// Copyright 2019 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see . // Package forkid implements EIP-2124 (https://eips.ethereum.org/EIPS/eip-2124). package forkid import ( "encoding/binary" "errors" "hash/crc32" "math" "math/big" "reflect" "strings" "github.com/ethereum/go-ethereum/common" "github.com/ethereum/go-ethereum/core" "github.com/ethereum/go-ethereum/log" "github.com/ethereum/go-ethereum/params" ) var ( // ErrRemoteStale is returned by the validator if a remote fork checksum is a // subset of our already applied forks, but the announced next fork block is // not on our already passed chain. ErrRemoteStale = errors.New("remote needs update") // ErrLocalIncompatibleOrStale is returned by the validator if a remote fork // checksum does not match any local checksum variation, signalling that the // two chains have diverged in the past at some point (possibly at genesis). ErrLocalIncompatibleOrStale = errors.New("local incompatible or needs update") ) // ID is a fork identifier as defined by EIP-2124. type ID struct { Hash [4]byte // CRC32 checksum of the genesis block and passed fork block numbers Next uint64 // Block number of the next upcoming fork, or 0 if no forks are known } // NewID calculates the Ethereum fork ID from the chain config and head. func NewID(chain *core.BlockChain) ID { return newID( chain.Config(), chain.Genesis().Hash(), chain.CurrentHeader().Number.Uint64(), ) } // newID is the internal version of NewID, which takes extracted values as its // arguments instead of a chain. The reason is to allow testing the IDs without // having to simulate an entire blockchain. func newID(config *params.ChainConfig, genesis common.Hash, head uint64) ID { // Calculate the starting checksum from the genesis hash hash := crc32.ChecksumIEEE(genesis[:]) // Calculate the current fork checksum and the next fork block var next uint64 for _, fork := range gatherForks(config) { if fork <= head { // Fork already passed, checksum the previous hash and the fork number hash = checksumUpdate(hash, fork) continue } next = fork break } return ID{Hash: checksumToBytes(hash), Next: next} } // NewFilter creates a filter that returns if a fork ID should be rejected or not // based on the local chain's status. func NewFilter(chain *core.BlockChain) func(id ID) error { return newFilter( chain.Config(), chain.Genesis().Hash(), func() uint64 { return chain.CurrentHeader().Number.Uint64() }, ) } // NewStaticFilter creates a filter at block zero. func NewStaticFilter(config *params.ChainConfig, genesis common.Hash) func(id ID) error { head := func() uint64 { return 0 } return newFilter(config, genesis, head) } // newFilter is the internal version of NewFilter, taking closures as its arguments // instead of a chain. The reason is to allow testing it without having to simulate // an entire blockchain. func newFilter(config *params.ChainConfig, genesis common.Hash, headfn func() uint64) func(id ID) error { // Calculate the all the valid fork hash and fork next combos var ( forks = gatherForks(config) sums = make([][4]byte, len(forks)+1) // 0th is the genesis ) hash := crc32.ChecksumIEEE(genesis[:]) sums[0] = checksumToBytes(hash) for i, fork := range forks { hash = checksumUpdate(hash, fork) sums[i+1] = checksumToBytes(hash) } // Add two sentries to simplify the fork checks and don't require special // casing the last one. forks = append(forks, math.MaxUint64) // Last fork will never be passed // Create a validator that will filter out incompatible chains return func(id ID) error { // Run the fork checksum validation ruleset: // 1. If local and remote FORK_CSUM matches, connect. // The two nodes are in the same fork state currently. They might know // of differing future forks, but that's not relevant until the fork // triggers (might be postponed, nodes might be updated to match). // 2. If the remote FORK_CSUM is a subset of the local past forks and the // remote FORK_NEXT matches with the locally following fork block number, // connect. // Remote node is currently syncing. It might eventually diverge from // us, but at this current point in time we don't have enough information. // 3. If the remote FORK_CSUM is a superset of the local past forks and can // be completed with locally known future forks, connect. // Local node is currently syncing. It might eventually diverge from // the remote, but at this current point in time we don't have enough // information. // 4. Reject in all other cases. head := headfn() for i, fork := range forks { // If our head is beyond this fork, continue to the next (we have a dummy // fork of maxuint64 as the last item to always fail this check eventually). if head > fork { continue } // Found the first unpassed fork block, check if our current state matches // the remote checksum (rule #1). if sums[i] == id.Hash { // Yay, fork checksum matched, ignore any upcoming fork return nil } // The local and remote nodes are in different forks currently, check if the // remote checksum is a subset of our local forks (rule #2). for j := 0; j < i; j++ { if sums[j] == id.Hash { // Remote checksum is a subset, validate based on the announced next fork if forks[j] != id.Next { return ErrRemoteStale } return nil } } // Remote chain is not a subset of our local one, check if it's a superset by // any chance, signalling that we're simply out of sync (rule #3). for j := i + 1; j < len(sums); j++ { if sums[j] == id.Hash { // Yay, remote checksum is a superset, ignore upcoming forks return nil } } // No exact, subset or superset match. We are on differing chains, reject. return ErrLocalIncompatibleOrStale } log.Error("Impossible fork ID validation", "id", id) return nil // Something's very wrong, accept rather than reject } } // checksum calculates the IEEE CRC32 checksum of a block number. func checksum(fork uint64) uint32 { var blob [8]byte binary.BigEndian.PutUint64(blob[:], fork) return crc32.ChecksumIEEE(blob[:]) } // checksumUpdate calculates the next IEEE CRC32 checksum based on the previous // one and a fork block number (equivalent to CRC32(original-blob || fork)). func checksumUpdate(hash uint32, fork uint64) uint32 { var blob [8]byte binary.BigEndian.PutUint64(blob[:], fork) return crc32.Update(hash, crc32.IEEETable, blob[:]) } // checksumToBytes converts a uint32 checksum into a [4]byte array. func checksumToBytes(hash uint32) [4]byte { var blob [4]byte binary.BigEndian.PutUint32(blob[:], hash) return blob } // gatherForks gathers all the known forks and creates a sorted list out of them. func gatherForks(config *params.ChainConfig) []uint64 { // Gather all the fork block numbers via reflection kind := reflect.TypeOf(params.ChainConfig{}) conf := reflect.ValueOf(config).Elem() var forks []uint64 for i := 0; i < kind.NumField(); i++ { // Fetch the next field and skip non-fork rules field := kind.Field(i) if !strings.HasSuffix(field.Name, "Block") { continue } if field.Type != reflect.TypeOf(new(big.Int)) { continue } // Extract the fork rule block number and aggregate it rule := conf.Field(i).Interface().(*big.Int) if rule != nil { forks = append(forks, rule.Uint64()) } } // Sort the fork block numbers to permit chronologival XOR for i := 0; i < len(forks); i++ { for j := i + 1; j < len(forks); j++ { if forks[i] > forks[j] { forks[i], forks[j] = forks[j], forks[i] } } } // Deduplicate block numbers applying multiple forks for i := 1; i < len(forks); i++ { if forks[i] == forks[i-1] { forks = append(forks[:i], forks[i+1:]...) i-- } } // Skip any forks in block 0, that's the genesis ruleset if len(forks) > 0 && forks[0] == 0 { forks = forks[1:] } return forks }