Errorf("msg not written")
} else {
out := conn.Out[2]
packet := Packet(21, 2)
if bytes.Compare(out, packet) != 0 {
t.Errorf("incorrect packet %v != %v", out, packet)
func testPeer(protos []Protocol) (net.Conn, *Peer, <-chan error) {
conn1, conn2 := net.Pipe()
id := NewSimpleClientIdentity("test", "0", "0", "public key")
peer := newPeer(conn1, protos, nil)
peer.ourID = id
peer.pubkeyHook = func(*peerAddr) error { return nil }
errc := make(chan error, 1)
go func() {
_, err := peer.loop()
errc <- err
}()
return conn2, peer, errc
}
func TestPeerProtoReadMsg(t *testing.T) {
defer testlog(t).detach()
done := make(chan struct{})
proto := Protocol{
Name: "a",
Length: 5,
Run: func(peer *Peer, rw MsgReadWriter) error {
msg, err := rw.ReadMsg()
if err != nil {
t.Errorf("read error: %v", err)
}
}
if msg.Code != 2 {
t.Errorf("incorrect msg code %d relayed to protocol", msg.Code)
}
data, err := ioutil.ReadAll(msg.Payload)
if err != nil {
t.Errorf("payload read error: %v", err)
}
expdata, _ := hex.DecodeString("0183303030")
if !bytes.Equal(expdata, data) {
t.Errorf("incorrect msg data %x", data)
}
close(done)
return nil
},
}
err = peer.Write("bbb", msg)
time.Sleep(1 * time.Millisecond)
if err == nil {
t.Errorf("expect error for unknown protocol")
net, peer, errc := testPeer([]Protocol{proto})
defer net.Close()
peer.startSubprotocols([]Cap{proto.cap()})
writeMsg(net, NewMsg(18, 1, "000"))
select {
case <-done:
case err := <-errc:
t.Errorf("peer returned: %v", err)
case <-time.After(2 * time.Second):
t.Errorf("receive timeout")
}
}
func TestPeerProtoReadLargeMsg(t *testing.T) {
defer testlog(t).detach()
msgsize := uint32(10 * 1024 * 1024)
done := make(chan struct{})
proto := Protocol{
Name: "a",
Length: 5,
Run: func(peer *Peer, rw MsgReadWriter) error {
msg, err := rw.ReadMsg()
if err != nil {
t.Errorf("read error: %v", err)
}
if msg.Size != msgsize+4 {
t.Errorf("incorrect msg.Size, got %d, expected %d", msg.Size, msgsize)
}
msg.Discard()
close(done)
return nil
},
}
net, peer, errc := testPeer([]Protocol{proto})
defer net.Close()
peer.startSubprotocols([]Cap{proto.cap()})
writeMsg(net, NewMsg(18, make([]byte, msgsize)))
select {
case <-done:
case err := <-errc:
t.Errorf("peer returned: %v", err)
case <-time.After(2 * time.Second):
t.Errorf("receive timeout")
}
}
func TestPeerProtoEncodeMsg(t *testing.T) {
defer testlog(t).detach()
proto := Protocol{
Name: "a",
Length: 2,
Run: func(peer *Peer, rw MsgReadWriter) error {
if err := rw.EncodeMsg(2); err == nil {
t.Error("expected error for out-of-range msg code, got nil")
}
if err := rw.EncodeMsg(1); err != nil {
t.Errorf("write error: %v", err)
}
return nil
},
}
net, peer, _ := testPeer([]Protocol{proto})
defer net.Close()
peer.startSubprotocols([]Cap{proto.cap()})
bufr := bufio.NewReader(net)
msg, err := readMsg(bufr)
if err != nil {
t.Errorf("read error: %v", err)
}
if msg.Code != 17 {
t.Errorf("incorrect message code: got %d, expected %d", msg.Code, 17)
}
}
func TestPeerWrite(t *testing.T) {
defer testlog(t).detach()
net, peer, peerErr := testPeer([]Protocol{discard})
defer net.Close()
peer.startSubprotocols([]Cap{discard.cap()})
// test write errors
if err := peer.writeProtoMsg("b", NewMsg(3)); err == nil {
t.Errorf("expected error for unknown protocol, got nil")
}
if err := peer.writeProtoMsg("discard", NewMsg(8)); err == nil {
t.Errorf("expected error for out-of-range msg code, got nil")
} else if perr, ok := err.(*peerError); !ok || perr.Code != errInvalidMsgCode {
t.Errorf("wrong error for out-of-range msg code, got %#v", err)
}
// setup for reading the message on the other end
read := make(chan struct{})
go func() {
bufr := bufio.NewReader(net)
msg, err := readMsg(bufr)
if err != nil {
t.Errorf("read error: %v", err)
} else if msg.Code != 16 {
t.Errorf("wrong code, got %d, expected %d", msg.Code, 16)
}
msg.Discard()
close(read)
}()
// test succcessful write
if err := peer.writeProtoMsg("discard", NewMsg(0)); err != nil {
t.Errorf("expect no error for known protocol: %v", err)
}
select {
case <-read:
case err := <-peerErr:
t.Fatalf("peer stopped: %v", err)
}
}
func TestPeerActivity(t *testing.T) {
// shorten inactivityTimeout while this test is running
oldT := inactivityTimeout
defer func() { inactivityTimeout = oldT }()
inactivityTimeout = 20 * time.Millisecond
net, peer, peerErr := testPeer([]Protocol{discard})
defer net.Close()
peer.startSubprotocols([]Cap{discard.cap()})
sub := peer.activity.Subscribe(time.Time{})
defer sub.Unsubscribe()
for i := 0; i < 6; i++ {
writeMsg(net, NewMsg(16))
select {
case <-sub.Chan():
case <-time.After(inactivityTimeout / 2):
t.Fatal("no event within ", inactivityTimeout/2)
case err := <-peerErr:
t.Fatal("peer error", err)
}
}
select {
case <-time.After(inactivityTimeout * 2):
case <-sub.Chan():
t.Fatal("got activity event while connection was inactive")
case err := <-peerErr:
t.Fatal("peer error", err)
}
}
func TestNewPeer(t *testing.T) {
id := NewSimpleClientIdentity("clientid", "version", "customid", "pubkey")
caps := []Cap{{"foo", 2}, {"bar", 3}}
p := NewPeer(id, caps)
if !reflect.DeepEqual(p.Caps(), caps) {
t.Errorf("Caps mismatch: got %v, expected %v", p.Caps(), caps)
}
if p.Identity() != id {
t.Errorf("Identity mismatch: got %v, expected %v", p.Identity(), id)
}
// Should not hang.
p.Disconnect(DiscAlreadyConnected)
}

@ -2,277 +2,294 @@ package p2p
import (
"bytes"
"fmt"
"net"
"sort"
"sync"
"time"
"github.com/ethereum/go-ethereum/ethutil"
)
type Protocol interface {
Start()
Stop()
HandleIn(*Msg, chan *Msg)
HandleOut(*Msg) bool
Offset() MsgCode
Name() string
// Protocol represents a P2P subprotocol implementation.
type Protocol struct {
// Name should contain the official protocol name,
// often a three-letter word.
Name string
// Version should contain the version number of the protocol.
Version uint
// Length should contain the number of message codes used
// by the protocol.
Length uint64
// Run is called in a new groutine when the protocol has been
// negotiated with a peer. It should read and write messages from
// rw. The Payload for each message must be fully consumed.
//
// The peer connection is closed when Start returns. It should return
// any protocol-level error (such as an I/O error) that is
// encountered.
Run func(peer *Peer, rw MsgReadWriter) error
}
func (p Protocol) cap() Cap {
return Cap{p.Name, p.Version}
}
const (
P2PVersion = 0
pingTimeout = 2
pingGracePeriod = 2
baseProtocolVersion = 2
baseProtocolLength = uint64(16)
baseProtocolMaxMsgSize = 10 * 1024 * 1024
)
const (
HandshakeMsg = iota
DiscMsg
PingMsg
PongMsg
GetPeersMsg
PeersMsg
offset = 16
// devp2p message codes
handshakeMsg = 0x00
discMsg = 0x01
pingMsg = 0x02
pongMsg = 0x03
getPeersMsg = 0x04
peersMsg = 0x05
)
type ProtocolState uint8
const (
nullState = iota
handshakeReceived
)
type DiscReason byte
const (
// Values are given explicitly instead of by iota because these values are
// defined by the wire protocol spec; it is easier for humans to ensure
// correctness when values are explicit.
DiscRequested = 0x00
DiscNetworkError = 0x01
DiscProtocolError = 0x02
DiscUselessPeer = 0x03
DiscTooManyPeers = 0x04
DiscAlreadyConnected = 0x05
DiscIncompatibleVersion = 0x06
DiscInvalidIdentity = 0x07
DiscQuitting = 0x08
DiscUnexpectedIdentity = 0x09
DiscSelf = 0x0a
DiscReadTimeout = 0x0b
DiscSubprotocolError = 0x10
)
var discReasonToString = map[DiscReason]string{
DiscRequested: "Disconnect requested",
DiscNetworkError: "Network error",
DiscProtocolError: "Breach of protocol",
DiscUselessPeer: "Useless peer",
DiscTooManyPeers: "Too many peers",
DiscAlreadyConnected: "Already connected",
DiscIncompatibleVersion: "Incompatible P2P protocol version",
DiscInvalidIdentity: "Invalid node identity",
DiscQuitting: "Client quitting",
DiscUnexpectedIdentity: "Unexpected identity",
DiscSelf: "Connected to self",
DiscReadTimeout: "Read timeout",
DiscSubprotocolError: "Subprotocol error",
// handshake is the structure of a handshake list.
type handshake struct {
Version uint64
ID string
Caps []Cap
ListenPort uint64
NodeID []byte
}
func (d DiscReason) String() string {
if len(discReasonToString) < int(d) {
return "Unknown"
func (h *handshake) String() string {
return h.ID
}
func (h *handshake) Pubkey() []byte {
return h.NodeID
}
// Cap is the structure of a peer capability.
type Cap struct {
Name string
Version uint
}
func (cap Cap) RlpData() interface{} {
return []interface{}{cap.Name, cap.Version}
}
type capsByName []Cap
func (cs capsByName) Len() int { return len(cs) }
func (cs capsByName) Less(i, j int) bool { return cs[i].Name < cs[j].Name }
func (cs capsByName) Swap(i, j int) { cs[i], cs[j] = cs[j], cs[i] }
type baseProtocol struct {
rw MsgReadWriter
peer *Peer
}
func runBaseProtocol(peer *Peer, rw MsgReadWriter) error {
bp := &baseProtocol{rw, peer}
if err := bp.doHandshake(rw); err != nil {
return err
}
return discReasonToString[d]
}
type BaseProtocol struct {
peer *Peer
state ProtocolState
stateLock sync.RWMutex
}
func NewBaseProtocol(peer *Peer) *BaseProtocol {
self := &BaseProtocol{
peer: peer,
}
return self
}
func (self *BaseProtocol) Start() {
if self.peer != nil {
self.peer.Write("", self.peer.Server().Handshake())
go self.peer.Messenger().PingPong(
pingTimeout*time.Second,
pingGracePeriod*time.Second,
self.Ping,
self.Timeout,
)
}
}
func (self *BaseProtocol) Stop() {
}
func (self *BaseProtocol) Ping() {
msg, _ := NewMsg(PingMsg)
self.peer.Write("", msg)
}
func (self *BaseProtocol) Timeout() {
self.peerError(PingTimeout, "")
}
func (self *BaseProtocol) Name() string {
return ""
}
func (self *BaseProtocol) Offset() MsgCode {
return offset
}
func (self *BaseProtocol) CheckState(state ProtocolState) bool {
self.stateLock.RLock()
self.stateLock.RUnlock()
if self.state != state {
return false
} else {
return true
}
}
func (self *BaseProtocol) HandleIn(msg *Msg, response chan *Msg) {
if msg.Code() == HandshakeMsg {
self.handleHandshake(msg)
} else {
if !self.CheckState(handshakeReceived) {
self.peerError(ProtocolBreach, "message code %v not allowed", msg.Code())
close(response)
return
// run main loop
quit := make(chan error, 1)
go func() {
for {
if err := bp.handle(rw); err != nil {
quit <- err
break
}
}
switch msg.Code() {
case DiscMsg:
logger.Infof("Disconnect requested from peer %v, reason", DiscReason(msg.Data().Get(0).Uint()))
self.peer.Server().PeerDisconnect() <- DisconnectRequest{
addr: self.peer.Address,
reason: DiscRequested,
}()
return bp.loop(quit)
}
var pingTimeout = 2 * time.Second
func (bp *baseProtocol) loop(quit <-chan error) error {
ping := time.NewTimer(pingTimeout)
activity := bp.peer.activity.Subscribe(time.Time{})
lastActive := time.Time{}
defer ping.Stop()
defer activity.Unsubscribe()
getPeersTick := time.NewTicker(10 * time.Second)
defer getPeersTick.Stop()
err := bp.rw.EncodeMsg(getPeersMsg)
for err == nil {
select {
case err = <-quit:
return err
case <-getPeersTick.C:
err = bp.rw.EncodeMsg(getPeersMsg)
case event := <-activity.Chan():
ping.Reset(pingTimeout)
lastActive = event.(time.Time)
case t := <-ping.C:
if lastActive.Add(pingTimeout * 2).Before(t) {
err = newPeerError(errPingTimeout, "")
} else if lastActive.Add(pingTimeout).Before(t) {
err = bp.rw.EncodeMsg(pingMsg)
}
case PingMsg:
out, _ := NewMsg(PongMsg)
response <- out
case PongMsg:
case GetPeersMsg:
// Peer asked for list of connected peers
if out, err := self.peer.Server().PeersMessage(); err != nil {
response <- out
}
case PeersMsg:
self.handlePeers(msg)
default:
self.peerError(InvalidMsgCode, "unknown message code %v", msg.Code())
}
}
close(response)
return err
}
func (self *BaseProtocol) HandleOut(msg *Msg) (allowed bool) {
// somewhat overly paranoid
allowed = msg.Code() == HandshakeMsg || msg.Code() == DiscMsg || msg.Code() < self.Offset() && self.CheckState(handshakeReceived)
return
}
func (self *BaseProtocol) peerError(errorCode ErrorCode, format string, v ...interface{}) {
err := NewPeerError(errorCode, format, v...)
logger.Warnln(err)
fmt.Println(self.peer, err)
if self.peer != nil {
self.peer.PeerErrorChan() <- err
func (bp *baseProtocol) handle(rw MsgReadWriter) error {
msg, err := rw.ReadMsg()
if err != nil {
return err
}
}
func (self *BaseProtocol) handlePeers(msg *Msg) {
it := msg.Data().NewIterator()
for it.Next() {
ip := net.IP(it.Value().Get(0).Bytes())
port := it.Value().Get(1).Uint()
address := &net.TCPAddr{IP: ip, Port: int(port)}
go self.peer.Server().PeerConnect(address)
if msg.Size > baseProtocolMaxMsgSize {
return newPeerError(errMisc, "message too big")
}
// make sure that the payload has been fully consumed
defer msg.Discard()
switch msg.Code {
case handshakeMsg:
return newPeerError(errProtocolBreach, "extra handshake received")
case discMsg:
var reason DiscReason
if err := msg.Decode(&reason); err != nil {
return err
}
bp.peer.Disconnect(reason)
return nil
case pingMsg:
return bp.rw.EncodeMsg(pongMsg)
case pongMsg:
case getPeersMsg:
peers := bp.peerList()
// this is dangerous. the spec says that we should _delay_
// sending the response if no new information is available.
// this means that would need to send a response later when
// new peers become available.
//
// TODO: add event mechanism to notify baseProtocol for new peers
if len(peers) > 0 {
return bp.rw.EncodeMsg(peersMsg, peers)
}
case peersMsg:
var peers []*peerAddr
if err := msg.Decode(&peers); err != nil {
return err
}
for _, addr := range peers {
bp.peer.Debugf("received peer suggestion: %v", addr)
bp.peer.newPeerAddr <- addr
}
default:
return newPeerError(errInvalidMsgCode, "unknown message code %v", msg.Code)
}
return nil
}
func (self *BaseProtocol) handleHandshake(msg *Msg) {
self.stateLock.Lock()
defer self.stateLock.Unlock()
if self.state != nullState {
self.peerError(ProtocolBreach, "extra handshake")
return
func (bp *baseProtocol) doHandshake(rw MsgReadWriter) error {
// send our handshake
if err := rw.WriteMsg(bp.handshakeMsg()); err != nil {
return err
}
c := msg.Data()
// read and handle remote handshake
msg, err := rw.ReadMsg()
if err != nil {
return err
}
if msg.Code != handshakeMsg {
return newPeerError(errProtocolBreach, "first message must be handshake, got %x", msg.Code)
}
if msg.Size > baseProtocolMaxMsgSize {
return newPeerError(errMisc, "message too big")
}
var hs handshake
if err := msg.Decode(&hs); err != nil {
return err
}
// validate handshake info
if hs.Version != baseProtocolVersion {
return newPeerError(errP2PVersionMismatch, "Require protocol %d, received %d\n",
baseProtocolVersion, hs.Version)
}
if len(hs.NodeID) == 0 {
return newPeerError(errPubkeyMissing, "")
}
if len(hs.NodeID) != 64 {
return newPeerError(errPubkeyInvalid, "require 512 bit, got %v", len(hs.NodeID)*8)
}
if da := bp.peer.dialAddr; da != nil {
// verify that the peer we wanted to connect to
// actually holds the target public key.
if da.Pubkey != nil && !bytes.Equal(da.Pubkey, hs.NodeID) {
return newPeerError(errPubkeyForbidden, "dial address pubkey mismatch")
}
}
pa := newPeerAddr(bp.peer.conn.RemoteAddr(), hs.NodeID)
if err := bp.peer.pubkeyHook(pa); err != nil {
return newPeerError(errPubkeyForbidden, "%v", err)
}
// TODO: remove Caps with empty name
var addr *peerAddr
if hs.ListenPort != 0 {
addr = newPeerAddr(bp.peer.conn.RemoteAddr(), hs.NodeID)
addr.Port = hs.ListenPort
}
bp.peer.setHandshakeInfo(&hs, addr, hs.Caps)
bp.peer.startSubprotocols(hs.Caps)
return nil
}
func (bp *baseProtocol) handshakeMsg() Msg {
var (
p2pVersion = c.Get(0).Uint()
id = c.Get(1).Str()
caps = c.Get(2)
port = c.Get(3).Uint()
pubkey = c.Get(4).Bytes()
port uint64
caps []interface{}
)
fmt.Printf("handshake received %v, %v, %v, %v, %v ", p2pVersion, id, caps, port, pubkey)
// Check correctness of p2p protocol version
if p2pVersion != P2PVersion {
self.peerError(P2PVersionMismatch, "Require protocol %d, received %d\n", P2PVersion, p2pVersion)
return
if bp.peer.ourListenAddr != nil {
port = bp.peer.ourListenAddr.Port
}
// Handle the pub key (validation, uniqueness)
if len(pubkey) == 0 {
self.peerError(PubkeyMissing, "not supplied in handshake.")
return
for _, proto := range bp.peer.protocols {
caps = append(caps, proto.cap())
}
if len(pubkey) != 64 {
self.peerError(PubkeyInvalid, "require 512 bit, got %v", len(pubkey)*8)
return
}
// Self connect detection
if bytes.Compare(self.peer.Server().ClientIdentity().Pubkey()[1:], pubkey) == 0 {
self.peerError(PubkeyForbidden, "not allowed to connect to self")
return
}
// register pubkey on server. this also sets the pubkey on the peer (need lock)
if err := self.peer.Server().RegisterPubkey(self.peer, pubkey); err != nil {
self.peerError(PubkeyForbidden, err.Error())
return
}
// check port
if self.peer.Inbound {
uint16port := uint16(port)
if self.peer.Port > 0 && self.peer.Port != uint16port {
self.peerError(PortMismatch, "port mismatch: %v != %v", self.peer.Port, port)
return
} else {
self.peer.Port = uint16port
}
}
capsIt := caps.NewIterator()
for capsIt.Next() {
cap := capsIt.Value().Str()
self.peer.Caps = append(self.peer.Caps, cap)
}
sort.Strings(self.peer.Caps)
self.peer.Messenger().AddProtocols(self.peer.Caps)
self.peer.Id = id
self.state = handshakeReceived
//p.ethereum.PushPeer(p)
// p.ethereum.reactor.Post("peerList", p.ethereum.Peers())
return
return NewMsg(handshakeMsg,
baseProtocolVersion,
bp.peer.ourID.String(),
caps,
port,
bp.peer.ourID.Pubkey()[1:],
)
}
func (bp *baseProtocol) peerList() []ethutil.RlpEncodable {
peers := bp.peer.otherPeers()
ds := make([]ethutil.RlpEncodable, 0, len(peers))
for _, p := range peers {
p.infolock.Lock()
addr := p.listenAddr
p.infolock.Unlock()
// filter out this peer and peers that are not listening or
// have not completed the handshake.
// TODO: track previously sent peers and exclude them as well.
if p == bp.peer || addr == nil {
continue
}
ds = append(ds, addr)
}
ourAddr := bp.peer.ourListenAddr
if ourAddr != nil && !ourAddr.IP.IsLoopback() && !ourAddr.IP.IsUnspecified() {
ds = append(ds, ourAddr)
}
return ds
}

@ -2,21 +2,420 @@ package p2p
import (
"bytes"
"errors"
"fmt"
"net"
"sort"
"strconv"
"sync"
"time"
logpkg "github.com/ethereum/go-ethereum/logger"
"github.com/ethereum/go-ethereum/logger"
)
const (
outboundAddressPoolSize = 10
disconnectGracePeriod = 2
outboundAddressPoolSize = 500
defaultDialTimeout = 10 * time.Second
portMappingUpdateInterval = 15 * time.Minute
portMappingTimeout = 20 * time.Minute
)
var srvlog = logger.NewLogger("P2P Server")
// Server manages all peer connections.
//
// The fields of Server are used as configuration parameters.
// You should set them before starting the Server. Fields may not be
// modified while the server is running.
type Server struct {
// This field must be set to a valid client identity.
Identity ClientIdentity
// MaxPeers is the maximum number of peers that can be
// connected. It must be greater than zero.
MaxPeers int
// Protocols should contain the protocols supported
// by the server. Matching protocols are launched for
// each peer.
Protocols []Protocol
// If Blacklist is set to a non-nil value, the given Blacklist
// is used to verify peer connections.
Blacklist Blacklist
// If ListenAddr is set to a non-nil address, the server
// will listen for incoming connections.
//
// If the port is zero, the operating system will pick a port. The
// ListenAddr field will be updated with the actual address when
// the server is started.
ListenAddr string
// If set to a non-nil value, the given NAT port mapper
// is used to make the listening port available to the
// Internet.
NAT NAT
// If Dialer is set to a non-nil value, the given Dialer
// is used to dial outbound peer connections.
Dialer *net.Dialer
// If NoDial is true, the server will not dial any peers.
NoDial bool
// Hook for testing. This is useful because we can inhibit
// the whole protocol stack.
newPeerFunc peerFunc
lock sync.RWMutex
running bool
listener net.Listener
laddr *net.TCPAddr // real listen addr
peers []*Peer
peerSlots chan int
peerCount int
quit chan struct{}
wg sync.WaitGroup
peerConnect chan *peerAddr
peerDisconnect chan *Peer
}
// NAT is implemented by NAT traversal methods.
type NAT interface {
GetExternalAddress() (net.IP, error)
AddPortMapping(protocol string, extport, intport int, name string, lifetime time.Duration) error
DeletePortMapping(protocol string, extport, intport int) error
// Should return name of the method.
String() string
}
type peerFunc func(srv *Server, c net.Conn, dialAddr *peerAddr) *Peer
// Peers returns all connected peers.
func (srv *Server) Peers() (peers []*Peer) {
srv.lock.RLock()
defer srv.lock.RUnlock()
for _, peer := range srv.peers {
if peer != nil {
peers = append(peers, peer)
}
}
return
}
// PeerCount returns the number of connected peers.
func (srv *Server) PeerCount() int {
srv.lock.RLock()
defer srv.lock.RUnlock()
return srv.peerCount
}
// SuggestPeer injects an address into the outbound address pool.
func (srv *Server) SuggestPeer(ip net.IP, port int, nodeID []byte) {
select {
case srv.peerConnect <- &peerAddr{ip, uint64(port), nodeID}:
default: // don't block
}
}
// Broadcast sends an RLP-encoded message to all connected peers.
// This method is deprecated and will be removed later.
func (srv *Server) Broadcast(protocol string, code uint64, data ...interface{}) {
var payload []byte
if data != nil {
payload = encodePayload(data...)
}
srv.lock.RLock()
defer srv.lock.RUnlock()
for _, peer := range srv.peers {
if peer != nil {
var msg = Msg{Code: code}
if data != nil {
msg.Payload = bytes.NewReader(payload)
msg.Size = uint32(len(payload))
}
peer.writeProtoMsg(protocol, msg)
}
}
}
// Start starts running the server.
// Servers can be re-used and started again after stopping.
func (srv *Server) Start() (err error) {
srv.lock.Lock()
defer srv.lock.Unlock()
if srv.running {
return errors.New("server already running")
}
srvlog.Infoln("Starting Server")
// initialize fields
if srv.Identity == nil {
return fmt.Errorf("Server.Identity must be set to a non-nil identity")
}
if srv.MaxPeers <= 0 {
return fmt.Errorf("Server.MaxPeers must be > 0")
}
srv.quit = make(chan struct{})
srv.peers = make([]*Peer, srv.MaxPeers)
srv.peerSlots = make(chan int, srv.MaxPeers)
srv.peerConnect = make(chan *peerAddr, outboundAddressPoolSize)
srv.peerDisconnect = make(chan *Peer)
if srv.newPeerFunc == nil {
srv.newPeerFunc = newServerPeer
}
if srv.Blacklist == nil {
srv.Blacklist = NewBlacklist()
}
if srv.Dialer == nil {
srv.Dialer = &net.Dialer{Timeout: defaultDialTimeout}
}
if srv.ListenAddr != "" {
if err := srv.startListening(); err != nil {
return err
}
}
if !srv.NoDial {
srv.wg.Add(1)
go srv.dialLoop()
}
if srv.NoDial && srv.ListenAddr == "" {
srvlog.Warnln("I will be kind-of useless, neither dialing nor listening.")
}
// make all slots available
for i := range srv.peers {
srv.peerSlots <- i
}
// note: discLoop is not part of WaitGroup
go srv.discLoop()
srv.running = true
return nil
}
func (srv *Server) startListening() error {
listener, err := net.Listen("tcp", srv.ListenAddr)
if err != nil {
return err
}
srv.ListenAddr = listener.Addr().String()
srv.laddr = listener.Addr().(*net.TCPAddr)
srv.listener = listener
srv.wg.Add(1)
go srv.listenLoop()
if !srv.laddr.IP.IsLoopback() && srv.NAT != nil {
srv.wg.Add(1)
go srv.natLoop(srv.laddr.Port)
}
return nil
}
// Stop terminates the server and all active peer connections.
// It blocks until all active connections have been closed.
func (srv *Server) Stop() {
srv.lock.Lock()
if !srv.running {
srv.lock.Unlock()
return
}
srv.running = false
srv.lock.Unlock()
srvlog.Infoln("Stopping server")
if srv.listener != nil {
// this unblocks listener Accept
srv.listener.Close()
}
close(srv.quit)
for _, peer := range srv.Peers() {
peer.Disconnect(DiscQuitting)
}
srv.wg.Wait()
// wait till they actually disconnect
// this is checked by claiming all peerSlots.
// slots become available as the peers disconnect.
for i := 0; i < cap(srv.peerSlots); i++ {
<-srv.peerSlots
}
// terminate discLoop
close(srv.peerDisconnect)
}
func (srv *Server) discLoop() {
for peer := range srv.peerDisconnect {
// peer has just disconnected. free up its slot.
srvlog.Infof("%v is gone", peer)
srv.peerSlots <- peer.slot
srv.lock.Lock()
srv.peers[peer.slot] = nil
srv.lock.Unlock()
}
}
// main loop for adding connections via listening
func (srv *Server) listenLoop() {
defer srv.wg.Done()
srvlog.Infoln("Listening on", srv.listener.Addr())
for {
select {
case slot := <-srv.peerSlots:
conn, err := srv.listener.Accept()
if err != nil {
srv.peerSlots <- slot
return
}
srvlog.Debugf("Accepted conn %v (slot %d)\n", conn.RemoteAddr(), slot)
srv.addPeer(conn, nil, slot)
case <-srv.quit:
return
}
}
}
func (srv *Server) natLoop(port int) {
defer srv.wg.Done()
for {
srv.updatePortMapping(port)
select {
case <-time.After(portMappingUpdateInterval):
// one more round
case <-srv.quit:
srv.removePortMapping(port)
return
}
}
}
func (srv *Server) updatePortMapping(port int) {
srvlog.Infoln("Attempting to map port", port, "with", srv.NAT)
err := srv.NAT.AddPortMapping("tcp", port, port, "ethereum p2p", portMappingTimeout)
if err != nil {
srvlog.Errorln("Port mapping error:", err)
return
}
extip, err := srv.NAT.GetExternalAddress()
if err != nil {
srvlog.Errorln("Error getting external IP:", err)
return
}
srv.lock.Lock()
extaddr := *(srv.listener.Addr().(*net.TCPAddr))
extaddr.IP = extip
srvlog.Infoln("Mapped port, external addr is", &extaddr)
srv.laddr = &extaddr
srv.lock.Unlock()
}
func (srv *Server) removePortMapping(port int) {
srvlog.Infoln("Removing port mapping for", port, "with", srv.NAT)
srv.NAT.DeletePortMapping("tcp", port, port)
}
func (srv *Server) dialLoop() {
defer srv.wg.Done()
var (
suggest chan *peerAddr
slot *int
slots = srv.peerSlots
)
for {
select {
case i := <-slots:
// we need a peer in slot i, slot reserved
slot = &i
// now we can watch for candidate peers in the next loop
suggest = srv.peerConnect
// do not consume more until candidate peer is found
slots = nil
case desc := <-suggest:
// candidate peer found, will dial out asyncronously
// if connection fails slot will be released
go srv.dialPeer(desc, *slot)
// we can watch if more peers needed in the next loop
slots = srv.peerSlots
// until then we dont care about candidate peers
suggest = nil
case <-srv.quit:
// give back the currently reserved slot
if slot != nil {
srv.peerSlots <- *slot
}
return
}
}
}
// connect to peer via dial out
func (srv *Server) dialPeer(desc *peerAddr, slot int) {
srvlog.Debugf("Dialing %v (slot %d)\n", desc, slot)
conn, err := srv.Dialer.Dial(desc.Network(), desc.String())
if err != nil {
srvlog.Errorf("Dial error: %v", err)
srv.peerSlots <- slot
return
}
go srv.addPeer(conn, desc, slot)
}
// creates the new peer object and inserts it into its slot
func (srv *Server) addPeer(conn net.Conn, desc *peerAddr, slot int) *Peer {
srv.lock.Lock()
defer srv.lock.Unlock()
if !srv.running {
conn.Close()
srv.peerSlots <- slot // release slot
return nil
}
peer := srv.newPeerFunc(srv, conn, desc)
peer.slot = slot
srv.peers[slot] = peer
srv.peerCount++
go func() { peer.loop(); srv.peerDisconnect <- peer }()
return peer
}
// removes peer: sending disconnect msg, stop peer, remove rom list/table, release slot
func (srv *Server) removePeer(peer *Peer) {
srv.lock.Lock()
defer srv.lock.Unlock()
srvlog.Debugf("Removing peer %v %v (slot %v)\n", peer, peer.slot)
if srv.peers[peer.slot] != peer {
srvlog.Warnln("Invalid peer to remove:", peer)
return
}
// remove from list and index
srv.peerCount--
srv.peers[peer.slot] = nil
// release slot to signal need for a new peer, last!
srv.peerSlots <- peer.slot
}
func (srv *Server) verifyPeer(addr *peerAddr) error {
if srv.Blacklist.Exists(addr.Pubkey) {
return errors.New("blacklisted")
}
if bytes.Equal(srv.Identity.Pubkey()[1:], addr.Pubkey) {
return newPeerError(errPubkeyForbidden, "not allowed to connect to srv")
}
srv.lock.RLock()
defer srv.lock.RUnlock()
for _, peer := range srv.peers {
if peer != nil {
id := peer.Identity()
if id != nil && bytes.Equal(id.Pubkey(), addr.Pubkey) {
return errors.New("already connected")
}
}
}
return nil
}
type Blacklist interface {
Get([]byte) (bool, error)
Put([]byte) error
@ -66,419 +465,3 @@ func (self *BlacklistMap) Delete(pubkey []byte) error {
delete(self.blacklist, string(pubkey))
return nil
}
type Server struct {
network Network
listening bool //needed?
dialing bool //needed?
closed bool
identity ClientIdentity
addr net.Addr
port uint16
protocols []string
quit chan chan bool
peersLock sync.RWMutex
maxPeers int
peers []*Peer
peerSlots chan int
peersTable map[string]int
peersMsg *Msg
peerCount int
peerConnect chan net.Addr
peerDisconnect chan DisconnectRequest
blacklist Blacklist
handlers Handlers
}
var logger = logpkg.NewLogger("P2P")
func New(network Network, addr net.Addr, identity ClientIdentity, handlers Handlers, maxPeers int, blacklist Blacklist) *Server {
// get alphabetical list of protocol names from handlers map
protocols := []string{}
for protocol := range handlers {
protocols = append(protocols, protocol)
}
sort.Strings(protocols)
_, port, _ := net.SplitHostPort(addr.String())
intport, _ := strconv.Atoi(port)
self := &Server{
// NewSimpleClientIdentity(clientIdentifier, version, customIdentifier)
network: network,
identity: identity,
addr: addr,
port: uint16(intport),
protocols: protocols,
quit: make(chan chan bool),
maxPeers: maxPeers,
peers: make([]*Peer, maxPeers),
peerSlots: make(chan int, maxPeers),
peersTable: make(map[string]int),
peerConnect: make(chan net.Addr, outboundAddressPoolSize),
peerDisconnect: make(chan DisconnectRequest),
blacklist: blacklist,
handlers: handlers,
}
for i := 0; i < maxPeers; i++ {
self.peerSlots <- i // fill up with indexes
}
return self
}
func (self *Server) NewAddr(host string, port int) (addr net.Addr, err error) {
addr, err = self.network.NewAddr(host, port)
return
}
func (self *Server) ParseAddr(address string) (addr net.Addr, err error) {
addr, err = self.network.ParseAddr(address)
return
}
func (self *Server) ClientIdentity() ClientIdentity {
return self.identity
}
func (self *Server) PeersMessage() (msg *Msg, err error) {
// TODO: memoize and reset when peers change
self.peersLock.RLock()
defer self.peersLock.RUnlock()
msg = self.peersMsg
if msg == nil {
var peerData []interface{}
for _, i := range self.peersTable {
peer := self.peers[i]
peerData = append(peerData, peer.Encode())
}
if len(peerData) == 0 {
err = fmt.Errorf("no peers")
} else {
msg, err = NewMsg(PeersMsg, peerData...)
self.peersMsg = msg //memoize
}
}
return
}
func (self *Server) Peers() (peers []*Peer) {
self.peersLock.RLock()
defer self.peersLock.RUnlock()
for _, peer := range self.peers {
if peer != nil {
peers = append(peers, peer)
}
}
return
}
func (self *Server) PeerCount() int {
self.peersLock.RLock()
defer self.peersLock.RUnlock()
return self.peerCount
}
var getPeersMsg, _ = NewMsg(GetPeersMsg)
func (self *Server) PeerConnect(addr net.Addr) {
// TODO: should buffer, filter and uniq
// send GetPeersMsg if not blocking
select {
case self.peerConnect <- addr: // not enough peers
self.Broadcast("", getPeersMsg)
default: // we dont care
}
}
func (self *Server) PeerDisconnect() chan DisconnectRequest {
return self.peerDisconnect
}
func (self *Server) Blacklist() Blacklist {
return self.blacklist
}
func (self *Server) Handlers() Handlers {
return self.handlers
}
func (self *Server) Broadcast(protocol string, msg *Msg) {
self.peersLock.RLock()
defer self.peersLock.RUnlock()
for _, peer := range self.peers {
if peer != nil {
peer.Write(protocol, msg)
}
}
}
// Start the server
func (self *Server) Start(listen bool, dial bool) {
self.network.Start()
if listen {
listener, err := self.network.Listener(self.addr)
if err != nil {
logger.Warnf("Error initializing listener: %v", err)
logger.Warnf("Connection listening disabled")
self.listening = false
} else {
self.listening = true
logger.Infoln("Listen on %v: ready and accepting connections", listener.Addr())
go self.inboundPeerHandler(listener)
}
}
if dial {
dialer, err := self.network.Dialer(self.addr)
if err != nil {
logger.Warnf("Error initializing dialer: %v", err)
logger.Warnf("Connection dialout disabled")
self.dialing = false
} else {
self.dialing = true
logger.Infoln("Dial peers watching outbound address pool")
go self.outboundPeerHandler(dialer)
}
}
logger.Infoln("server started")
}
func (self *Server) Stop() {
logger.Infoln("server stopping...")
// // quit one loop if dialing
if self.dialing {
logger.Infoln("stop dialout...")
dialq := make(chan bool)
self.quit <- dialq
<-dialq
fmt.Println("quit another")
}
// quit the other loop if listening
if self.listening {
logger.Infoln("stop listening...")
listenq := make(chan bool)
self.quit <- listenq
<-listenq
fmt.Println("quit one")
}
fmt.Println("quit waited")
logger.Infoln("stopping peers...")
peers := []net.Addr{}
self.peersLock.RLock()
self.closed = true
for _, peer := range self.peers {
if peer != nil {
peers = append(peers, peer.Address)
}
}
self.peersLock.RUnlock()
for _, address := range peers {
go self.removePeer(DisconnectRequest{
addr: address,
reason: DiscQuitting,
})
}
// wait till they actually disconnect
// this is checked by draining the peerSlots (slots are released back if a peer is removed)
i := 0
fmt.Println("draining peers")
FOR:
for {
select {
case slot := <-self.peerSlots:
i++
fmt.Printf("%v: found slot %v", i, slot)
if i == self.maxPeers {
break FOR
}
}
}
logger.Infoln("server stopped")
}
// main loop for adding connections via listening
func (self *Server) inboundPeerHandler(listener net.Listener) {
for {
select {
case slot := <-self.peerSlots:
go self.connectInboundPeer(listener, slot)
case errc := <-self.quit:
listener.Close()
fmt.Println("quit listenloop")
errc <- true
return
}
}
}
// main loop for adding outbound peers based on peerConnect address pool
// this same loop handles peer disconnect requests as well
func (self *Server) outboundPeerHandler(dialer Dialer) {
// addressChan initially set to nil (only watches peerConnect if we need more peers)
var addressChan chan net.Addr
slots := self.peerSlots
var slot *int
for {
select {
case i := <-slots:
// we need a peer in slot i, slot reserved
slot = &i
// now we can watch for candidate peers in the next loop
addressChan = self.peerConnect
// do not consume more until candidate peer is found
slots = nil
case address := <-addressChan:
// candidate peer found, will dial out asyncronously
// if connection fails slot will be released
go self.connectOutboundPeer(dialer, address, *slot)
// we can watch if more peers needed in the next loop
slots = self.peerSlots
// until then we dont care about candidate peers
addressChan = nil
case request := <-self.peerDisconnect:
go self.removePeer(request)
case errc := <-self.quit:
if addressChan != nil && slot != nil {
self.peerSlots <- *slot
}
fmt.Println("quit dialloop")
errc <- true
return
}
}
}
// check if peer address already connected
func (self *Server) connected(address net.Addr) (err error) {
self.peersLock.RLock()
defer self.peersLock.RUnlock()
// fmt.Printf("address: %v\n", address)
slot, found := self.peersTable[address.String()]
if found {
err = fmt.Errorf("already connected as peer %v (%v)", slot, address)
}
return
}
// connect to peer via listener.Accept()
func (self *Server) connectInboundPeer(listener net.Listener, slot int) {
var address net.Addr
conn, err := listener.Accept()
if err == nil {
address = conn.RemoteAddr()
err = self.connected(address)
if err != nil {
conn.Close()
}
}
if err != nil {
logger.Debugln(err)
self.peerSlots <- slot
} else {
fmt.Printf("adding %v\n", address)
go self.addPeer(conn, address, true, slot)
}
}
// connect to peer via dial out
func (self *Server) connectOutboundPeer(dialer Dialer, address net.Addr, slot int) {
var conn net.Conn
err := self.connected(address)
if err == nil {
conn, err = dialer.Dial(address.Network(), address.String())
}
if err != nil {
logger.Debugln(err)
self.peerSlots <- slot
} else {
go self.addPeer(conn, address, false, slot)
}
}
// creates the new peer object and inserts it into its slot
func (self *Server) addPeer(conn net.Conn, address net.Addr, inbound bool, slot int) {
self.peersLock.Lock()
defer self.peersLock.Unlock()
if self.closed {
fmt.Println("oopsy, not no longer need peer")
conn.Close() //oopsy our bad
self.peerSlots <- slot // release slot
} else {
peer := NewPeer(conn, address, inbound, self)
self.peers[slot] = peer
self.peersTable[address.String()] = slot
self.peerCount++
// reset peersmsg
self.peersMsg = nil
fmt.Printf("added peer %v %v (slot %v)\n", address, peer, slot)
peer.Start()
}
}
// removes peer: sending disconnect msg, stop peer, remove rom list/table, release slot
func (self *Server) removePeer(request DisconnectRequest) {
self.peersLock.Lock()
address := request.addr
slot := self.peersTable[address.String()]
peer := self.peers[slot]
fmt.Printf("removing peer %v %v (slot %v)\n", address, peer, slot)
if peer == nil {
logger.Debugf("already removed peer on %v", address)
self.peersLock.Unlock()
return
}
// remove from list and index
self.peerCount--
self.peers[slot] = nil
delete(self.peersTable, address.String())
// reset peersmsg
self.peersMsg = nil
fmt.Printf("removed peer %v (slot %v)\n", peer, slot)
self.peersLock.Unlock()
// sending disconnect message
disconnectMsg, _ := NewMsg(DiscMsg, request.reason)
peer.Write("", disconnectMsg)
// be nice and wait
time.Sleep(disconnectGracePeriod * time.Second)
// switch off peer and close connections etc.
fmt.Println("stopping peer")
peer.Stop()
fmt.Println("stopped peer")
// release slot to signal need for a new peer, last!
self.peerSlots <- slot
}
// fix handshake message to push to peers
func (self *Server) Handshake() *Msg {
fmt.Println(self.identity.Pubkey()[1:])
msg, _ := NewMsg(HandshakeMsg, P2PVersion, []byte(self.identity.String()), []interface{}{self.protocols}, self.port, self.identity.Pubkey()[1:])
return msg
}
func (self *Server) RegisterPubkey(candidate *Peer, pubkey []byte) error {
// Check for blacklisting
if self.blacklist.Exists(pubkey) {
return fmt.Errorf("blacklisted")
}
self.peersLock.RLock()
defer self.peersLock.RUnlock()
for _, peer := range self.peers {
if peer != nil && peer != candidate && bytes.Compare(peer.Pubkey, pubkey) == 0 {
return fmt.Errorf("already connected")
}
}
candidate.Pubkey = pubkey
return nil
}

@ -2,207 +2,160 @@ package p2p
import (
"bytes"
"fmt"
"io"
"net"
"sync"
"testing"
"time"
)
type TestNetwork struct {
connections map[string]*TestNetworkConnection
dialer Dialer
maxinbound int
}
func NewTestNetwork(maxinbound int) *TestNetwork {
connections := make(map[string]*TestNetworkConnection)
return &TestNetwork{
connections: connections,
dialer: &TestDialer{connections},
maxinbound: maxinbound,
func startTestServer(t *testing.T, pf peerFunc) *Server {
server := &Server{
Identity: NewSimpleClientIdentity("clientIdentifier", "version", "customIdentifier", "pubkey"),
MaxPeers: 10,
ListenAddr: "127.0.0.1:0",
newPeerFunc: pf,
}
}
func (self *TestNetwork) Dialer(addr net.Addr) (Dialer, error) {
return self.dialer, nil
}
func (self *TestNetwork) Listener(addr net.Addr) (net.Listener, error) {
return &TestListener{
connections: self.connections,
addr: addr,
max: self.maxinbound,
}, nil
}
func (self *TestNetwork) Start() error {
return nil
}
func (self *TestNetwork) NewAddr(string, int) (addr net.Addr, err error) {
return
}
func (self *TestNetwork) ParseAddr(string) (addr net.Addr, err error) {
return
}
type TestAddr struct {
name string
}
func (self *TestAddr) String() string {
return self.name
}
func (*TestAddr) Network() string {
return "test"
}
type TestDialer struct {
connections map[string]*TestNetworkConnection
}
func (self *TestDialer) Dial(network string, addr string) (conn net.Conn, err error) {
address := &TestAddr{addr}
tconn := NewTestNetworkConnection(address)
self.connections[addr] = tconn
conn = net.Conn(tconn)
return
}
type TestListener struct {
connections map[string]*TestNetworkConnection
addr net.Addr
max int
i int
}
func (self *TestListener) Accept() (conn net.Conn, err error) {
self.i++
if self.i > self.max {
err = fmt.Errorf("no more")
} else {
addr := &TestAddr{fmt.Sprintf("inboundpeer-%d", self.i)}
tconn := NewTestNetworkConnection(addr)
key := tconn.RemoteAddr().String()
self.connections[key] = tconn
conn = net.Conn(tconn)
fmt.Printf("accepted connection from: %v \n", addr)
if err := server.Start(); err != nil {
t.Fatalf("Could not start server: %v", err)
}
return
return server
}
func (self *TestListener) Close() error {
return nil
}
func TestServerListen(t *testing.T) {
defer testlog(t).detach()
func (self *TestListener) Addr() net.Addr {
return self.addr
}
func SetupTestServer(handlers Handlers) (network *TestNetwork, server *Server) {
network = NewTestNetwork(1)
addr := &TestAddr{"test:30303"}
identity := NewSimpleClientIdentity("clientIdentifier", "version", "customIdentifier", "pubkey")
maxPeers := 2
if handlers == nil {
handlers = make(Handlers)
}
blackist := NewBlacklist()
server = New(network, addr, identity, handlers, maxPeers, blackist)
fmt.Println(server.identity.Pubkey())
return
}
func TestServerListener(t *testing.T) {
network, server := SetupTestServer(nil)
server.Start(true, false)
time.Sleep(10 * time.Millisecond)
server.Stop()
peer1, ok := network.connections["inboundpeer-1"]
if !ok {
t.Error("not found inbound peer 1")
} else {
fmt.Printf("out: %v\n", peer1.Out)
if len(peer1.Out) != 2 {
t.Errorf("not enough messages sent to peer 1: %v ", len(peer1.Out))
// start the test server
connected := make(chan *Peer)
srv := startTestServer(t, func(srv *Server, conn net.Conn, dialAddr *peerAddr) *Peer {
if conn == nil {
t.Error("peer func called with nil conn")
}
}
if dialAddr != nil {
t.Error("peer func called with non-nil dialAddr")
}
peer := newPeer(conn, nil, dialAddr)
connected <- peer
return peer
})
defer close(connected)
defer srv.Stop()
// dial the test server
conn, err := net.DialTimeout("tcp", srv.ListenAddr, 5*time.Second)
if err != nil {
t.Fatalf("could not dial: %v", err)
}
defer conn.Close()
select {
case peer := <-connected:
if peer.conn.LocalAddr().String() != conn.RemoteAddr().String() {
t.Errorf("peer started with wrong conn: got %v, want %v",
peer.conn.LocalAddr(), conn.RemoteAddr())
}
case <-time.After(1 * time.Second):
t.Error("server did not accept within one second")
}
}
func TestServerDialer(t *testing.T) {
network, server := SetupTestServer(nil)
server.Start(false, true)
server.peerConnect <- &TestAddr{"outboundpeer-1"}
time.Sleep(10 * time.Millisecond)
server.Stop()
peer1, ok := network.connections["outboundpeer-1"]
if !ok {
t.Error("not found outbound peer 1")
} else {
fmt.Printf("out: %v\n", peer1.Out)
if len(peer1.Out) != 2 {
t.Errorf("not enough messages sent to peer 1: %v ", len(peer1.Out))
func TestServerDial(t *testing.T) {
defer testlog(t).detach()
// run a fake TCP server to handle the connection.
listener, err := net.Listen("tcp", "127.0.0.1:0")
if err != nil {
t.Fatalf("could not setup listener: %v")
}
defer listener.Close()
accepted := make(chan net.Conn)
go func() {
conn, err := listener.Accept()
if err != nil {
t.Error("acccept error:", err)
}
conn.Close()
accepted <- conn
}()
// start the test server
connected := make(chan *Peer)
srv := startTestServer(t, func(srv *Server, conn net.Conn, dialAddr *peerAddr) *Peer {
if conn == nil {
t.Error("peer func called with nil conn")
}
peer := newPeer(conn, nil, dialAddr)
connected <- peer
return peer
})
defer close(connected)
defer srv.Stop()
// tell the server to connect.
connAddr := newPeerAddr(listener.Addr(), nil)
srv.peerConnect <- connAddr
select {
case conn := <-accepted:
select {
case peer := <-connected:
if peer.conn.RemoteAddr().String() != conn.LocalAddr().String() {
t.Errorf("peer started with wrong conn: got %v, want %v",
peer.conn.RemoteAddr(), conn.LocalAddr())
}
if peer.dialAddr != connAddr {
t.Errorf("peer started with wrong dialAddr: got %v, want %v",
peer.dialAddr, connAddr)
}
case <-time.After(1 * time.Second):
t.Error("server did not launch peer within one second")
}
case <-time.After(1 * time.Second):
t.Error("server did not connect within one second")
}
}
func TestServerBroadcast(t *testing.T) {
handlers := make(Handlers)
testProtocol := &TestProtocol{Msgs: []*Msg{}}
handlers["aaa"] = func(p *Peer) Protocol { return testProtocol }
network, server := SetupTestServer(handlers)
server.Start(true, true)
server.peerConnect <- &TestAddr{"outboundpeer-1"}
time.Sleep(10 * time.Millisecond)
msg, _ := NewMsg(0)
server.Broadcast("", msg)
packet := Packet(0, 0)
time.Sleep(10 * time.Millisecond)
server.Stop()
peer1, ok := network.connections["outboundpeer-1"]
if !ok {
t.Error("not found outbound peer 1")
} else {
fmt.Printf("out: %v\n", peer1.Out)
if len(peer1.Out) != 3 {
t.Errorf("not enough messages sent to peer 1: %v ", len(peer1.Out))
} else {
if bytes.Compare(peer1.Out[1], packet) != 0 {
t.Errorf("incorrect broadcast packet %v != %v", peer1.Out[1], packet)
}
}
}
peer2, ok := network.connections["inboundpeer-1"]
if !ok {
t.Error("not found inbound peer 2")
} else {
fmt.Printf("out: %v\n", peer2.Out)
if len(peer1.Out) != 3 {
t.Errorf("not enough messages sent to peer 2: %v ", len(peer2.Out))
} else {
if bytes.Compare(peer2.Out[1], packet) != 0 {
t.Errorf("incorrect broadcast packet %v != %v", peer2.Out[1], packet)
}
}
}
}
defer testlog(t).detach()
var connected sync.WaitGroup
srv := startTestServer(t, func(srv *Server, c net.Conn, dialAddr *peerAddr) *Peer {
peer := newPeer(c, []Protocol{discard}, dialAddr)
peer.startSubprotocols([]Cap{discard.cap()})
connected.Done()
return peer
})
defer srv.Stop()
func TestServerPeersMessage(t *testing.T) {
handlers := make(Handlers)
_, server := SetupTestServer(handlers)
server.Start(true, true)
defer server.Stop()
server.peerConnect <- &TestAddr{"outboundpeer-1"}
time.Sleep(10 * time.Millisecond)
peersMsg, err := server.PeersMessage()
fmt.Println(peersMsg)
if err != nil {
t.Errorf("expect no error, got %v", err)
// dial a bunch of conns
var conns = make([]net.Conn, 8)
connected.Add(len(conns))
deadline := time.Now().Add(3 * time.Second)
dialer := &net.Dialer{Deadline: deadline}
for i := range conns {
conn, err := dialer.Dial("tcp", srv.ListenAddr)
if err != nil {
t.Fatalf("conn %d: dial error: %v", i, err)
}
defer conn.Close()
conn.SetDeadline(deadline)
conns[i] = conn
}
if c := server.PeerCount(); c != 2 {
t.Errorf("expect 2 peers, got %v", c)
connected.Wait()
// broadcast one message
srv.Broadcast("discard", 0, "foo")
goldbuf := new(bytes.Buffer)
writeMsg(goldbuf, NewMsg(16, "foo"))
golden := goldbuf.Bytes()
// check that the message has been written everywhere
for i, conn := range conns {
buf := make([]byte, len(golden))
if _, err := io.ReadFull(conn, buf); err != nil {
t.Errorf("conn %d: read error: %v", i, err)
} else if !bytes.Equal(buf, golden) {
t.Errorf("conn %d: msg mismatch\ngot: %x\nwant: %x", i, buf, golden)
}
}
}

28
p2p/testlog_test.go Normal file

@ -0,0 +1,28 @@
package p2p
import (
"testing"
"github.com/ethereum/go-ethereum/logger"
)
type testLogger struct{ t *testing.T }
func testlog(t *testing.T) testLogger {
logger.Reset()
l := testLogger{t}
logger.AddLogSystem(l)
return l
}
func (testLogger) GetLogLevel() logger.LogLevel { return logger.DebugLevel }
func (testLogger) SetLogLevel(logger.LogLevel) {}
func (l testLogger) LogPrint(level logger.LogLevel, msg string) {
l.t.Logf("%s", msg)
}
func (testLogger) detach() {
logger.Flush()
logger.Reset()
}

40
p2p/testpoc7.go Normal file

@ -0,0 +1,40 @@
// +build none
package main
import (
"fmt"
"log"
"net"
"os"
"github.com/ethereum/go-ethereum/logger"
"github.com/ethereum/go-ethereum/p2p"
"github.com/obscuren/secp256k1-go"
)
func main() {
logger.AddLogSystem(logger.NewStdLogSystem(os.Stdout, log.LstdFlags, logger.DebugLevel))
pub, _ := secp256k1.GenerateKeyPair()
srv := p2p.Server{
MaxPeers: 10,
Identity: p2p.NewSimpleClientIdentity("test", "1.0", "", string(pub)),
ListenAddr: ":30303",
NAT: p2p.PMP(net.ParseIP("10.0.0.1")),
}
if err := srv.Start(); err != nil {
fmt.Println("could not start server:", err)
os.Exit(1)
}
// add seed peers
seed, err := net.ResolveTCPAddr("tcp", "poc-7.ethdev.com:30303")
if err != nil {
fmt.Println("couldn't resolve:", err)
os.Exit(1)
}
srv.SuggestPeer(seed.IP, seed.Port, nil)
select {}
}

@ -1,6 +1,7 @@
package rlp
import (
"bufio"
"encoding/binary"
"errors"
"fmt"
@ -24,8 +25,9 @@ type Decoder interface {
DecodeRLP(*Stream) error
}
// Decode parses RLP-encoded data from r and stores the result
// in the value pointed to by val. Val must be a non-nil pointer.
// Decode parses RLP-encoded data from r and stores the result in the
// value pointed to by val. Val must be a non-nil pointer. If r does
// not implement ByteReader, Decode will do its own buffering.
//
// Decode uses the following type-dependent decoding rules:
//
@ -66,10 +68,19 @@ type Decoder interface {
//
// Non-empty interface types are not supported, nor are bool, float32,
// float64, maps, channel types and functions.
func Decode(r ByteReader, val interface{}) error {
func Decode(r io.Reader, val interface{}) error {
return NewStream(r).Decode(val)
}
type decodeError struct {
msg string
typ reflect.Type
}
func (err decodeError) Error() string {
return fmt.Sprintf("rlp: %s for %v", err.msg, err.typ)
}
func makeNumDecoder(typ reflect.Type) decoder {
kind := typ.Kind()
switch {
@ -83,8 +94,11 @@ func makeNumDecoder(typ reflect.Type) decoder {
}
func decodeInt(s *Stream, val reflect.Value) error {
num, err := s.uint(val.Type().Bits())
if err != nil {
typ := val.Type()
num, err := s.uint(typ.Bits())
if err == errUintOverflow {
return decodeError{"input string too long", typ}
} else if err != nil {
return err
}
val.SetInt(int64(num))
@ -92,8 +106,11 @@ func decodeInt(s *Stream, val reflect.Value) error {
}
func decodeUint(s *Stream, val reflect.Value) error {
num, err := s.uint(val.Type().Bits())
if err != nil {
typ := val.Type()
num, err := s.uint(typ.Bits())
if err == errUintOverflow {
return decodeError{"input string too big", typ}
} else if err != nil {
return err
}
val.SetUint(num)
@ -175,7 +192,7 @@ func decodeList(s *Stream, val reflect.Value, elemdec decoder, maxelem int) erro
i := 0
for {
if i > maxelem {
return fmt.Errorf("rlp: input List has more than %d elements", maxelem)
return decodeError{"input list has too many elements", val.Type()}
}
if val.Kind() == reflect.Slice {
// grow slice if necessary
@ -226,8 +243,6 @@ func decodeByteSlice(s *Stream, val reflect.Value) error {
return err
}
var errStringDoesntFitArray = errors.New("rlp: string value doesn't fit into target array")
func decodeByteArray(s *Stream, val reflect.Value) error {
kind, size, err := s.Kind()
if err != nil {
@ -236,14 +251,14 @@ func decodeByteArray(s *Stream, val reflect.Value) error {
switch kind {
case Byte:
if val.Len() == 0 {
return errStringDoesntFitArray
return decodeError{"input string too big", val.Type()}
}
bv, _ := s.Uint()
val.Index(0).SetUint(bv)
zero(val, 1)
case String:
if uint64(val.Len()) < size {
return errStringDoesntFitArray
return decodeError{"input string too big", val.Type()}
}
slice := val.Slice(0, int(size)).Interface().([]byte)
if err := s.readFull(slice); err != nil {
@ -293,7 +308,7 @@ func makeStructDecoder(typ reflect.Type) (decoder, error) {
}
}
if err = s.ListEnd(); err == errNotAtEOL {
err = errors.New("rlp: input List has too many elements")
err = decodeError{"input list has too many elements", typ}
}
return err
}
@ -432,8 +447,23 @@ type Stream struct {
type listpos struct{ pos, size uint64 }
func NewStream(r ByteReader) *Stream {
return &Stream{r: r, uintbuf: make([]byte, 8), kind: -1}
// NewStream creates a new stream reading from r.
// If r does not implement ByteReader, the Stream will
// introduce its own buffering.
func NewStream(r io.Reader) *Stream {
s := new(Stream)
s.Reset(r)
return s
}
// NewListStream creates a new stream that pretends to be positioned
// at an encoded list of the given length.
func NewListStream(r io.Reader, len uint64) *Stream {
s := new(Stream)
s.Reset(r)
s.kind = List
s.size = len
return s
}
// Bytes reads an RLP string and returns its contents as a byte slice.
@ -459,6 +489,8 @@ func (s *Stream) Bytes() ([]byte, error) {
}
}
var errUintOverflow = errors.New("rlp: uint overflow")
// Uint reads an RLP string of up to 8 bytes and returns its contents
// as an unsigned integer. If the input does not contain an RLP string, the
// returned error will be ErrExpectedString.
@ -477,7 +509,7 @@ func (s *Stream) uint(maxbits int) (uint64, error) {
return uint64(s.byteval), nil
case String:
if size > uint64(maxbits/8) {
return 0, fmt.Errorf("rlp: string is larger than %d bits", maxbits)
return 0, errUintOverflow
}
return s.readUint(byte(size))
default:
@ -543,6 +575,23 @@ func (s *Stream) Decode(val interface{}) error {
return info.decoder(s, rval.Elem())
}
// Reset discards any information about the current decoding context
// and starts reading from r. If r does not also implement ByteReader,
// Stream will do its own buffering.
func (s *Stream) Reset(r io.Reader) {
bufr, ok := r.(ByteReader)
if !ok {
bufr = bufio.NewReader(r)
}
s.r = bufr
s.stack = s.stack[:0]
s.size = 0
s.kind = -1
if s.uintbuf == nil {
s.uintbuf = make([]byte, 8)
}
}
// Kind returns the kind and size of the next value in the
// input stream.
//

@ -3,7 +3,6 @@ package rlp
import (
"bytes"
"encoding/hex"
"errors"
"fmt"
"io"
"math/big"
@ -54,6 +53,24 @@ func TestStreamKind(t *testing.T) {
}
}
func TestNewListStream(t *testing.T) {
ls := NewListStream(bytes.NewReader(unhex("0101010101")), 3)
if k, size, err := ls.Kind(); k != List || size != 3 || err != nil {
t.Errorf("Kind() returned (%v, %d, %v), expected (List, 3, nil)", k, size, err)
}
if size, err := ls.List(); size != 3 || err != nil {
t.Errorf("List() returned (%d, %v), expected (3, nil)", size, err)
}
for i := 0; i < 3; i++ {
if val, err := ls.Uint(); val != 1 || err != nil {
t.Errorf("Uint() returned (%d, %v), expected (1, nil)", val, err)
}
}
if err := ls.ListEnd(); err != nil {
t.Errorf("ListEnd() returned %v, expected (3, nil)", err)
}
}
func TestStreamErrors(t *testing.T) {
type calls []string
tests := []struct {
@ -69,7 +86,7 @@ func TestStreamErrors(t *testing.T) {
{"81", calls{"Bytes"}, io.ErrUnexpectedEOF},
{"81", calls{"Uint"}, io.ErrUnexpectedEOF},
{"BFFFFFFFFFFFFFFF", calls{"Bytes"}, io.ErrUnexpectedEOF},
{"89000000000000000001", calls{"Uint"}, errors.New("rlp: string is larger than 64 bits")},
{"89000000000000000001", calls{"Uint"}, errUintOverflow},
{"00", calls{"List"}, ErrExpectedList},
{"80", calls{"List"}, ErrExpectedList},
{"C0", calls{"List", "Uint"}, EOL},
@ -163,7 +180,7 @@ type decodeTest struct {
input string
ptr interface{}
value interface{}
error error
error string
}
type simplestruct struct {
@ -196,8 +213,8 @@ var decodeTests = []decodeTest{
{input: "820505", ptr: new(uint32), value: uint32(0x0505)},
{input: "83050505", ptr: new(uint32), value: uint32(0x050505)},
{input: "8405050505", ptr: new(uint32), value: uint32(0x05050505)},
{input: "850505050505", ptr: new(uint32), error: errors.New("rlp: string is larger than 32 bits")},
{input: "C0", ptr: new(uint32), error: ErrExpectedString},
{input: "850505050505", ptr: new(uint32), error: "rlp: input string too big for uint32"},
{input: "C0", ptr: new(uint32), error: ErrExpectedString.Error()},
// slices
{input: "C0", ptr: new([]int), value: []int{}},
@ -206,7 +223,7 @@ var decodeTests = []decodeTest{
// arrays
{input: "C0", ptr: new([5]int), value: [5]int{}},
{input: "C50102030405", ptr: new([5]int), value: [5]int{1, 2, 3, 4, 5}},
{input: "C6010203040506", ptr: new([5]int), error: errors.New("rlp: input List has more than 5 elements")},
{input: "C6010203040506", ptr: new([5]int), error: "rlp: input list has too many elements for [5]int"},
// byte slices
{input: "01", ptr: new([]byte), value: []byte{1}},
@ -214,7 +231,7 @@ var decodeTests = []decodeTest{
{input: "8D6162636465666768696A6B6C6D", ptr: new([]byte), value: []byte("abcdefghijklm")},
{input: "C0", ptr: new([]byte), value: []byte{}},
{input: "C3010203", ptr: new([]byte), value: []byte{1, 2, 3}},
{input: "C3820102", ptr: new([]byte), error: errors.New("rlp: string is larger than 8 bits")},
{input: "C3820102", ptr: new([]byte), error: "rlp: input string too big for uint8"},
// byte arrays
{input: "01", ptr: new([5]byte), value: [5]byte{1}},
@ -222,9 +239,9 @@ var decodeTests = []decodeTest{
{input: "850102030405", ptr: new([5]byte), value: [5]byte{1, 2, 3, 4, 5}},
{input: "C0", ptr: new([5]byte), value: [5]byte{}},
{input: "C3010203", ptr: new([5]byte), value: [5]byte{1, 2, 3, 0, 0}},
{input: "C3820102", ptr: new([5]byte), error: errors.New("rlp: string is larger than 8 bits")},
{input: "86010203040506", ptr: new([5]byte), error: errStringDoesntFitArray},
{input: "850101", ptr: new([5]byte), error: io.ErrUnexpectedEOF},
{input: "C3820102", ptr: new([5]byte), error: "rlp: input string too big for uint8"},
{input: "86010203040506", ptr: new([5]byte), error: "rlp: input string too big for [5]uint8"},
{input: "850101", ptr: new([5]byte), error: io.ErrUnexpectedEOF.Error()},
// byte array reuse (should be zeroed)
{input: "850102030405", ptr: &sharedByteArray, value: [5]byte{1, 2, 3, 4, 5}},
@ -237,25 +254,25 @@ var decodeTests = []decodeTest{
// zero sized byte arrays
{input: "80", ptr: new([0]byte), value: [0]byte{}},
{input: "C0", ptr: new([0]byte), value: [0]byte{}},
{input: "01", ptr: new([0]byte), error: errStringDoesntFitArray},
{input: "8101", ptr: new([0]byte), error: errStringDoesntFitArray},
{input: "01", ptr: new([0]byte), error: "rlp: input string too big for [0]uint8"},
{input: "8101", ptr: new([0]byte), error: "rlp: input string too big for [0]uint8"},
// strings
{input: "00", ptr: new(string), value: "\000"},
{input: "8D6162636465666768696A6B6C6D", ptr: new(string), value: "abcdefghijklm"},
{input: "C0", ptr: new(string), error: ErrExpectedString},
{input: "C0", ptr: new(string), error: ErrExpectedString.Error()},
// big ints
{input: "01", ptr: new(*big.Int), value: big.NewInt(1)},
{input: "89FFFFFFFFFFFFFFFFFF", ptr: new(*big.Int), value: veryBigInt},
{input: "10", ptr: new(big.Int), value: *big.NewInt(16)}, // non-pointer also works
{input: "C0", ptr: new(*big.Int), error: ErrExpectedString},
{input: "C0", ptr: new(*big.Int), error: ErrExpectedString.Error()},
// structs
{input: "C0", ptr: new(simplestruct), value: simplestruct{0, ""}},
{input: "C105", ptr: new(simplestruct), value: simplestruct{5, ""}},
{input: "C50583343434", ptr: new(simplestruct), value: simplestruct{5, "444"}},
{input: "C3010101", ptr: new(simplestruct), error: errors.New("rlp: input List has too many elements")},
{input: "C3010101", ptr: new(simplestruct), error: "rlp: input list has too many elements for rlp.simplestruct"},
{
input: "C501C302C103",
ptr: new(recstruct),
@ -286,20 +303,20 @@ var decodeTests = []decodeTest{
func intp(i int) *int { return &i }
func TestDecode(t *testing.T) {
func runTests(t *testing.T, decode func([]byte, interface{}) error) {
for i, test := range decodeTests {
input, err := hex.DecodeString(test.input)
if err != nil {
t.Errorf("test %d: invalid hex input %q", i, test.input)
continue
}
err = Decode(bytes.NewReader(input), test.ptr)
if err != nil && test.error == nil {
err = decode(input, test.ptr)
if err != nil && test.error == "" {
t.Errorf("test %d: unexpected Decode error: %v\ndecoding into %T\ninput %q",
i, err, test.ptr, test.input)
continue
}
if test.error != nil && fmt.Sprint(err) != fmt.Sprint(test.error) {
if test.error != "" && fmt.Sprint(err) != test.error {
t.Errorf("test %d: Decode error mismatch\ngot %v\nwant %v\ndecoding into %T\ninput %q",
i, err, test.error, test.ptr, test.input)
continue
@ -312,6 +329,40 @@ func TestDecode(t *testing.T) {
}
}
func TestDecodeWithByteReader(t *testing.T) {
runTests(t, func(input []byte, into interface{}) error {
return Decode(bytes.NewReader(input), into)
})
}
// dumbReader reads from a byte slice but does not
// implement ReadByte.
type dumbReader []byte
func (r *dumbReader) Read(buf []byte) (n int, err error) {
if len(*r) == 0 {
return 0, io.EOF
}
n = copy(buf, *r)
*r = (*r)[n:]
return n, nil
}
func TestDecodeWithNonByteReader(t *testing.T) {
runTests(t, func(input []byte, into interface{}) error {
r := dumbReader(input)
return Decode(&r, into)
})
}
func TestDecodeStreamReset(t *testing.T) {
s := NewStream(nil)
runTests(t, func(input []byte, into interface{}) error {
s.Reset(bytes.NewReader(input))
return s.Decode(into)
})
}
type testDecoder struct{ called bool }
func (t *testDecoder) DecodeRLP(s *Stream) error {