// Copyright 2016 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see . package les import ( "errors" "fmt" "math/big" "math/rand" "net" "sync" "sync/atomic" "time" "github.com/ethereum/go-ethereum/common" "github.com/ethereum/go-ethereum/common/mclock" "github.com/ethereum/go-ethereum/core" "github.com/ethereum/go-ethereum/core/types" "github.com/ethereum/go-ethereum/eth" "github.com/ethereum/go-ethereum/les/flowcontrol" "github.com/ethereum/go-ethereum/light" "github.com/ethereum/go-ethereum/p2p" "github.com/ethereum/go-ethereum/p2p/enode" "github.com/ethereum/go-ethereum/params" "github.com/ethereum/go-ethereum/rlp" ) var ( errClosed = errors.New("peer set is closed") errAlreadyRegistered = errors.New("peer is already registered") errNotRegistered = errors.New("peer is not registered") ) const ( maxRequestErrors = 20 // number of invalid requests tolerated (makes the protocol less brittle but still avoids spam) maxResponseErrors = 50 // number of invalid responses tolerated (makes the protocol less brittle but still avoids spam) ) // capacity limitation for parameter updates const ( allowedUpdateBytes = 100000 // initial/maximum allowed update size allowedUpdateRate = time.Millisecond * 10 // time constant for recharging one byte of allowance ) const ( freezeTimeBase = time.Millisecond * 700 // fixed component of client freeze time freezeTimeRandom = time.Millisecond * 600 // random component of client freeze time freezeCheckPeriod = time.Millisecond * 100 // buffer value recheck period after initial freeze time has elapsed ) // if the total encoded size of a sent transaction batch is over txSizeCostLimit // per transaction then the request cost is calculated as proportional to the // encoded size instead of the transaction count const txSizeCostLimit = 0x4000 const ( announceTypeNone = iota announceTypeSimple announceTypeSigned ) type peer struct { *p2p.Peer rw p2p.MsgReadWriter version int // Protocol version negotiated network uint64 // Network ID being on announceType uint64 // Checkpoint relative fields checkpoint params.TrustedCheckpoint checkpointNumber uint64 id string headInfo *announceData lock sync.RWMutex sendQueue *execQueue errCh chan error // responseLock ensures that responses are queued in the same order as // RequestProcessed is called responseLock sync.Mutex responseCount uint64 invalidCount uint32 poolEntry *poolEntry hasBlock func(common.Hash, uint64, bool) bool responseErrors int updateCounter uint64 updateTime mclock.AbsTime frozen uint32 // 1 if client is in frozen state fcClient *flowcontrol.ClientNode // nil if the peer is server only fcServer *flowcontrol.ServerNode // nil if the peer is client only fcParams flowcontrol.ServerParams fcCosts requestCostTable balanceTracker *balanceTracker // set by clientPool.connect, used and removed by ProtocolManager.handle trusted bool onlyAnnounce bool chainSince, chainRecent uint64 stateSince, stateRecent uint64 } func newPeer(version int, network uint64, trusted bool, p *p2p.Peer, rw p2p.MsgReadWriter) *peer { return &peer{ Peer: p, rw: rw, version: version, network: network, id: peerIdToString(p.ID()), trusted: trusted, errCh: make(chan error, 1), } } // peerIdToString converts enode.ID to a string form func peerIdToString(id enode.ID) string { return fmt.Sprintf("%x", id.Bytes()) } // freeClientId returns a string identifier for the peer. Multiple peers with the // same identifier can not be connected in free mode simultaneously. func (p *peer) freeClientId() string { if addr, ok := p.RemoteAddr().(*net.TCPAddr); ok { if addr.IP.IsLoopback() { // using peer id instead of loopback ip address allows multiple free // connections from local machine to own server return p.id } else { return addr.IP.String() } } return p.id } // rejectUpdate returns true if a parameter update has to be rejected because // the size and/or rate of updates exceed the capacity limitation func (p *peer) rejectUpdate(size uint64) bool { now := mclock.Now() if p.updateCounter == 0 { p.updateTime = now } else { dt := now - p.updateTime r := uint64(dt / mclock.AbsTime(allowedUpdateRate)) if p.updateCounter > r { p.updateCounter -= r p.updateTime += mclock.AbsTime(allowedUpdateRate * time.Duration(r)) } else { p.updateCounter = 0 p.updateTime = now } } p.updateCounter += size return p.updateCounter > allowedUpdateBytes } // freezeClient temporarily puts the client in a frozen state which means all // unprocessed and subsequent requests are dropped. Unfreezing happens automatically // after a short time if the client's buffer value is at least in the slightly positive // region. The client is also notified about being frozen/unfrozen with a Stop/Resume // message. func (p *peer) freezeClient() { if p.version < lpv3 { // if Stop/Resume is not supported then just drop the peer after setting // its frozen status permanently atomic.StoreUint32(&p.frozen, 1) p.Peer.Disconnect(p2p.DiscUselessPeer) return } if atomic.SwapUint32(&p.frozen, 1) == 0 { go func() { p.SendStop() time.Sleep(freezeTimeBase + time.Duration(rand.Int63n(int64(freezeTimeRandom)))) for { bufValue, bufLimit := p.fcClient.BufferStatus() if bufLimit == 0 { return } if bufValue <= bufLimit/8 { time.Sleep(freezeCheckPeriod) } else { atomic.StoreUint32(&p.frozen, 0) p.SendResume(bufValue) break } } }() } } // freezeServer processes Stop/Resume messages from the given server func (p *peer) freezeServer(frozen bool) { var f uint32 if frozen { f = 1 } if atomic.SwapUint32(&p.frozen, f) != f && frozen { p.sendQueue.clear() } } // isFrozen returns true if the client is frozen or the server has put our // client in frozen state func (p *peer) isFrozen() bool { return atomic.LoadUint32(&p.frozen) != 0 } func (p *peer) canQueue() bool { return p.sendQueue.canQueue() && !p.isFrozen() } func (p *peer) queueSend(f func()) { p.sendQueue.queue(f) } // Info gathers and returns a collection of metadata known about a peer. func (p *peer) Info() *eth.PeerInfo { return ð.PeerInfo{ Version: p.version, Difficulty: p.Td(), Head: fmt.Sprintf("%x", p.Head()), } } // Head retrieves a copy of the current head (most recent) hash of the peer. func (p *peer) Head() (hash common.Hash) { p.lock.RLock() defer p.lock.RUnlock() copy(hash[:], p.headInfo.Hash[:]) return hash } func (p *peer) HeadAndTd() (hash common.Hash, td *big.Int) { p.lock.RLock() defer p.lock.RUnlock() copy(hash[:], p.headInfo.Hash[:]) return hash, p.headInfo.Td } func (p *peer) headBlockInfo() blockInfo { p.lock.RLock() defer p.lock.RUnlock() return blockInfo{Hash: p.headInfo.Hash, Number: p.headInfo.Number, Td: p.headInfo.Td} } // Td retrieves the current total difficulty of a peer. func (p *peer) Td() *big.Int { p.lock.RLock() defer p.lock.RUnlock() return new(big.Int).Set(p.headInfo.Td) } // waitBefore implements distPeer interface func (p *peer) waitBefore(maxCost uint64) (time.Duration, float64) { return p.fcServer.CanSend(maxCost) } // updateCapacity updates the request serving capacity assigned to a given client // and also sends an announcement about the updated flow control parameters func (p *peer) updateCapacity(cap uint64) { p.responseLock.Lock() defer p.responseLock.Unlock() p.fcParams = flowcontrol.ServerParams{MinRecharge: cap, BufLimit: cap * bufLimitRatio} p.fcClient.UpdateParams(p.fcParams) var kvList keyValueList kvList = kvList.add("flowControl/MRR", cap) kvList = kvList.add("flowControl/BL", cap*bufLimitRatio) p.queueSend(func() { p.SendAnnounce(announceData{Update: kvList}) }) } func sendRequest(w p2p.MsgWriter, msgcode, reqID, cost uint64, data interface{}) error { type req struct { ReqID uint64 Data interface{} } return p2p.Send(w, msgcode, req{reqID, data}) } // reply struct represents a reply with the actual data already RLP encoded and // only the bv (buffer value) missing. This allows the serving mechanism to // calculate the bv value which depends on the data size before sending the reply. type reply struct { w p2p.MsgWriter msgcode, reqID uint64 data rlp.RawValue } // send sends the reply with the calculated buffer value func (r *reply) send(bv uint64) error { type resp struct { ReqID, BV uint64 Data rlp.RawValue } return p2p.Send(r.w, r.msgcode, resp{r.reqID, bv, r.data}) } // size returns the RLP encoded size of the message data func (r *reply) size() uint32 { return uint32(len(r.data)) } func (p *peer) GetRequestCost(msgcode uint64, amount int) uint64 { p.lock.RLock() defer p.lock.RUnlock() costs := p.fcCosts[msgcode] if costs == nil { return 0 } cost := costs.baseCost + costs.reqCost*uint64(amount) if cost > p.fcParams.BufLimit { cost = p.fcParams.BufLimit } return cost } func (p *peer) GetTxRelayCost(amount, size int) uint64 { p.lock.RLock() defer p.lock.RUnlock() costs := p.fcCosts[SendTxV2Msg] if costs == nil { return 0 } cost := costs.baseCost + costs.reqCost*uint64(amount) sizeCost := costs.baseCost + costs.reqCost*uint64(size)/txSizeCostLimit if sizeCost > cost { cost = sizeCost } if cost > p.fcParams.BufLimit { cost = p.fcParams.BufLimit } return cost } // HasBlock checks if the peer has a given block func (p *peer) HasBlock(hash common.Hash, number uint64, hasState bool) bool { var head, since, recent uint64 p.lock.RLock() if p.headInfo != nil { head = p.headInfo.Number } if hasState { since = p.stateSince recent = p.stateRecent } else { since = p.chainSince recent = p.chainRecent } hasBlock := p.hasBlock p.lock.RUnlock() return head >= number && number >= since && (recent == 0 || number+recent+4 > head) && hasBlock != nil && hasBlock(hash, number, hasState) } // SendAnnounce announces the availability of a number of blocks through // a hash notification. func (p *peer) SendAnnounce(request announceData) error { return p2p.Send(p.rw, AnnounceMsg, request) } // SendStop notifies the client about being in frozen state func (p *peer) SendStop() error { return p2p.Send(p.rw, StopMsg, struct{}{}) } // SendResume notifies the client about getting out of frozen state func (p *peer) SendResume(bv uint64) error { return p2p.Send(p.rw, ResumeMsg, bv) } // ReplyBlockHeaders creates a reply with a batch of block headers func (p *peer) ReplyBlockHeaders(reqID uint64, headers []*types.Header) *reply { data, _ := rlp.EncodeToBytes(headers) return &reply{p.rw, BlockHeadersMsg, reqID, data} } // ReplyBlockBodiesRLP creates a reply with a batch of block contents from // an already RLP encoded format. func (p *peer) ReplyBlockBodiesRLP(reqID uint64, bodies []rlp.RawValue) *reply { data, _ := rlp.EncodeToBytes(bodies) return &reply{p.rw, BlockBodiesMsg, reqID, data} } // ReplyCode creates a reply with a batch of arbitrary internal data, corresponding to the // hashes requested. func (p *peer) ReplyCode(reqID uint64, codes [][]byte) *reply { data, _ := rlp.EncodeToBytes(codes) return &reply{p.rw, CodeMsg, reqID, data} } // ReplyReceiptsRLP creates a reply with a batch of transaction receipts, corresponding to the // ones requested from an already RLP encoded format. func (p *peer) ReplyReceiptsRLP(reqID uint64, receipts []rlp.RawValue) *reply { data, _ := rlp.EncodeToBytes(receipts) return &reply{p.rw, ReceiptsMsg, reqID, data} } // ReplyProofsV2 creates a reply with a batch of merkle proofs, corresponding to the ones requested. func (p *peer) ReplyProofsV2(reqID uint64, proofs light.NodeList) *reply { data, _ := rlp.EncodeToBytes(proofs) return &reply{p.rw, ProofsV2Msg, reqID, data} } // ReplyHelperTrieProofs creates a reply with a batch of HelperTrie proofs, corresponding to the ones requested. func (p *peer) ReplyHelperTrieProofs(reqID uint64, resp HelperTrieResps) *reply { data, _ := rlp.EncodeToBytes(resp) return &reply{p.rw, HelperTrieProofsMsg, reqID, data} } // ReplyTxStatus creates a reply with a batch of transaction status records, corresponding to the ones requested. func (p *peer) ReplyTxStatus(reqID uint64, stats []light.TxStatus) *reply { data, _ := rlp.EncodeToBytes(stats) return &reply{p.rw, TxStatusMsg, reqID, data} } // RequestHeadersByHash fetches a batch of blocks' headers corresponding to the // specified header query, based on the hash of an origin block. func (p *peer) RequestHeadersByHash(reqID, cost uint64, origin common.Hash, amount int, skip int, reverse bool) error { p.Log().Debug("Fetching batch of headers", "count", amount, "fromhash", origin, "skip", skip, "reverse", reverse) return sendRequest(p.rw, GetBlockHeadersMsg, reqID, cost, &getBlockHeadersData{Origin: hashOrNumber{Hash: origin}, Amount: uint64(amount), Skip: uint64(skip), Reverse: reverse}) } // RequestHeadersByNumber fetches a batch of blocks' headers corresponding to the // specified header query, based on the number of an origin block. func (p *peer) RequestHeadersByNumber(reqID, cost, origin uint64, amount int, skip int, reverse bool) error { p.Log().Debug("Fetching batch of headers", "count", amount, "fromnum", origin, "skip", skip, "reverse", reverse) return sendRequest(p.rw, GetBlockHeadersMsg, reqID, cost, &getBlockHeadersData{Origin: hashOrNumber{Number: origin}, Amount: uint64(amount), Skip: uint64(skip), Reverse: reverse}) } // RequestBodies fetches a batch of blocks' bodies corresponding to the hashes // specified. func (p *peer) RequestBodies(reqID, cost uint64, hashes []common.Hash) error { p.Log().Debug("Fetching batch of block bodies", "count", len(hashes)) return sendRequest(p.rw, GetBlockBodiesMsg, reqID, cost, hashes) } // RequestCode fetches a batch of arbitrary data from a node's known state // data, corresponding to the specified hashes. func (p *peer) RequestCode(reqID, cost uint64, reqs []CodeReq) error { p.Log().Debug("Fetching batch of codes", "count", len(reqs)) return sendRequest(p.rw, GetCodeMsg, reqID, cost, reqs) } // RequestReceipts fetches a batch of transaction receipts from a remote node. func (p *peer) RequestReceipts(reqID, cost uint64, hashes []common.Hash) error { p.Log().Debug("Fetching batch of receipts", "count", len(hashes)) return sendRequest(p.rw, GetReceiptsMsg, reqID, cost, hashes) } // RequestProofs fetches a batch of merkle proofs from a remote node. func (p *peer) RequestProofs(reqID, cost uint64, reqs []ProofReq) error { p.Log().Debug("Fetching batch of proofs", "count", len(reqs)) return sendRequest(p.rw, GetProofsV2Msg, reqID, cost, reqs) } // RequestHelperTrieProofs fetches a batch of HelperTrie merkle proofs from a remote node. func (p *peer) RequestHelperTrieProofs(reqID, cost uint64, reqs []HelperTrieReq) error { p.Log().Debug("Fetching batch of HelperTrie proofs", "count", len(reqs)) return sendRequest(p.rw, GetHelperTrieProofsMsg, reqID, cost, reqs) } // RequestTxStatus fetches a batch of transaction status records from a remote node. func (p *peer) RequestTxStatus(reqID, cost uint64, txHashes []common.Hash) error { p.Log().Debug("Requesting transaction status", "count", len(txHashes)) return sendRequest(p.rw, GetTxStatusMsg, reqID, cost, txHashes) } // SendTxStatus creates a reply with a batch of transactions to be added to the remote transaction pool. func (p *peer) SendTxs(reqID, cost uint64, txs rlp.RawValue) error { p.Log().Debug("Sending batch of transactions", "size", len(txs)) return sendRequest(p.rw, SendTxV2Msg, reqID, cost, txs) } type keyValueEntry struct { Key string Value rlp.RawValue } type keyValueList []keyValueEntry type keyValueMap map[string]rlp.RawValue func (l keyValueList) add(key string, val interface{}) keyValueList { var entry keyValueEntry entry.Key = key if val == nil { val = uint64(0) } enc, err := rlp.EncodeToBytes(val) if err == nil { entry.Value = enc } return append(l, entry) } func (l keyValueList) decode() (keyValueMap, uint64) { m := make(keyValueMap) var size uint64 for _, entry := range l { m[entry.Key] = entry.Value size += uint64(len(entry.Key)) + uint64(len(entry.Value)) + 8 } return m, size } func (m keyValueMap) get(key string, val interface{}) error { enc, ok := m[key] if !ok { return errResp(ErrMissingKey, "%s", key) } if val == nil { return nil } return rlp.DecodeBytes(enc, val) } func (p *peer) sendReceiveHandshake(sendList keyValueList) (keyValueList, error) { // Send out own handshake in a new thread errc := make(chan error, 1) go func() { errc <- p2p.Send(p.rw, StatusMsg, sendList) }() // In the mean time retrieve the remote status message msg, err := p.rw.ReadMsg() if err != nil { return nil, err } if msg.Code != StatusMsg { return nil, errResp(ErrNoStatusMsg, "first msg has code %x (!= %x)", msg.Code, StatusMsg) } if msg.Size > ProtocolMaxMsgSize { return nil, errResp(ErrMsgTooLarge, "%v > %v", msg.Size, ProtocolMaxMsgSize) } // Decode the handshake var recvList keyValueList if err := msg.Decode(&recvList); err != nil { return nil, errResp(ErrDecode, "msg %v: %v", msg, err) } if err := <-errc; err != nil { return nil, err } return recvList, nil } // Handshake executes the les protocol handshake, negotiating version number, // network IDs, difficulties, head and genesis blocks. func (p *peer) Handshake(td *big.Int, head common.Hash, headNum uint64, genesis common.Hash, server *LesServer) error { p.lock.Lock() defer p.lock.Unlock() var send keyValueList send = send.add("protocolVersion", uint64(p.version)) send = send.add("networkId", p.network) send = send.add("headTd", td) send = send.add("headHash", head) send = send.add("headNum", headNum) send = send.add("genesisHash", genesis) if server != nil { if !server.onlyAnnounce { send = send.add("serveHeaders", nil) send = send.add("serveChainSince", uint64(0)) send = send.add("serveStateSince", uint64(0)) // If local ethereum node is running in archive mode, advertise ourselves we have // all version state data. Otherwise only recent state is available. stateRecent := uint64(core.TriesInMemory - 4) if server.archiveMode { stateRecent = 0 } send = send.add("serveRecentState", stateRecent) send = send.add("txRelay", nil) } send = send.add("flowControl/BL", server.defParams.BufLimit) send = send.add("flowControl/MRR", server.defParams.MinRecharge) var costList RequestCostList if server.costTracker != nil { costList = server.costTracker.makeCostList(server.costTracker.globalFactor()) } else { costList = testCostList(server.testCost) } send = send.add("flowControl/MRC", costList) p.fcCosts = costList.decode(ProtocolLengths[uint(p.version)]) p.fcParams = server.defParams if server.protocolManager != nil && server.protocolManager.reg != nil && server.protocolManager.reg.isRunning() { cp, height := server.protocolManager.reg.stableCheckpoint() if cp != nil { send = send.add("checkpoint/value", cp) send = send.add("checkpoint/registerHeight", height) } } } else { //on client node p.announceType = announceTypeSimple if p.trusted { p.announceType = announceTypeSigned } send = send.add("announceType", p.announceType) } recvList, err := p.sendReceiveHandshake(send) if err != nil { return err } recv, size := recvList.decode() if p.rejectUpdate(size) { return errResp(ErrRequestRejected, "") } var rGenesis, rHash common.Hash var rVersion, rNetwork, rNum uint64 var rTd *big.Int if err := recv.get("protocolVersion", &rVersion); err != nil { return err } if err := recv.get("networkId", &rNetwork); err != nil { return err } if err := recv.get("headTd", &rTd); err != nil { return err } if err := recv.get("headHash", &rHash); err != nil { return err } if err := recv.get("headNum", &rNum); err != nil { return err } if err := recv.get("genesisHash", &rGenesis); err != nil { return err } if rGenesis != genesis { return errResp(ErrGenesisBlockMismatch, "%x (!= %x)", rGenesis[:8], genesis[:8]) } if rNetwork != p.network { return errResp(ErrNetworkIdMismatch, "%d (!= %d)", rNetwork, p.network) } if int(rVersion) != p.version { return errResp(ErrProtocolVersionMismatch, "%d (!= %d)", rVersion, p.version) } if server != nil { // until we have a proper peer connectivity API, allow LES connection to other servers /*if recv.get("serveStateSince", nil) == nil { return errResp(ErrUselessPeer, "wanted client, got server") }*/ if recv.get("announceType", &p.announceType) != nil { //set default announceType on server side p.announceType = announceTypeSimple } p.fcClient = flowcontrol.NewClientNode(server.fcManager, server.defParams) } else { //mark OnlyAnnounce server if "serveHeaders", "serveChainSince", "serveStateSince" or "txRelay" fields don't exist if recv.get("serveChainSince", &p.chainSince) != nil { p.onlyAnnounce = true } if recv.get("serveRecentChain", &p.chainRecent) != nil { p.chainRecent = 0 } if recv.get("serveStateSince", &p.stateSince) != nil { p.onlyAnnounce = true } if recv.get("serveRecentState", &p.stateRecent) != nil { p.stateRecent = 0 } if recv.get("txRelay", nil) != nil { p.onlyAnnounce = true } if p.onlyAnnounce && !p.trusted { return errResp(ErrUselessPeer, "peer cannot serve requests") } var sParams flowcontrol.ServerParams if err := recv.get("flowControl/BL", &sParams.BufLimit); err != nil { return err } if err := recv.get("flowControl/MRR", &sParams.MinRecharge); err != nil { return err } var MRC RequestCostList if err := recv.get("flowControl/MRC", &MRC); err != nil { return err } p.fcParams = sParams p.fcServer = flowcontrol.NewServerNode(sParams, &mclock.System{}) p.fcCosts = MRC.decode(ProtocolLengths[uint(p.version)]) recv.get("checkpoint/value", &p.checkpoint) recv.get("checkpoint/registerHeight", &p.checkpointNumber) if !p.onlyAnnounce { for msgCode := range reqAvgTimeCost { if p.fcCosts[msgCode] == nil { return errResp(ErrUselessPeer, "peer does not support message %d", msgCode) } } } } p.headInfo = &announceData{Td: rTd, Hash: rHash, Number: rNum} return nil } // updateFlowControl updates the flow control parameters belonging to the server // node if the announced key/value set contains relevant fields func (p *peer) updateFlowControl(update keyValueMap) { if p.fcServer == nil { return } params := p.fcParams updateParams := false if update.get("flowControl/BL", ¶ms.BufLimit) == nil { updateParams = true } if update.get("flowControl/MRR", ¶ms.MinRecharge) == nil { updateParams = true } if updateParams { p.fcParams = params p.fcServer.UpdateParams(params) } var MRC RequestCostList if update.get("flowControl/MRC", &MRC) == nil { costUpdate := MRC.decode(ProtocolLengths[uint(p.version)]) for code, cost := range costUpdate { p.fcCosts[code] = cost } } } // String implements fmt.Stringer. func (p *peer) String() string { return fmt.Sprintf("Peer %s [%s]", p.id, fmt.Sprintf("les/%d", p.version), ) } // peerSetNotify is a callback interface to notify services about added or // removed peers type peerSetNotify interface { registerPeer(*peer) unregisterPeer(*peer) } // peerSet represents the collection of active peers currently participating in // the Light Ethereum sub-protocol. type peerSet struct { peers map[string]*peer lock sync.RWMutex notifyList []peerSetNotify closed bool } // newPeerSet creates a new peer set to track the active participants. func newPeerSet() *peerSet { return &peerSet{ peers: make(map[string]*peer), } } // notify adds a service to be notified about added or removed peers func (ps *peerSet) notify(n peerSetNotify) { ps.lock.Lock() ps.notifyList = append(ps.notifyList, n) peers := make([]*peer, 0, len(ps.peers)) for _, p := range ps.peers { peers = append(peers, p) } ps.lock.Unlock() for _, p := range peers { n.registerPeer(p) } } // Register injects a new peer into the working set, or returns an error if the // peer is already known. func (ps *peerSet) Register(p *peer) error { ps.lock.Lock() if ps.closed { ps.lock.Unlock() return errClosed } if _, ok := ps.peers[p.id]; ok { ps.lock.Unlock() return errAlreadyRegistered } ps.peers[p.id] = p p.sendQueue = newExecQueue(100) peers := make([]peerSetNotify, len(ps.notifyList)) copy(peers, ps.notifyList) ps.lock.Unlock() for _, n := range peers { n.registerPeer(p) } return nil } // Unregister removes a remote peer from the active set, disabling any further // actions to/from that particular entity. It also initiates disconnection at the networking layer. func (ps *peerSet) Unregister(id string) error { ps.lock.Lock() if p, ok := ps.peers[id]; !ok { ps.lock.Unlock() return errNotRegistered } else { delete(ps.peers, id) peers := make([]peerSetNotify, len(ps.notifyList)) copy(peers, ps.notifyList) ps.lock.Unlock() for _, n := range peers { n.unregisterPeer(p) } p.sendQueue.quit() p.Peer.Disconnect(p2p.DiscUselessPeer) return nil } } // AllPeerIDs returns a list of all registered peer IDs func (ps *peerSet) AllPeerIDs() []string { ps.lock.RLock() defer ps.lock.RUnlock() res := make([]string, len(ps.peers)) idx := 0 for id := range ps.peers { res[idx] = id idx++ } return res } // Peer retrieves the registered peer with the given id. func (ps *peerSet) Peer(id string) *peer { ps.lock.RLock() defer ps.lock.RUnlock() return ps.peers[id] } // Len returns if the current number of peers in the set. func (ps *peerSet) Len() int { ps.lock.RLock() defer ps.lock.RUnlock() return len(ps.peers) } // BestPeer retrieves the known peer with the currently highest total difficulty. func (ps *peerSet) BestPeer() *peer { ps.lock.RLock() defer ps.lock.RUnlock() var ( bestPeer *peer bestTd *big.Int ) for _, p := range ps.peers { if td := p.Td(); bestPeer == nil || td.Cmp(bestTd) > 0 { bestPeer, bestTd = p, td } } return bestPeer } // AllPeers returns all peers in a list func (ps *peerSet) AllPeers() []*peer { ps.lock.RLock() defer ps.lock.RUnlock() list := make([]*peer, len(ps.peers)) i := 0 for _, peer := range ps.peers { list[i] = peer i++ } return list } // Close disconnects all peers. // No new peers can be registered after Close has returned. func (ps *peerSet) Close() { ps.lock.Lock() defer ps.lock.Unlock() for _, p := range ps.peers { p.Disconnect(p2p.DiscQuitting) } ps.closed = true }