// Copyright 2014 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see . package vm import ( "crypto/sha256" "encoding/binary" "errors" "fmt" "math/big" "github.com/consensys/gnark-crypto/ecc" bls12381 "github.com/consensys/gnark-crypto/ecc/bls12-381" "github.com/consensys/gnark-crypto/ecc/bls12-381/fp" "github.com/consensys/gnark-crypto/ecc/bls12-381/fr" "github.com/ethereum/go-ethereum/common" "github.com/ethereum/go-ethereum/common/math" "github.com/ethereum/go-ethereum/core/tracing" "github.com/ethereum/go-ethereum/crypto" "github.com/ethereum/go-ethereum/crypto/blake2b" "github.com/ethereum/go-ethereum/crypto/bn256" "github.com/ethereum/go-ethereum/crypto/kzg4844" "github.com/ethereum/go-ethereum/params" "golang.org/x/crypto/ripemd160" ) // PrecompiledContract is the basic interface for native Go contracts. The implementation // requires a deterministic gas count based on the input size of the Run method of the // contract. type PrecompiledContract interface { RequiredGas(input []byte) uint64 // RequiredPrice calculates the contract gas use Run(input []byte) ([]byte, error) // Run runs the precompiled contract } // PrecompiledContractsHomestead contains the default set of pre-compiled Ethereum // contracts used in the Frontier and Homestead releases. var PrecompiledContractsHomestead = map[common.Address]PrecompiledContract{ common.BytesToAddress([]byte{0x1}): &ecrecover{}, common.BytesToAddress([]byte{0x2}): &sha256hash{}, common.BytesToAddress([]byte{0x3}): &ripemd160hash{}, common.BytesToAddress([]byte{0x4}): &dataCopy{}, } // PrecompiledContractsByzantium contains the default set of pre-compiled Ethereum // contracts used in the Byzantium release. var PrecompiledContractsByzantium = map[common.Address]PrecompiledContract{ common.BytesToAddress([]byte{0x1}): &ecrecover{}, common.BytesToAddress([]byte{0x2}): &sha256hash{}, common.BytesToAddress([]byte{0x3}): &ripemd160hash{}, common.BytesToAddress([]byte{0x4}): &dataCopy{}, common.BytesToAddress([]byte{0x5}): &bigModExp{eip2565: false}, common.BytesToAddress([]byte{0x6}): &bn256AddByzantium{}, common.BytesToAddress([]byte{0x7}): &bn256ScalarMulByzantium{}, common.BytesToAddress([]byte{0x8}): &bn256PairingByzantium{}, } // PrecompiledContractsIstanbul contains the default set of pre-compiled Ethereum // contracts used in the Istanbul release. var PrecompiledContractsIstanbul = map[common.Address]PrecompiledContract{ common.BytesToAddress([]byte{0x1}): &ecrecover{}, common.BytesToAddress([]byte{0x2}): &sha256hash{}, common.BytesToAddress([]byte{0x3}): &ripemd160hash{}, common.BytesToAddress([]byte{0x4}): &dataCopy{}, common.BytesToAddress([]byte{0x5}): &bigModExp{eip2565: false}, common.BytesToAddress([]byte{0x6}): &bn256AddIstanbul{}, common.BytesToAddress([]byte{0x7}): &bn256ScalarMulIstanbul{}, common.BytesToAddress([]byte{0x8}): &bn256PairingIstanbul{}, common.BytesToAddress([]byte{0x9}): &blake2F{}, } // PrecompiledContractsBerlin contains the default set of pre-compiled Ethereum // contracts used in the Berlin release. var PrecompiledContractsBerlin = map[common.Address]PrecompiledContract{ common.BytesToAddress([]byte{0x1}): &ecrecover{}, common.BytesToAddress([]byte{0x2}): &sha256hash{}, common.BytesToAddress([]byte{0x3}): &ripemd160hash{}, common.BytesToAddress([]byte{0x4}): &dataCopy{}, common.BytesToAddress([]byte{0x5}): &bigModExp{eip2565: true}, common.BytesToAddress([]byte{0x6}): &bn256AddIstanbul{}, common.BytesToAddress([]byte{0x7}): &bn256ScalarMulIstanbul{}, common.BytesToAddress([]byte{0x8}): &bn256PairingIstanbul{}, common.BytesToAddress([]byte{0x9}): &blake2F{}, } // PrecompiledContractsCancun contains the default set of pre-compiled Ethereum // contracts used in the Cancun release. var PrecompiledContractsCancun = map[common.Address]PrecompiledContract{ common.BytesToAddress([]byte{0x1}): &ecrecover{}, common.BytesToAddress([]byte{0x2}): &sha256hash{}, common.BytesToAddress([]byte{0x3}): &ripemd160hash{}, common.BytesToAddress([]byte{0x4}): &dataCopy{}, common.BytesToAddress([]byte{0x5}): &bigModExp{eip2565: true}, common.BytesToAddress([]byte{0x6}): &bn256AddIstanbul{}, common.BytesToAddress([]byte{0x7}): &bn256ScalarMulIstanbul{}, common.BytesToAddress([]byte{0x8}): &bn256PairingIstanbul{}, common.BytesToAddress([]byte{0x9}): &blake2F{}, common.BytesToAddress([]byte{0xa}): &kzgPointEvaluation{}, } // PrecompiledContractsPrague contains the set of pre-compiled Ethereum // contracts used in the Prague release. var PrecompiledContractsPrague = map[common.Address]PrecompiledContract{ common.BytesToAddress([]byte{0x01}): &ecrecover{}, common.BytesToAddress([]byte{0x02}): &sha256hash{}, common.BytesToAddress([]byte{0x03}): &ripemd160hash{}, common.BytesToAddress([]byte{0x04}): &dataCopy{}, common.BytesToAddress([]byte{0x05}): &bigModExp{eip2565: true}, common.BytesToAddress([]byte{0x06}): &bn256AddIstanbul{}, common.BytesToAddress([]byte{0x07}): &bn256ScalarMulIstanbul{}, common.BytesToAddress([]byte{0x08}): &bn256PairingIstanbul{}, common.BytesToAddress([]byte{0x09}): &blake2F{}, common.BytesToAddress([]byte{0x0a}): &kzgPointEvaluation{}, common.BytesToAddress([]byte{0x0b}): &bls12381G1Add{}, common.BytesToAddress([]byte{0x0c}): &bls12381G1Mul{}, common.BytesToAddress([]byte{0x0d}): &bls12381G1MultiExp{}, common.BytesToAddress([]byte{0x0e}): &bls12381G2Add{}, common.BytesToAddress([]byte{0x0f}): &bls12381G2Mul{}, common.BytesToAddress([]byte{0x10}): &bls12381G2MultiExp{}, common.BytesToAddress([]byte{0x11}): &bls12381Pairing{}, common.BytesToAddress([]byte{0x12}): &bls12381MapG1{}, common.BytesToAddress([]byte{0x13}): &bls12381MapG2{}, } var PrecompiledContractsBLS = PrecompiledContractsPrague var ( PrecompiledAddressesPrague []common.Address PrecompiledAddressesCancun []common.Address PrecompiledAddressesBerlin []common.Address PrecompiledAddressesIstanbul []common.Address PrecompiledAddressesByzantium []common.Address PrecompiledAddressesHomestead []common.Address ) func init() { for k := range PrecompiledContractsHomestead { PrecompiledAddressesHomestead = append(PrecompiledAddressesHomestead, k) } for k := range PrecompiledContractsByzantium { PrecompiledAddressesByzantium = append(PrecompiledAddressesByzantium, k) } for k := range PrecompiledContractsIstanbul { PrecompiledAddressesIstanbul = append(PrecompiledAddressesIstanbul, k) } for k := range PrecompiledContractsBerlin { PrecompiledAddressesBerlin = append(PrecompiledAddressesBerlin, k) } for k := range PrecompiledContractsCancun { PrecompiledAddressesCancun = append(PrecompiledAddressesCancun, k) } for k := range PrecompiledContractsPrague { PrecompiledAddressesPrague = append(PrecompiledAddressesPrague, k) } } // ActivePrecompiles returns the precompiles enabled with the current configuration. func ActivePrecompiles(rules params.Rules) []common.Address { switch { case rules.IsPrague: return PrecompiledAddressesPrague case rules.IsCancun: return PrecompiledAddressesCancun case rules.IsBerlin: return PrecompiledAddressesBerlin case rules.IsIstanbul: return PrecompiledAddressesIstanbul case rules.IsByzantium: return PrecompiledAddressesByzantium default: return PrecompiledAddressesHomestead } } // RunPrecompiledContract runs and evaluates the output of a precompiled contract. // It returns // - the returned bytes, // - the _remaining_ gas, // - any error that occurred func RunPrecompiledContract(p PrecompiledContract, input []byte, suppliedGas uint64, logger *tracing.Hooks) (ret []byte, remainingGas uint64, err error) { gasCost := p.RequiredGas(input) if suppliedGas < gasCost { return nil, 0, ErrOutOfGas } if logger != nil && logger.OnGasChange != nil { logger.OnGasChange(suppliedGas, suppliedGas-gasCost, tracing.GasChangeCallPrecompiledContract) } suppliedGas -= gasCost output, err := p.Run(input) return output, suppliedGas, err } // ecrecover implemented as a native contract. type ecrecover struct{} func (c *ecrecover) RequiredGas(input []byte) uint64 { return params.EcrecoverGas } func (c *ecrecover) Run(input []byte) ([]byte, error) { const ecRecoverInputLength = 128 input = common.RightPadBytes(input, ecRecoverInputLength) // "input" is (hash, v, r, s), each 32 bytes // but for ecrecover we want (r, s, v) r := new(big.Int).SetBytes(input[64:96]) s := new(big.Int).SetBytes(input[96:128]) v := input[63] - 27 // tighter sig s values input homestead only apply to tx sigs if !allZero(input[32:63]) || !crypto.ValidateSignatureValues(v, r, s, false) { return nil, nil } // We must make sure not to modify the 'input', so placing the 'v' along with // the signature needs to be done on a new allocation sig := make([]byte, 65) copy(sig, input[64:128]) sig[64] = v // v needs to be at the end for libsecp256k1 pubKey, err := crypto.Ecrecover(input[:32], sig) // make sure the public key is a valid one if err != nil { return nil, nil } // the first byte of pubkey is bitcoin heritage return common.LeftPadBytes(crypto.Keccak256(pubKey[1:])[12:], 32), nil } // SHA256 implemented as a native contract. type sha256hash struct{} // RequiredGas returns the gas required to execute the pre-compiled contract. // // This method does not require any overflow checking as the input size gas costs // required for anything significant is so high it's impossible to pay for. func (c *sha256hash) RequiredGas(input []byte) uint64 { return uint64(len(input)+31)/32*params.Sha256PerWordGas + params.Sha256BaseGas } func (c *sha256hash) Run(input []byte) ([]byte, error) { h := sha256.Sum256(input) return h[:], nil } // RIPEMD160 implemented as a native contract. type ripemd160hash struct{} // RequiredGas returns the gas required to execute the pre-compiled contract. // // This method does not require any overflow checking as the input size gas costs // required for anything significant is so high it's impossible to pay for. func (c *ripemd160hash) RequiredGas(input []byte) uint64 { return uint64(len(input)+31)/32*params.Ripemd160PerWordGas + params.Ripemd160BaseGas } func (c *ripemd160hash) Run(input []byte) ([]byte, error) { ripemd := ripemd160.New() ripemd.Write(input) return common.LeftPadBytes(ripemd.Sum(nil), 32), nil } // data copy implemented as a native contract. type dataCopy struct{} // RequiredGas returns the gas required to execute the pre-compiled contract. // // This method does not require any overflow checking as the input size gas costs // required for anything significant is so high it's impossible to pay for. func (c *dataCopy) RequiredGas(input []byte) uint64 { return uint64(len(input)+31)/32*params.IdentityPerWordGas + params.IdentityBaseGas } func (c *dataCopy) Run(in []byte) ([]byte, error) { return common.CopyBytes(in), nil } // bigModExp implements a native big integer exponential modular operation. type bigModExp struct { eip2565 bool } var ( big1 = big.NewInt(1) big3 = big.NewInt(3) big4 = big.NewInt(4) big7 = big.NewInt(7) big8 = big.NewInt(8) big16 = big.NewInt(16) big20 = big.NewInt(20) big32 = big.NewInt(32) big64 = big.NewInt(64) big96 = big.NewInt(96) big480 = big.NewInt(480) big1024 = big.NewInt(1024) big3072 = big.NewInt(3072) big199680 = big.NewInt(199680) ) // modexpMultComplexity implements bigModexp multComplexity formula, as defined in EIP-198 // // def mult_complexity(x): // if x <= 64: return x ** 2 // elif x <= 1024: return x ** 2 // 4 + 96 * x - 3072 // else: return x ** 2 // 16 + 480 * x - 199680 // // where is x is max(length_of_MODULUS, length_of_BASE) func modexpMultComplexity(x *big.Int) *big.Int { switch { case x.Cmp(big64) <= 0: x.Mul(x, x) // x ** 2 case x.Cmp(big1024) <= 0: // (x ** 2 // 4 ) + ( 96 * x - 3072) x = new(big.Int).Add( new(big.Int).Div(new(big.Int).Mul(x, x), big4), new(big.Int).Sub(new(big.Int).Mul(big96, x), big3072), ) default: // (x ** 2 // 16) + (480 * x - 199680) x = new(big.Int).Add( new(big.Int).Div(new(big.Int).Mul(x, x), big16), new(big.Int).Sub(new(big.Int).Mul(big480, x), big199680), ) } return x } // RequiredGas returns the gas required to execute the pre-compiled contract. func (c *bigModExp) RequiredGas(input []byte) uint64 { var ( baseLen = new(big.Int).SetBytes(getData(input, 0, 32)) expLen = new(big.Int).SetBytes(getData(input, 32, 32)) modLen = new(big.Int).SetBytes(getData(input, 64, 32)) ) if len(input) > 96 { input = input[96:] } else { input = input[:0] } // Retrieve the head 32 bytes of exp for the adjusted exponent length var expHead *big.Int if big.NewInt(int64(len(input))).Cmp(baseLen) <= 0 { expHead = new(big.Int) } else { if expLen.Cmp(big32) > 0 { expHead = new(big.Int).SetBytes(getData(input, baseLen.Uint64(), 32)) } else { expHead = new(big.Int).SetBytes(getData(input, baseLen.Uint64(), expLen.Uint64())) } } // Calculate the adjusted exponent length var msb int if bitlen := expHead.BitLen(); bitlen > 0 { msb = bitlen - 1 } adjExpLen := new(big.Int) if expLen.Cmp(big32) > 0 { adjExpLen.Sub(expLen, big32) adjExpLen.Mul(big8, adjExpLen) } adjExpLen.Add(adjExpLen, big.NewInt(int64(msb))) // Calculate the gas cost of the operation gas := new(big.Int).Set(math.BigMax(modLen, baseLen)) if c.eip2565 { // EIP-2565 has three changes // 1. Different multComplexity (inlined here) // in EIP-2565 (https://eips.ethereum.org/EIPS/eip-2565): // // def mult_complexity(x): // ceiling(x/8)^2 // //where is x is max(length_of_MODULUS, length_of_BASE) gas = gas.Add(gas, big7) gas = gas.Div(gas, big8) gas.Mul(gas, gas) gas.Mul(gas, math.BigMax(adjExpLen, big1)) // 2. Different divisor (`GQUADDIVISOR`) (3) gas.Div(gas, big3) if gas.BitLen() > 64 { return math.MaxUint64 } // 3. Minimum price of 200 gas if gas.Uint64() < 200 { return 200 } return gas.Uint64() } gas = modexpMultComplexity(gas) gas.Mul(gas, math.BigMax(adjExpLen, big1)) gas.Div(gas, big20) if gas.BitLen() > 64 { return math.MaxUint64 } return gas.Uint64() } func (c *bigModExp) Run(input []byte) ([]byte, error) { var ( baseLen = new(big.Int).SetBytes(getData(input, 0, 32)).Uint64() expLen = new(big.Int).SetBytes(getData(input, 32, 32)).Uint64() modLen = new(big.Int).SetBytes(getData(input, 64, 32)).Uint64() ) if len(input) > 96 { input = input[96:] } else { input = input[:0] } // Handle a special case when both the base and mod length is zero if baseLen == 0 && modLen == 0 { return []byte{}, nil } // Retrieve the operands and execute the exponentiation var ( base = new(big.Int).SetBytes(getData(input, 0, baseLen)) exp = new(big.Int).SetBytes(getData(input, baseLen, expLen)) mod = new(big.Int).SetBytes(getData(input, baseLen+expLen, modLen)) v []byte ) switch { case mod.BitLen() == 0: // Modulo 0 is undefined, return zero return common.LeftPadBytes([]byte{}, int(modLen)), nil case base.BitLen() == 1: // a bit length of 1 means it's 1 (or -1). //If base == 1, then we can just return base % mod (if mod >= 1, which it is) v = base.Mod(base, mod).Bytes() default: v = base.Exp(base, exp, mod).Bytes() } return common.LeftPadBytes(v, int(modLen)), nil } // newCurvePoint unmarshals a binary blob into a bn256 elliptic curve point, // returning it, or an error if the point is invalid. func newCurvePoint(blob []byte) (*bn256.G1, error) { p := new(bn256.G1) if _, err := p.Unmarshal(blob); err != nil { return nil, err } return p, nil } // newTwistPoint unmarshals a binary blob into a bn256 elliptic curve point, // returning it, or an error if the point is invalid. func newTwistPoint(blob []byte) (*bn256.G2, error) { p := new(bn256.G2) if _, err := p.Unmarshal(blob); err != nil { return nil, err } return p, nil } // runBn256Add implements the Bn256Add precompile, referenced by both // Byzantium and Istanbul operations. func runBn256Add(input []byte) ([]byte, error) { x, err := newCurvePoint(getData(input, 0, 64)) if err != nil { return nil, err } y, err := newCurvePoint(getData(input, 64, 64)) if err != nil { return nil, err } res := new(bn256.G1) res.Add(x, y) return res.Marshal(), nil } // bn256AddIstanbul implements a native elliptic curve point addition conforming to // Istanbul consensus rules. type bn256AddIstanbul struct{} // RequiredGas returns the gas required to execute the pre-compiled contract. func (c *bn256AddIstanbul) RequiredGas(input []byte) uint64 { return params.Bn256AddGasIstanbul } func (c *bn256AddIstanbul) Run(input []byte) ([]byte, error) { return runBn256Add(input) } // bn256AddByzantium implements a native elliptic curve point addition // conforming to Byzantium consensus rules. type bn256AddByzantium struct{} // RequiredGas returns the gas required to execute the pre-compiled contract. func (c *bn256AddByzantium) RequiredGas(input []byte) uint64 { return params.Bn256AddGasByzantium } func (c *bn256AddByzantium) Run(input []byte) ([]byte, error) { return runBn256Add(input) } // runBn256ScalarMul implements the Bn256ScalarMul precompile, referenced by // both Byzantium and Istanbul operations. func runBn256ScalarMul(input []byte) ([]byte, error) { p, err := newCurvePoint(getData(input, 0, 64)) if err != nil { return nil, err } res := new(bn256.G1) res.ScalarMult(p, new(big.Int).SetBytes(getData(input, 64, 32))) return res.Marshal(), nil } // bn256ScalarMulIstanbul implements a native elliptic curve scalar // multiplication conforming to Istanbul consensus rules. type bn256ScalarMulIstanbul struct{} // RequiredGas returns the gas required to execute the pre-compiled contract. func (c *bn256ScalarMulIstanbul) RequiredGas(input []byte) uint64 { return params.Bn256ScalarMulGasIstanbul } func (c *bn256ScalarMulIstanbul) Run(input []byte) ([]byte, error) { return runBn256ScalarMul(input) } // bn256ScalarMulByzantium implements a native elliptic curve scalar // multiplication conforming to Byzantium consensus rules. type bn256ScalarMulByzantium struct{} // RequiredGas returns the gas required to execute the pre-compiled contract. func (c *bn256ScalarMulByzantium) RequiredGas(input []byte) uint64 { return params.Bn256ScalarMulGasByzantium } func (c *bn256ScalarMulByzantium) Run(input []byte) ([]byte, error) { return runBn256ScalarMul(input) } var ( // true32Byte is returned if the bn256 pairing check succeeds. true32Byte = []byte{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1} // false32Byte is returned if the bn256 pairing check fails. false32Byte = make([]byte, 32) // errBadPairingInput is returned if the bn256 pairing input is invalid. errBadPairingInput = errors.New("bad elliptic curve pairing size") ) // runBn256Pairing implements the Bn256Pairing precompile, referenced by both // Byzantium and Istanbul operations. func runBn256Pairing(input []byte) ([]byte, error) { // Handle some corner cases cheaply if len(input)%192 > 0 { return nil, errBadPairingInput } // Convert the input into a set of coordinates var ( cs []*bn256.G1 ts []*bn256.G2 ) for i := 0; i < len(input); i += 192 { c, err := newCurvePoint(input[i : i+64]) if err != nil { return nil, err } t, err := newTwistPoint(input[i+64 : i+192]) if err != nil { return nil, err } cs = append(cs, c) ts = append(ts, t) } // Execute the pairing checks and return the results if bn256.PairingCheck(cs, ts) { return true32Byte, nil } return false32Byte, nil } // bn256PairingIstanbul implements a pairing pre-compile for the bn256 curve // conforming to Istanbul consensus rules. type bn256PairingIstanbul struct{} // RequiredGas returns the gas required to execute the pre-compiled contract. func (c *bn256PairingIstanbul) RequiredGas(input []byte) uint64 { return params.Bn256PairingBaseGasIstanbul + uint64(len(input)/192)*params.Bn256PairingPerPointGasIstanbul } func (c *bn256PairingIstanbul) Run(input []byte) ([]byte, error) { return runBn256Pairing(input) } // bn256PairingByzantium implements a pairing pre-compile for the bn256 curve // conforming to Byzantium consensus rules. type bn256PairingByzantium struct{} // RequiredGas returns the gas required to execute the pre-compiled contract. func (c *bn256PairingByzantium) RequiredGas(input []byte) uint64 { return params.Bn256PairingBaseGasByzantium + uint64(len(input)/192)*params.Bn256PairingPerPointGasByzantium } func (c *bn256PairingByzantium) Run(input []byte) ([]byte, error) { return runBn256Pairing(input) } type blake2F struct{} func (c *blake2F) RequiredGas(input []byte) uint64 { // If the input is malformed, we can't calculate the gas, return 0 and let the // actual call choke and fault. if len(input) != blake2FInputLength { return 0 } return uint64(binary.BigEndian.Uint32(input[0:4])) } const ( blake2FInputLength = 213 blake2FFinalBlockBytes = byte(1) blake2FNonFinalBlockBytes = byte(0) ) var ( errBlake2FInvalidInputLength = errors.New("invalid input length") errBlake2FInvalidFinalFlag = errors.New("invalid final flag") ) func (c *blake2F) Run(input []byte) ([]byte, error) { // Make sure the input is valid (correct length and final flag) if len(input) != blake2FInputLength { return nil, errBlake2FInvalidInputLength } if input[212] != blake2FNonFinalBlockBytes && input[212] != blake2FFinalBlockBytes { return nil, errBlake2FInvalidFinalFlag } // Parse the input into the Blake2b call parameters var ( rounds = binary.BigEndian.Uint32(input[0:4]) final = input[212] == blake2FFinalBlockBytes h [8]uint64 m [16]uint64 t [2]uint64 ) for i := 0; i < 8; i++ { offset := 4 + i*8 h[i] = binary.LittleEndian.Uint64(input[offset : offset+8]) } for i := 0; i < 16; i++ { offset := 68 + i*8 m[i] = binary.LittleEndian.Uint64(input[offset : offset+8]) } t[0] = binary.LittleEndian.Uint64(input[196:204]) t[1] = binary.LittleEndian.Uint64(input[204:212]) // Execute the compression function, extract and return the result blake2b.F(&h, m, t, final, rounds) output := make([]byte, 64) for i := 0; i < 8; i++ { offset := i * 8 binary.LittleEndian.PutUint64(output[offset:offset+8], h[i]) } return output, nil } var ( errBLS12381InvalidInputLength = errors.New("invalid input length") errBLS12381InvalidFieldElementTopBytes = errors.New("invalid field element top bytes") errBLS12381G1PointSubgroup = errors.New("g1 point is not on correct subgroup") errBLS12381G2PointSubgroup = errors.New("g2 point is not on correct subgroup") ) // bls12381G1Add implements EIP-2537 G1Add precompile. type bls12381G1Add struct{} // RequiredGas returns the gas required to execute the pre-compiled contract. func (c *bls12381G1Add) RequiredGas(input []byte) uint64 { return params.Bls12381G1AddGas } func (c *bls12381G1Add) Run(input []byte) ([]byte, error) { // Implements EIP-2537 G1Add precompile. // > G1 addition call expects `256` bytes as an input that is interpreted as byte concatenation of two G1 points (`128` bytes each). // > Output is an encoding of addition operation result - single G1 point (`128` bytes). if len(input) != 256 { return nil, errBLS12381InvalidInputLength } var err error var p0, p1 *bls12381.G1Affine // Decode G1 point p_0 if p0, err = decodePointG1(input[:128]); err != nil { return nil, err } // Decode G1 point p_1 if p1, err = decodePointG1(input[128:]); err != nil { return nil, err } // No need to check the subgroup here, as specified by EIP-2537 // Compute r = p_0 + p_1 p0.Add(p0, p1) // Encode the G1 point result into 128 bytes return encodePointG1(p0), nil } // bls12381G1Mul implements EIP-2537 G1Mul precompile. type bls12381G1Mul struct{} // RequiredGas returns the gas required to execute the pre-compiled contract. func (c *bls12381G1Mul) RequiredGas(input []byte) uint64 { return params.Bls12381G1MulGas } func (c *bls12381G1Mul) Run(input []byte) ([]byte, error) { // Implements EIP-2537 G1Mul precompile. // > G1 multiplication call expects `160` bytes as an input that is interpreted as byte concatenation of encoding of G1 point (`128` bytes) and encoding of a scalar value (`32` bytes). // > Output is an encoding of multiplication operation result - single G1 point (`128` bytes). if len(input) != 160 { return nil, errBLS12381InvalidInputLength } var err error var p0 *bls12381.G1Affine // Decode G1 point if p0, err = decodePointG1(input[:128]); err != nil { return nil, err } // 'point is on curve' check already done, // Here we need to apply subgroup checks. if !p0.IsInSubGroup() { return nil, errBLS12381G1PointSubgroup } // Decode scalar value e := new(big.Int).SetBytes(input[128:]) // Compute r = e * p_0 r := new(bls12381.G1Affine) r.ScalarMultiplication(p0, e) // Encode the G1 point into 128 bytes return encodePointG1(r), nil } // bls12381G1MultiExp implements EIP-2537 G1MultiExp precompile. type bls12381G1MultiExp struct{} // RequiredGas returns the gas required to execute the pre-compiled contract. func (c *bls12381G1MultiExp) RequiredGas(input []byte) uint64 { // Calculate G1 point, scalar value pair length k := len(input) / 160 if k == 0 { // Return 0 gas for small input length return 0 } // Lookup discount value for G1 point, scalar value pair length var discount uint64 if dLen := len(params.Bls12381MultiExpDiscountTable); k < dLen { discount = params.Bls12381MultiExpDiscountTable[k-1] } else { discount = params.Bls12381MultiExpDiscountTable[dLen-1] } // Calculate gas and return the result return (uint64(k) * params.Bls12381G1MulGas * discount) / 1000 } func (c *bls12381G1MultiExp) Run(input []byte) ([]byte, error) { // Implements EIP-2537 G1MultiExp precompile. // G1 multiplication call expects `160*k` bytes as an input that is interpreted as byte concatenation of `k` slices each of them being a byte concatenation of encoding of G1 point (`128` bytes) and encoding of a scalar value (`32` bytes). // Output is an encoding of multiexponentiation operation result - single G1 point (`128` bytes). k := len(input) / 160 if len(input) == 0 || len(input)%160 != 0 { return nil, errBLS12381InvalidInputLength } points := make([]bls12381.G1Affine, k) scalars := make([]fr.Element, k) // Decode point scalar pairs for i := 0; i < k; i++ { off := 160 * i t0, t1, t2 := off, off+128, off+160 // Decode G1 point p, err := decodePointG1(input[t0:t1]) if err != nil { return nil, err } // 'point is on curve' check already done, // Here we need to apply subgroup checks. if !p.IsInSubGroup() { return nil, errBLS12381G1PointSubgroup } points[i] = *p // Decode scalar value scalars[i] = *new(fr.Element).SetBytes(input[t1:t2]) } // Compute r = e_0 * p_0 + e_1 * p_1 + ... + e_(k-1) * p_(k-1) r := new(bls12381.G1Affine) r.MultiExp(points, scalars, ecc.MultiExpConfig{}) // Encode the G1 point to 128 bytes return encodePointG1(r), nil } // bls12381G2Add implements EIP-2537 G2Add precompile. type bls12381G2Add struct{} // RequiredGas returns the gas required to execute the pre-compiled contract. func (c *bls12381G2Add) RequiredGas(input []byte) uint64 { return params.Bls12381G2AddGas } func (c *bls12381G2Add) Run(input []byte) ([]byte, error) { // Implements EIP-2537 G2Add precompile. // > G2 addition call expects `512` bytes as an input that is interpreted as byte concatenation of two G2 points (`256` bytes each). // > Output is an encoding of addition operation result - single G2 point (`256` bytes). if len(input) != 512 { return nil, errBLS12381InvalidInputLength } var err error var p0, p1 *bls12381.G2Affine // Decode G2 point p_0 if p0, err = decodePointG2(input[:256]); err != nil { return nil, err } // Decode G2 point p_1 if p1, err = decodePointG2(input[256:]); err != nil { return nil, err } // No need to check the subgroup here, as specified by EIP-2537 // Compute r = p_0 + p_1 r := new(bls12381.G2Affine) r.Add(p0, p1) // Encode the G2 point into 256 bytes return encodePointG2(r), nil } // bls12381G2Mul implements EIP-2537 G2Mul precompile. type bls12381G2Mul struct{} // RequiredGas returns the gas required to execute the pre-compiled contract. func (c *bls12381G2Mul) RequiredGas(input []byte) uint64 { return params.Bls12381G2MulGas } func (c *bls12381G2Mul) Run(input []byte) ([]byte, error) { // Implements EIP-2537 G2MUL precompile logic. // > G2 multiplication call expects `288` bytes as an input that is interpreted as byte concatenation of encoding of G2 point (`256` bytes) and encoding of a scalar value (`32` bytes). // > Output is an encoding of multiplication operation result - single G2 point (`256` bytes). if len(input) != 288 { return nil, errBLS12381InvalidInputLength } var err error var p0 *bls12381.G2Affine // Decode G2 point if p0, err = decodePointG2(input[:256]); err != nil { return nil, err } // 'point is on curve' check already done, // Here we need to apply subgroup checks. if !p0.IsInSubGroup() { return nil, errBLS12381G2PointSubgroup } // Decode scalar value e := new(big.Int).SetBytes(input[256:]) // Compute r = e * p_0 r := new(bls12381.G2Affine) r.ScalarMultiplication(p0, e) // Encode the G2 point into 256 bytes return encodePointG2(r), nil } // bls12381G2MultiExp implements EIP-2537 G2MultiExp precompile. type bls12381G2MultiExp struct{} // RequiredGas returns the gas required to execute the pre-compiled contract. func (c *bls12381G2MultiExp) RequiredGas(input []byte) uint64 { // Calculate G2 point, scalar value pair length k := len(input) / 288 if k == 0 { // Return 0 gas for small input length return 0 } // Lookup discount value for G2 point, scalar value pair length var discount uint64 if dLen := len(params.Bls12381MultiExpDiscountTable); k < dLen { discount = params.Bls12381MultiExpDiscountTable[k-1] } else { discount = params.Bls12381MultiExpDiscountTable[dLen-1] } // Calculate gas and return the result return (uint64(k) * params.Bls12381G2MulGas * discount) / 1000 } func (c *bls12381G2MultiExp) Run(input []byte) ([]byte, error) { // Implements EIP-2537 G2MultiExp precompile logic // > G2 multiplication call expects `288*k` bytes as an input that is interpreted as byte concatenation of `k` slices each of them being a byte concatenation of encoding of G2 point (`256` bytes) and encoding of a scalar value (`32` bytes). // > Output is an encoding of multiexponentiation operation result - single G2 point (`256` bytes). k := len(input) / 288 if len(input) == 0 || len(input)%288 != 0 { return nil, errBLS12381InvalidInputLength } points := make([]bls12381.G2Affine, k) scalars := make([]fr.Element, k) // Decode point scalar pairs for i := 0; i < k; i++ { off := 288 * i t0, t1, t2 := off, off+256, off+288 // Decode G2 point p, err := decodePointG2(input[t0:t1]) if err != nil { return nil, err } // 'point is on curve' check already done, // Here we need to apply subgroup checks. if !p.IsInSubGroup() { return nil, errBLS12381G2PointSubgroup } points[i] = *p // Decode scalar value scalars[i] = *new(fr.Element).SetBytes(input[t1:t2]) } // Compute r = e_0 * p_0 + e_1 * p_1 + ... + e_(k-1) * p_(k-1) r := new(bls12381.G2Affine) r.MultiExp(points, scalars, ecc.MultiExpConfig{}) // Encode the G2 point to 256 bytes. return encodePointG2(r), nil } // bls12381Pairing implements EIP-2537 Pairing precompile. type bls12381Pairing struct{} // RequiredGas returns the gas required to execute the pre-compiled contract. func (c *bls12381Pairing) RequiredGas(input []byte) uint64 { return params.Bls12381PairingBaseGas + uint64(len(input)/384)*params.Bls12381PairingPerPairGas } func (c *bls12381Pairing) Run(input []byte) ([]byte, error) { // Implements EIP-2537 Pairing precompile logic. // > Pairing call expects `384*k` bytes as an inputs that is interpreted as byte concatenation of `k` slices. Each slice has the following structure: // > - `128` bytes of G1 point encoding // > - `256` bytes of G2 point encoding // > Output is a `32` bytes where last single byte is `0x01` if pairing result is equal to multiplicative identity in a pairing target field and `0x00` otherwise // > (which is equivalent of Big Endian encoding of Solidity values `uint256(1)` and `uin256(0)` respectively). k := len(input) / 384 if len(input) == 0 || len(input)%384 != 0 { return nil, errBLS12381InvalidInputLength } var ( p []bls12381.G1Affine q []bls12381.G2Affine ) // Decode pairs for i := 0; i < k; i++ { off := 384 * i t0, t1, t2 := off, off+128, off+384 // Decode G1 point p1, err := decodePointG1(input[t0:t1]) if err != nil { return nil, err } // Decode G2 point p2, err := decodePointG2(input[t1:t2]) if err != nil { return nil, err } // 'point is on curve' check already done, // Here we need to apply subgroup checks. if !p1.IsInSubGroup() { return nil, errBLS12381G1PointSubgroup } if !p2.IsInSubGroup() { return nil, errBLS12381G2PointSubgroup } p = append(p, *p1) q = append(q, *p2) } // Prepare 32 byte output out := make([]byte, 32) // Compute pairing and set the result ok, err := bls12381.PairingCheck(p, q) if err == nil && ok { out[31] = 1 } return out, nil } func decodePointG1(in []byte) (*bls12381.G1Affine, error) { if len(in) != 128 { return nil, errors.New("invalid g1 point length") } // decode x x, err := decodeBLS12381FieldElement(in[:64]) if err != nil { return nil, err } // decode y y, err := decodeBLS12381FieldElement(in[64:]) if err != nil { return nil, err } elem := bls12381.G1Affine{X: x, Y: y} if !elem.IsOnCurve() { return nil, errors.New("invalid point: not on curve") } return &elem, nil } // decodePointG2 given encoded (x, y) coordinates in 256 bytes returns a valid G2 Point. func decodePointG2(in []byte) (*bls12381.G2Affine, error) { if len(in) != 256 { return nil, errors.New("invalid g2 point length") } x0, err := decodeBLS12381FieldElement(in[:64]) if err != nil { return nil, err } x1, err := decodeBLS12381FieldElement(in[64:128]) if err != nil { return nil, err } y0, err := decodeBLS12381FieldElement(in[128:192]) if err != nil { return nil, err } y1, err := decodeBLS12381FieldElement(in[192:]) if err != nil { return nil, err } p := bls12381.G2Affine{X: bls12381.E2{A0: x0, A1: x1}, Y: bls12381.E2{A0: y0, A1: y1}} if !p.IsOnCurve() { return nil, errors.New("invalid point: not on curve") } return &p, err } // decodeBLS12381FieldElement decodes BLS12-381 elliptic curve field element. // Removes top 16 bytes of 64 byte input. func decodeBLS12381FieldElement(in []byte) (fp.Element, error) { if len(in) != 64 { return fp.Element{}, errors.New("invalid field element length") } // check top bytes for i := 0; i < 16; i++ { if in[i] != byte(0x00) { return fp.Element{}, errBLS12381InvalidFieldElementTopBytes } } var res [48]byte copy(res[:], in[16:]) return fp.BigEndian.Element(&res) } // encodePointG1 encodes a point into 128 bytes. func encodePointG1(p *bls12381.G1Affine) []byte { out := make([]byte, 128) fp.BigEndian.PutElement((*[fp.Bytes]byte)(out[16:]), p.X) fp.BigEndian.PutElement((*[fp.Bytes]byte)(out[64+16:]), p.Y) return out } // encodePointG2 encodes a point into 256 bytes. func encodePointG2(p *bls12381.G2Affine) []byte { out := make([]byte, 256) // encode x fp.BigEndian.PutElement((*[fp.Bytes]byte)(out[16:16+48]), p.X.A0) fp.BigEndian.PutElement((*[fp.Bytes]byte)(out[80:80+48]), p.X.A1) // encode y fp.BigEndian.PutElement((*[fp.Bytes]byte)(out[144:144+48]), p.Y.A0) fp.BigEndian.PutElement((*[fp.Bytes]byte)(out[208:208+48]), p.Y.A1) return out } // bls12381MapG1 implements EIP-2537 MapG1 precompile. type bls12381MapG1 struct{} // RequiredGas returns the gas required to execute the pre-compiled contract. func (c *bls12381MapG1) RequiredGas(input []byte) uint64 { return params.Bls12381MapG1Gas } func (c *bls12381MapG1) Run(input []byte) ([]byte, error) { // Implements EIP-2537 Map_To_G1 precompile. // > Field-to-curve call expects an `64` bytes input that is interpreted as an element of the base field. // > Output of this call is `128` bytes and is G1 point following respective encoding rules. if len(input) != 64 { return nil, errBLS12381InvalidInputLength } // Decode input field element fe, err := decodeBLS12381FieldElement(input) if err != nil { return nil, err } // Compute mapping r := bls12381.MapToG1(fe) // Encode the G1 point to 128 bytes return encodePointG1(&r), nil } // bls12381MapG2 implements EIP-2537 MapG2 precompile. type bls12381MapG2 struct{} // RequiredGas returns the gas required to execute the pre-compiled contract. func (c *bls12381MapG2) RequiredGas(input []byte) uint64 { return params.Bls12381MapG2Gas } func (c *bls12381MapG2) Run(input []byte) ([]byte, error) { // Implements EIP-2537 Map_FP2_TO_G2 precompile logic. // > Field-to-curve call expects an `128` bytes input that is interpreted as an element of the quadratic extension field. // > Output of this call is `256` bytes and is G2 point following respective encoding rules. if len(input) != 128 { return nil, errBLS12381InvalidInputLength } // Decode input field element c0, err := decodeBLS12381FieldElement(input[:64]) if err != nil { return nil, err } c1, err := decodeBLS12381FieldElement(input[64:]) if err != nil { return nil, err } // Compute mapping r := bls12381.MapToG2(bls12381.E2{A0: c0, A1: c1}) // Encode the G2 point to 256 bytes return encodePointG2(&r), nil } // kzgPointEvaluation implements the EIP-4844 point evaluation precompile. type kzgPointEvaluation struct{} // RequiredGas estimates the gas required for running the point evaluation precompile. func (b *kzgPointEvaluation) RequiredGas(input []byte) uint64 { return params.BlobTxPointEvaluationPrecompileGas } const ( blobVerifyInputLength = 192 // Max input length for the point evaluation precompile. blobCommitmentVersionKZG uint8 = 0x01 // Version byte for the point evaluation precompile. blobPrecompileReturnValue = "000000000000000000000000000000000000000000000000000000000000100073eda753299d7d483339d80809a1d80553bda402fffe5bfeffffffff00000001" ) var ( errBlobVerifyInvalidInputLength = errors.New("invalid input length") errBlobVerifyMismatchedVersion = errors.New("mismatched versioned hash") errBlobVerifyKZGProof = errors.New("error verifying kzg proof") ) // Run executes the point evaluation precompile. func (b *kzgPointEvaluation) Run(input []byte) ([]byte, error) { if len(input) != blobVerifyInputLength { return nil, errBlobVerifyInvalidInputLength } // versioned hash: first 32 bytes var versionedHash common.Hash copy(versionedHash[:], input[:]) var ( point kzg4844.Point claim kzg4844.Claim ) // Evaluation point: next 32 bytes copy(point[:], input[32:]) // Expected output: next 32 bytes copy(claim[:], input[64:]) // input kzg point: next 48 bytes var commitment kzg4844.Commitment copy(commitment[:], input[96:]) if kZGToVersionedHash(commitment) != versionedHash { return nil, errBlobVerifyMismatchedVersion } // Proof: next 48 bytes var proof kzg4844.Proof copy(proof[:], input[144:]) if err := kzg4844.VerifyProof(commitment, point, claim, proof); err != nil { return nil, fmt.Errorf("%w: %v", errBlobVerifyKZGProof, err) } return common.Hex2Bytes(blobPrecompileReturnValue), nil } // kZGToVersionedHash implements kzg_to_versioned_hash from EIP-4844 func kZGToVersionedHash(kzg kzg4844.Commitment) common.Hash { h := sha256.Sum256(kzg[:]) h[0] = blobCommitmentVersionKZG return h }