// Copyright 2019 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see . package les import ( "encoding/binary" "io" "math" "sync" "time" "github.com/ethereum/go-ethereum/common" "github.com/ethereum/go-ethereum/common/mclock" "github.com/ethereum/go-ethereum/common/prque" "github.com/ethereum/go-ethereum/ethdb" "github.com/ethereum/go-ethereum/log" "github.com/ethereum/go-ethereum/p2p/enode" "github.com/ethereum/go-ethereum/rlp" "github.com/hashicorp/golang-lru" ) const ( negBalanceExpTC = time.Hour // time constant for exponentially reducing negative balance fixedPointMultiplier = 0x1000000 // constant to convert logarithms to fixed point format lazyQueueRefresh = time.Second * 10 // refresh period of the connected queue persistCumulativeTimeRefresh = time.Minute * 5 // refresh period of the cumulative running time persistence posBalanceCacheLimit = 8192 // the maximum number of cached items in positive balance queue negBalanceCacheLimit = 8192 // the maximum number of cached items in negative balance queue // connectedBias is applied to already connected clients So that // already connected client won't be kicked out very soon and we // can ensure all connected clients can have enough time to request // or sync some data. // // todo(rjl493456442) make it configurable. It can be the option of // free trial time! connectedBias = time.Minute * 3 ) // clientPool implements a client database that assigns a priority to each client // based on a positive and negative balance. Positive balance is externally assigned // to prioritized clients and is decreased with connection time and processed // requests (unless the price factors are zero). If the positive balance is zero // then negative balance is accumulated. // // Balance tracking and priority calculation for connected clients is done by // balanceTracker. connectedQueue ensures that clients with the lowest positive or // highest negative balance get evicted when the total capacity allowance is full // and new clients with a better balance want to connect. // // Already connected nodes receive a small bias in their favor in order to avoid // accepting and instantly kicking out clients. In theory, we try to ensure that // each client can have several minutes of connection time. // // Balances of disconnected clients are stored in nodeDB including positive balance // and negative banalce. Negative balance is transformed into a logarithmic form // with a constantly shifting linear offset in order to implement an exponential // decrease. Besides nodeDB will have a background thread to check the negative // balance of disconnected client. If the balance is low enough, then the record // will be dropped. type clientPool struct { ndb *nodeDB lock sync.Mutex clock mclock.Clock stopCh chan struct{} closed bool removePeer func(enode.ID) connectedMap map[enode.ID]*clientInfo connectedQueue *prque.LazyQueue posFactors, negFactors priceFactors connLimit int // The maximum number of connections that clientpool can support capLimit uint64 // The maximum cumulative capacity that clientpool can support connectedCap uint64 // The sum of the capacity of the current clientpool connected freeClientCap uint64 // The capacity value of each free client startTime mclock.AbsTime // The timestamp at which the clientpool started running cumulativeTime int64 // The cumulative running time of clientpool at the start point. disableBias bool // Disable connection bias(used in testing) } // clientPeer represents a client in the pool. // Positive balances are assigned to node key while negative balances are assigned // to freeClientId. Currently network IP address without port is used because // clients have a limited access to IP addresses while new node keys can be easily // generated so it would be useless to assign a negative value to them. type clientPeer interface { ID() enode.ID freeClientId() string updateCapacity(uint64) } // clientInfo represents a connected client type clientInfo struct { address string id enode.ID capacity uint64 priority bool pool *clientPool peer clientPeer queueIndex int // position in connectedQueue balanceTracker balanceTracker } // connSetIndex callback updates clientInfo item index in connectedQueue func connSetIndex(a interface{}, index int) { a.(*clientInfo).queueIndex = index } // connPriority callback returns actual priority of clientInfo item in connectedQueue func connPriority(a interface{}, now mclock.AbsTime) int64 { c := a.(*clientInfo) return c.balanceTracker.getPriority(now) } // connMaxPriority callback returns estimated maximum priority of clientInfo item in connectedQueue func connMaxPriority(a interface{}, until mclock.AbsTime) int64 { c := a.(*clientInfo) pri := c.balanceTracker.estimatedPriority(until, true) c.balanceTracker.addCallback(balanceCallbackQueue, pri+1, func() { c.pool.lock.Lock() if c.queueIndex != -1 { c.pool.connectedQueue.Update(c.queueIndex) } c.pool.lock.Unlock() }) return pri } // priceFactors determine the pricing policy (may apply either to positive or // negative balances which may have different factors). // - timeFactor is cost unit per nanosecond of connection time // - capacityFactor is cost unit per nanosecond of connection time per 1000000 capacity // - requestFactor is cost unit per request "realCost" unit type priceFactors struct { timeFactor, capacityFactor, requestFactor float64 } // newClientPool creates a new client pool func newClientPool(db ethdb.Database, freeClientCap uint64, clock mclock.Clock, removePeer func(enode.ID)) *clientPool { ndb := newNodeDB(db, clock) pool := &clientPool{ ndb: ndb, clock: clock, connectedMap: make(map[enode.ID]*clientInfo), connectedQueue: prque.NewLazyQueue(connSetIndex, connPriority, connMaxPriority, clock, lazyQueueRefresh), freeClientCap: freeClientCap, removePeer: removePeer, startTime: clock.Now(), cumulativeTime: ndb.getCumulativeTime(), stopCh: make(chan struct{}), } // If the negative balance of free client is even lower than 1, // delete this entry. ndb.nbEvictCallBack = func(now mclock.AbsTime, b negBalance) bool { balance := math.Exp(float64(b.logValue-pool.logOffset(now)) / fixedPointMultiplier) return balance <= 1 } go func() { for { select { case <-clock.After(lazyQueueRefresh): pool.lock.Lock() pool.connectedQueue.Refresh() pool.lock.Unlock() case <-clock.After(persistCumulativeTimeRefresh): pool.ndb.setCumulativeTime(pool.logOffset(clock.Now())) case <-pool.stopCh: return } } }() return pool } // stop shuts the client pool down func (f *clientPool) stop() { close(f.stopCh) f.lock.Lock() f.closed = true f.lock.Unlock() f.ndb.setCumulativeTime(f.logOffset(f.clock.Now())) f.ndb.close() } // connect should be called after a successful handshake. If the connection was // rejected, there is no need to call disconnect. func (f *clientPool) connect(peer clientPeer, capacity uint64) bool { f.lock.Lock() defer f.lock.Unlock() // Short circuit if clientPool is already closed. if f.closed { return false } // Dedup connected peers. id, freeID := peer.ID(), peer.freeClientId() if _, ok := f.connectedMap[id]; ok { clientRejectedMeter.Mark(1) log.Debug("Client already connected", "address", freeID, "id", peerIdToString(id)) return false } // Create a clientInfo but do not add it yet var ( posBalance uint64 negBalance uint64 now = f.clock.Now() ) pb := f.ndb.getOrNewPB(id) posBalance = pb.value e := &clientInfo{pool: f, peer: peer, address: freeID, queueIndex: -1, id: id, priority: posBalance != 0} nb := f.ndb.getOrNewNB(freeID) if nb.logValue != 0 { negBalance = uint64(math.Exp(float64(nb.logValue-f.logOffset(now)) / fixedPointMultiplier)) negBalance *= uint64(time.Second) } // If the client is a free client, assign with a low free capacity, // Otherwise assign with the given value(priority client) if !e.priority { capacity = f.freeClientCap } // Ensure the capacity will never lower than the free capacity. if capacity < f.freeClientCap { capacity = f.freeClientCap } e.capacity = capacity // Starts a balance tracker e.balanceTracker.init(f.clock, capacity) e.balanceTracker.setBalance(posBalance, negBalance) f.setClientPriceFactors(e) // If the number of clients already connected in the clientpool exceeds its // capacity, evict some clients with lowest priority. // // If the priority of the newly added client is lower than the priority of // all connected clients, the client is rejected. newCapacity := f.connectedCap + capacity newCount := f.connectedQueue.Size() + 1 if newCapacity > f.capLimit || newCount > f.connLimit { var ( kickList []*clientInfo kickPriority int64 ) f.connectedQueue.MultiPop(func(data interface{}, priority int64) bool { c := data.(*clientInfo) kickList = append(kickList, c) kickPriority = priority newCapacity -= c.capacity newCount-- return newCapacity > f.capLimit || newCount > f.connLimit }) bias := connectedBias if f.disableBias { bias = 0 } if newCapacity > f.capLimit || newCount > f.connLimit || (e.balanceTracker.estimatedPriority(now+mclock.AbsTime(bias), false)-kickPriority) > 0 { for _, c := range kickList { f.connectedQueue.Push(c) } clientRejectedMeter.Mark(1) log.Debug("Client rejected", "address", freeID, "id", peerIdToString(id)) return false } // accept new client, drop old ones for _, c := range kickList { f.dropClient(c, now, true) } } // Register new client to connection queue. f.connectedMap[id] = e f.connectedQueue.Push(e) f.connectedCap += e.capacity // If the current client is a paid client, monitor the status of client, // downgrade it to normal client if positive balance is used up. if e.priority { e.balanceTracker.addCallback(balanceCallbackZero, 0, func() { f.balanceExhausted(id) }) } // If the capacity of client is not the default value(free capacity), notify // it to update capacity. if e.capacity != f.freeClientCap { e.peer.updateCapacity(e.capacity) } totalConnectedGauge.Update(int64(f.connectedCap)) clientConnectedMeter.Mark(1) log.Debug("Client accepted", "address", freeID) return true } // disconnect should be called when a connection is terminated. If the disconnection // was initiated by the pool itself using disconnectFn then calling disconnect is // not necessary but permitted. func (f *clientPool) disconnect(p clientPeer) { f.lock.Lock() defer f.lock.Unlock() // Short circuit if client pool is already closed. if f.closed { return } // Short circuit if the peer hasn't been registered. e := f.connectedMap[p.ID()] if e == nil { log.Debug("Client not connected", "address", p.freeClientId(), "id", peerIdToString(p.ID())) return } f.dropClient(e, f.clock.Now(), false) } // dropClient removes a client from the connected queue and finalizes its balance. // If kick is true then it also initiates the disconnection. func (f *clientPool) dropClient(e *clientInfo, now mclock.AbsTime, kick bool) { if _, ok := f.connectedMap[e.id]; !ok { return } f.finalizeBalance(e, now) f.connectedQueue.Remove(e.queueIndex) delete(f.connectedMap, e.id) f.connectedCap -= e.capacity totalConnectedGauge.Update(int64(f.connectedCap)) if kick { clientKickedMeter.Mark(1) log.Debug("Client kicked out", "address", e.address) f.removePeer(e.id) } else { clientDisconnectedMeter.Mark(1) log.Debug("Client disconnected", "address", e.address) } } // finalizeBalance stops the balance tracker, retrieves the final balances and // stores them in posBalanceQueue and negBalanceQueue func (f *clientPool) finalizeBalance(c *clientInfo, now mclock.AbsTime) { c.balanceTracker.stop(now) pos, neg := c.balanceTracker.getBalance(now) pb, nb := f.ndb.getOrNewPB(c.id), f.ndb.getOrNewNB(c.address) pb.value = pos f.ndb.setPB(c.id, pb) neg /= uint64(time.Second) // Convert the expanse to second level. if neg > 1 { nb.logValue = int64(math.Log(float64(neg))*fixedPointMultiplier) + f.logOffset(now) f.ndb.setNB(c.address, nb) } else { f.ndb.delNB(c.address) // Negative balance is small enough, drop it directly. } } // balanceExhausted callback is called by balanceTracker when positive balance is exhausted. // It revokes priority status and also reduces the client capacity if necessary. func (f *clientPool) balanceExhausted(id enode.ID) { f.lock.Lock() defer f.lock.Unlock() c := f.connectedMap[id] if c == nil || !c.priority { return } c.priority = false if c.capacity != f.freeClientCap { f.connectedCap += f.freeClientCap - c.capacity totalConnectedGauge.Update(int64(f.connectedCap)) c.capacity = f.freeClientCap c.peer.updateCapacity(c.capacity) } f.ndb.delPB(id) } // setConnLimit sets the maximum number and total capacity of connected clients, // dropping some of them if necessary. func (f *clientPool) setLimits(totalConn int, totalCap uint64) { f.lock.Lock() defer f.lock.Unlock() f.connLimit = totalConn f.capLimit = totalCap if f.connectedCap > f.capLimit || f.connectedQueue.Size() > f.connLimit { f.connectedQueue.MultiPop(func(data interface{}, priority int64) bool { f.dropClient(data.(*clientInfo), mclock.Now(), true) return f.connectedCap > f.capLimit || f.connectedQueue.Size() > f.connLimit }) } } // requestCost feeds request cost after serving a request from the given peer. func (f *clientPool) requestCost(p *peer, cost uint64) { f.lock.Lock() defer f.lock.Unlock() info, exist := f.connectedMap[p.ID()] if !exist || f.closed { return } info.balanceTracker.requestCost(cost) } // logOffset calculates the time-dependent offset for the logarithmic // representation of negative balance // // From another point of view, the result returned by the function represents // the total time that the clientpool is cumulatively running(total_hours/multiplier). func (f *clientPool) logOffset(now mclock.AbsTime) int64 { // Note: fixedPointMultiplier acts as a multiplier here; the reason for dividing the divisor // is to avoid int64 overflow. We assume that int64(negBalanceExpTC) >> fixedPointMultiplier. cumulativeTime := int64((time.Duration(now - f.startTime)) / (negBalanceExpTC / fixedPointMultiplier)) return f.cumulativeTime + cumulativeTime } // setPriceFactors changes pricing factors for both positive and negative balances. // Applies to connected clients and also future connections. func (f *clientPool) setPriceFactors(posFactors, negFactors priceFactors) { f.lock.Lock() defer f.lock.Unlock() f.posFactors, f.negFactors = posFactors, negFactors for _, c := range f.connectedMap { f.setClientPriceFactors(c) } } // setClientPriceFactors sets the pricing factors for an individual connected client func (f *clientPool) setClientPriceFactors(c *clientInfo) { c.balanceTracker.setFactors(true, f.negFactors.timeFactor+float64(c.capacity)*f.negFactors.capacityFactor/1000000, f.negFactors.requestFactor) c.balanceTracker.setFactors(false, f.posFactors.timeFactor+float64(c.capacity)*f.posFactors.capacityFactor/1000000, f.posFactors.requestFactor) } // addBalance updates the positive balance of a client. // If setTotal is false then the given amount is added to the balance. // If setTotal is true then amount represents the total amount ever added to the // given ID and positive balance is increased by (amount-lastTotal) while lastTotal // is updated to amount. This method also allows removing positive balance. func (f *clientPool) addBalance(id enode.ID, amount uint64, setTotal bool) { f.lock.Lock() defer f.lock.Unlock() pb := f.ndb.getOrNewPB(id) c := f.connectedMap[id] if c != nil { posBalance, negBalance := c.balanceTracker.getBalance(f.clock.Now()) pb.value = posBalance defer func() { c.balanceTracker.setBalance(pb.value, negBalance) if !c.priority && pb.value > 0 { c.priority = true c.balanceTracker.addCallback(balanceCallbackZero, 0, func() { f.balanceExhausted(id) }) } }() } if setTotal { if pb.value+amount > pb.lastTotal { pb.value += amount - pb.lastTotal } else { pb.value = 0 } pb.lastTotal = amount } else { pb.value += amount pb.lastTotal += amount } f.ndb.setPB(id, pb) } // posBalance represents a recently accessed positive balance entry type posBalance struct { value, lastTotal uint64 } // EncodeRLP implements rlp.Encoder func (e *posBalance) EncodeRLP(w io.Writer) error { return rlp.Encode(w, []interface{}{e.value, e.lastTotal}) } // DecodeRLP implements rlp.Decoder func (e *posBalance) DecodeRLP(s *rlp.Stream) error { var entry struct { Value, LastTotal uint64 } if err := s.Decode(&entry); err != nil { return err } e.value = entry.Value e.lastTotal = entry.LastTotal return nil } // negBalance represents a negative balance entry of a disconnected client type negBalance struct{ logValue int64 } // EncodeRLP implements rlp.Encoder func (e *negBalance) EncodeRLP(w io.Writer) error { return rlp.Encode(w, []interface{}{uint64(e.logValue)}) } // DecodeRLP implements rlp.Decoder func (e *negBalance) DecodeRLP(s *rlp.Stream) error { var entry struct { LogValue uint64 } if err := s.Decode(&entry); err != nil { return err } e.logValue = int64(entry.LogValue) return nil } const ( // nodeDBVersion is the version identifier of the node data in db nodeDBVersion = 0 // dbCleanupCycle is the cycle of db for useless data cleanup dbCleanupCycle = time.Hour ) var ( positiveBalancePrefix = []byte("pb:") // dbVersion(uint16 big endian) + positiveBalancePrefix + id -> balance negativeBalancePrefix = []byte("nb:") // dbVersion(uint16 big endian) + negativeBalancePrefix + ip -> balance cumulativeRunningTimeKey = []byte("cumulativeTime:") // dbVersion(uint16 big endian) + cumulativeRunningTimeKey -> cumulativeTime ) type nodeDB struct { db ethdb.Database pcache *lru.Cache ncache *lru.Cache auxbuf []byte // 37-byte auxiliary buffer for key encoding verbuf [2]byte // 2-byte auxiliary buffer for db version nbEvictCallBack func(mclock.AbsTime, negBalance) bool // Callback to determine whether the negative balance can be evicted. clock mclock.Clock closeCh chan struct{} cleanupHook func() // Test hook used for testing } func newNodeDB(db ethdb.Database, clock mclock.Clock) *nodeDB { pcache, _ := lru.New(posBalanceCacheLimit) ncache, _ := lru.New(negBalanceCacheLimit) ndb := &nodeDB{ db: db, pcache: pcache, ncache: ncache, auxbuf: make([]byte, 37), clock: clock, closeCh: make(chan struct{}), } binary.BigEndian.PutUint16(ndb.verbuf[:], uint16(nodeDBVersion)) go ndb.expirer() return ndb } func (db *nodeDB) close() { close(db.closeCh) } func (db *nodeDB) key(id []byte, neg bool) []byte { prefix := positiveBalancePrefix if neg { prefix = negativeBalancePrefix } if len(prefix)+len(db.verbuf)+len(id) > len(db.auxbuf) { db.auxbuf = append(db.auxbuf, make([]byte, len(prefix)+len(db.verbuf)+len(id)-len(db.auxbuf))...) } copy(db.auxbuf[:len(db.verbuf)], db.verbuf[:]) copy(db.auxbuf[len(db.verbuf):len(db.verbuf)+len(prefix)], prefix) copy(db.auxbuf[len(prefix)+len(db.verbuf):len(prefix)+len(db.verbuf)+len(id)], id) return db.auxbuf[:len(prefix)+len(db.verbuf)+len(id)] } func (db *nodeDB) getCumulativeTime() int64 { blob, err := db.db.Get(append(cumulativeRunningTimeKey, db.verbuf[:]...)) if err != nil || len(blob) == 0 { return 0 } return int64(binary.BigEndian.Uint64(blob)) } func (db *nodeDB) setCumulativeTime(v int64) { binary.BigEndian.PutUint64(db.auxbuf[:8], uint64(v)) db.db.Put(append(cumulativeRunningTimeKey, db.verbuf[:]...), db.auxbuf[:8]) } func (db *nodeDB) getOrNewPB(id enode.ID) posBalance { key := db.key(id.Bytes(), false) item, exist := db.pcache.Get(string(key)) if exist { return item.(posBalance) } var balance posBalance if enc, err := db.db.Get(key); err == nil { if err := rlp.DecodeBytes(enc, &balance); err != nil { log.Error("Failed to decode positive balance", "err", err) } } db.pcache.Add(string(key), balance) return balance } func (db *nodeDB) setPB(id enode.ID, b posBalance) { key := db.key(id.Bytes(), false) enc, err := rlp.EncodeToBytes(&(b)) if err != nil { log.Error("Failed to encode positive balance", "err", err) return } db.db.Put(key, enc) db.pcache.Add(string(key), b) } func (db *nodeDB) delPB(id enode.ID) { key := db.key(id.Bytes(), false) db.db.Delete(key) db.pcache.Remove(string(key)) } func (db *nodeDB) getOrNewNB(id string) negBalance { key := db.key([]byte(id), true) item, exist := db.ncache.Get(string(key)) if exist { return item.(negBalance) } var balance negBalance if enc, err := db.db.Get(key); err == nil { if err := rlp.DecodeBytes(enc, &balance); err != nil { log.Error("Failed to decode negative balance", "err", err) } } db.ncache.Add(string(key), balance) return balance } func (db *nodeDB) setNB(id string, b negBalance) { key := db.key([]byte(id), true) enc, err := rlp.EncodeToBytes(&(b)) if err != nil { log.Error("Failed to encode negative balance", "err", err) return } db.db.Put(key, enc) db.ncache.Add(string(key), b) } func (db *nodeDB) delNB(id string) { key := db.key([]byte(id), true) db.db.Delete(key) db.ncache.Remove(string(key)) } func (db *nodeDB) expirer() { for { select { case <-db.clock.After(dbCleanupCycle): db.expireNodes() case <-db.closeCh: return } } } // expireNodes iterates the whole node db and checks whether the negative balance // entry can deleted. // // The rationale behind this is: server doesn't need to keep the negative balance // records if they are low enough. func (db *nodeDB) expireNodes() { var ( visited int deleted int start = time.Now() ) iter := db.db.NewIteratorWithPrefix(append(db.verbuf[:], negativeBalancePrefix...)) for iter.Next() { visited += 1 var balance negBalance if err := rlp.DecodeBytes(iter.Value(), &balance); err != nil { log.Error("Failed to decode negative balance", "err", err) continue } if db.nbEvictCallBack != nil && db.nbEvictCallBack(db.clock.Now(), balance) { deleted += 1 db.db.Delete(iter.Key()) } } // Invoke testing hook if it's not nil. if db.cleanupHook != nil { db.cleanupHook() } log.Debug("Expire nodes", "visited", visited, "deleted", deleted, "elapsed", common.PrettyDuration(time.Since(start))) }