// Copyright 2015 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see . package trie import ( "bytes" crand "crypto/rand" mrand "math/rand" "sort" "testing" "time" "github.com/ethereum/go-ethereum/common" "github.com/ethereum/go-ethereum/crypto" "github.com/ethereum/go-ethereum/ethdb/memorydb" ) func init() { mrand.Seed(time.Now().Unix()) } // makeProvers creates Merkle trie provers based on different implementations to // test all variations. func makeProvers(trie *Trie) []func(key []byte) *memorydb.Database { var provers []func(key []byte) *memorydb.Database // Create a direct trie based Merkle prover provers = append(provers, func(key []byte) *memorydb.Database { proof := memorydb.New() trie.Prove(key, 0, proof) return proof }) // Create a leaf iterator based Merkle prover provers = append(provers, func(key []byte) *memorydb.Database { proof := memorydb.New() if it := NewIterator(trie.NodeIterator(key)); it.Next() && bytes.Equal(key, it.Key) { for _, p := range it.Prove() { proof.Put(crypto.Keccak256(p), p) } } return proof }) return provers } func TestProof(t *testing.T) { trie, vals := randomTrie(500) root := trie.Hash() for i, prover := range makeProvers(trie) { for _, kv := range vals { proof := prover(kv.k) if proof == nil { t.Fatalf("prover %d: missing key %x while constructing proof", i, kv.k) } val, err := VerifyProof(root, kv.k, proof) if err != nil { t.Fatalf("prover %d: failed to verify proof for key %x: %v\nraw proof: %x", i, kv.k, err, proof) } if !bytes.Equal(val, kv.v) { t.Fatalf("prover %d: verified value mismatch for key %x: have %x, want %x", i, kv.k, val, kv.v) } } } } func TestOneElementProof(t *testing.T) { trie := new(Trie) updateString(trie, "k", "v") for i, prover := range makeProvers(trie) { proof := prover([]byte("k")) if proof == nil { t.Fatalf("prover %d: nil proof", i) } if proof.Len() != 1 { t.Errorf("prover %d: proof should have one element", i) } val, err := VerifyProof(trie.Hash(), []byte("k"), proof) if err != nil { t.Fatalf("prover %d: failed to verify proof: %v\nraw proof: %x", i, err, proof) } if !bytes.Equal(val, []byte("v")) { t.Fatalf("prover %d: verified value mismatch: have %x, want 'k'", i, val) } } } func TestBadProof(t *testing.T) { trie, vals := randomTrie(800) root := trie.Hash() for i, prover := range makeProvers(trie) { for _, kv := range vals { proof := prover(kv.k) if proof == nil { t.Fatalf("prover %d: nil proof", i) } it := proof.NewIterator(nil, nil) for i, d := 0, mrand.Intn(proof.Len()); i <= d; i++ { it.Next() } key := it.Key() val, _ := proof.Get(key) proof.Delete(key) it.Release() mutateByte(val) proof.Put(crypto.Keccak256(val), val) if _, err := VerifyProof(root, kv.k, proof); err == nil { t.Fatalf("prover %d: expected proof to fail for key %x", i, kv.k) } } } } // Tests that missing keys can also be proven. The test explicitly uses a single // entry trie and checks for missing keys both before and after the single entry. func TestMissingKeyProof(t *testing.T) { trie := new(Trie) updateString(trie, "k", "v") for i, key := range []string{"a", "j", "l", "z"} { proof := memorydb.New() trie.Prove([]byte(key), 0, proof) if proof.Len() != 1 { t.Errorf("test %d: proof should have one element", i) } val, err := VerifyProof(trie.Hash(), []byte(key), proof) if err != nil { t.Fatalf("test %d: failed to verify proof: %v\nraw proof: %x", i, err, proof) } if val != nil { t.Fatalf("test %d: verified value mismatch: have %x, want nil", i, val) } } } type entrySlice []*kv func (p entrySlice) Len() int { return len(p) } func (p entrySlice) Less(i, j int) bool { return bytes.Compare(p[i].k, p[j].k) < 0 } func (p entrySlice) Swap(i, j int) { p[i], p[j] = p[j], p[i] } // TestRangeProof tests normal range proof with both edge proofs // as the existent proof. The test cases are generated randomly. func TestRangeProof(t *testing.T) { trie, vals := randomTrie(4096) var entries entrySlice for _, kv := range vals { entries = append(entries, kv) } sort.Sort(entries) for i := 0; i < 500; i++ { start := mrand.Intn(len(entries)) end := mrand.Intn(len(entries)-start) + start if start == end { continue } firstProof, lastProof := memorydb.New(), memorydb.New() if err := trie.Prove(entries[start].k, 0, firstProof); err != nil { t.Fatalf("Failed to prove the first node %v", err) } if err := trie.Prove(entries[end-1].k, 0, lastProof); err != nil { t.Fatalf("Failed to prove the last node %v", err) } var keys [][]byte var vals [][]byte for i := start; i < end; i++ { keys = append(keys, entries[i].k) vals = append(vals, entries[i].v) } err, _ := VerifyRangeProof(trie.Hash(), keys[0], keys, vals, firstProof, lastProof) if err != nil { t.Fatalf("Case %d(%d->%d) expect no error, got %v", i, start, end-1, err) } } } // TestRangeProof tests normal range proof with the first edge proof // as the non-existent proof. The test cases are generated randomly. func TestRangeProofWithNonExistentProof(t *testing.T) { trie, vals := randomTrie(4096) var entries entrySlice for _, kv := range vals { entries = append(entries, kv) } sort.Sort(entries) for i := 0; i < 500; i++ { start := mrand.Intn(len(entries)) end := mrand.Intn(len(entries)-start) + start if start == end { continue } firstProof, lastProof := memorydb.New(), memorydb.New() first := decreseKey(common.CopyBytes(entries[start].k)) if start != 0 && bytes.Equal(first, entries[start-1].k) { continue } if err := trie.Prove(first, 0, firstProof); err != nil { t.Fatalf("Failed to prove the first node %v", err) } if err := trie.Prove(entries[end-1].k, 0, lastProof); err != nil { t.Fatalf("Failed to prove the last node %v", err) } var keys [][]byte var vals [][]byte for i := start; i < end; i++ { keys = append(keys, entries[i].k) vals = append(vals, entries[i].v) } err, _ := VerifyRangeProof(trie.Hash(), first, keys, vals, firstProof, lastProof) if err != nil { t.Fatalf("Case %d(%d->%d) expect no error, got %v", i, start, end-1, err) } } } // TestRangeProofWithInvalidNonExistentProof tests such scenarios: // - The last edge proof is an non-existent proof // - There exists a gap between the first element and the left edge proof func TestRangeProofWithInvalidNonExistentProof(t *testing.T) { trie, vals := randomTrie(4096) var entries entrySlice for _, kv := range vals { entries = append(entries, kv) } sort.Sort(entries) // Case 1 start, end := 100, 200 first, last := decreseKey(common.CopyBytes(entries[start].k)), increseKey(common.CopyBytes(entries[end].k)) firstProof, lastProof := memorydb.New(), memorydb.New() if err := trie.Prove(first, 0, firstProof); err != nil { t.Fatalf("Failed to prove the first node %v", err) } if err := trie.Prove(last, 0, lastProof); err != nil { t.Fatalf("Failed to prove the last node %v", err) } var k [][]byte var v [][]byte for i := start; i < end; i++ { k = append(k, entries[i].k) v = append(v, entries[i].v) } err, _ := VerifyRangeProof(trie.Hash(), first, k, v, firstProof, lastProof) if err == nil { t.Fatalf("Expected to detect the error, got nil") } // Case 2 start, end = 100, 200 first = decreseKey(common.CopyBytes(entries[start].k)) firstProof, lastProof = memorydb.New(), memorydb.New() if err := trie.Prove(first, 0, firstProof); err != nil { t.Fatalf("Failed to prove the first node %v", err) } if err := trie.Prove(entries[end-1].k, 0, lastProof); err != nil { t.Fatalf("Failed to prove the last node %v", err) } start = 105 // Gap created k = make([][]byte, 0) v = make([][]byte, 0) for i := start; i < end; i++ { k = append(k, entries[i].k) v = append(v, entries[i].v) } err, _ = VerifyRangeProof(trie.Hash(), first, k, v, firstProof, lastProof) if err == nil { t.Fatalf("Expected to detect the error, got nil") } } // TestOneElementRangeProof tests the proof with only one // element. The first edge proof can be existent one or // non-existent one. func TestOneElementRangeProof(t *testing.T) { trie, vals := randomTrie(4096) var entries entrySlice for _, kv := range vals { entries = append(entries, kv) } sort.Sort(entries) // One element with existent edge proof start := 1000 firstProof, lastProof := memorydb.New(), memorydb.New() if err := trie.Prove(entries[start].k, 0, firstProof); err != nil { t.Fatalf("Failed to prove the first node %v", err) } if err := trie.Prove(entries[start].k, 0, lastProof); err != nil { t.Fatalf("Failed to prove the last node %v", err) } err, _ := VerifyRangeProof(trie.Hash(), entries[start].k, [][]byte{entries[start].k}, [][]byte{entries[start].v}, firstProof, lastProof) if err != nil { t.Fatalf("Expected no error, got %v", err) } // One element with non-existent edge proof start = 1000 first := decreseKey(common.CopyBytes(entries[start].k)) firstProof, lastProof = memorydb.New(), memorydb.New() if err := trie.Prove(first, 0, firstProof); err != nil { t.Fatalf("Failed to prove the first node %v", err) } if err := trie.Prove(entries[start].k, 0, lastProof); err != nil { t.Fatalf("Failed to prove the last node %v", err) } err, _ = VerifyRangeProof(trie.Hash(), first, [][]byte{entries[start].k}, [][]byte{entries[start].v}, firstProof, lastProof) if err != nil { t.Fatalf("Expected no error, got %v", err) } } // TestAllElementsProof tests the range proof with all elements. // The edge proofs can be nil. func TestAllElementsProof(t *testing.T) { trie, vals := randomTrie(4096) var entries entrySlice for _, kv := range vals { entries = append(entries, kv) } sort.Sort(entries) var k [][]byte var v [][]byte for i := 0; i < len(entries); i++ { k = append(k, entries[i].k) v = append(v, entries[i].v) } err, _ := VerifyRangeProof(trie.Hash(), k[0], k, v, nil, nil) if err != nil { t.Fatalf("Expected no error, got %v", err) } // Even with edge proofs, it should still work. firstProof, lastProof := memorydb.New(), memorydb.New() if err := trie.Prove(entries[0].k, 0, firstProof); err != nil { t.Fatalf("Failed to prove the first node %v", err) } if err := trie.Prove(entries[len(entries)-1].k, 0, lastProof); err != nil { t.Fatalf("Failed to prove the last node %v", err) } err, _ = VerifyRangeProof(trie.Hash(), k[0], k, v, firstProof, lastProof) if err != nil { t.Fatalf("Expected no error, got %v", err) } } // TestSingleSideRangeProof tests the range starts from zero. func TestSingleSideRangeProof(t *testing.T) { for i := 0; i < 64; i++ { trie := new(Trie) var entries entrySlice for i := 0; i < 4096; i++ { value := &kv{randBytes(32), randBytes(20), false} trie.Update(value.k, value.v) entries = append(entries, value) } sort.Sort(entries) var cases = []int{0, 1, 50, 100, 1000, 2000, len(entries) - 1} for _, pos := range cases { firstProof, lastProof := memorydb.New(), memorydb.New() if err := trie.Prove(common.Hash{}.Bytes(), 0, firstProof); err != nil { t.Fatalf("Failed to prove the first node %v", err) } if err := trie.Prove(entries[pos].k, 0, lastProof); err != nil { t.Fatalf("Failed to prove the first node %v", err) } k := make([][]byte, 0) v := make([][]byte, 0) for i := 0; i <= pos; i++ { k = append(k, entries[i].k) v = append(v, entries[i].v) } err, _ := VerifyRangeProof(trie.Hash(), common.Hash{}.Bytes(), k, v, firstProof, lastProof) if err != nil { t.Fatalf("Expected no error, got %v", err) } } } } // TestBadRangeProof tests a few cases which the proof is wrong. // The prover is expected to detect the error. func TestBadRangeProof(t *testing.T) { trie, vals := randomTrie(4096) var entries entrySlice for _, kv := range vals { entries = append(entries, kv) } sort.Sort(entries) for i := 0; i < 500; i++ { start := mrand.Intn(len(entries)) end := mrand.Intn(len(entries)-start) + start if start == end { continue } firstProof, lastProof := memorydb.New(), memorydb.New() if err := trie.Prove(entries[start].k, 0, firstProof); err != nil { t.Fatalf("Failed to prove the first node %v", err) } if err := trie.Prove(entries[end-1].k, 0, lastProof); err != nil { t.Fatalf("Failed to prove the last node %v", err) } var keys [][]byte var vals [][]byte for i := start; i < end; i++ { keys = append(keys, entries[i].k) vals = append(vals, entries[i].v) } testcase := mrand.Intn(6) var index int switch testcase { case 0: // Modified key index = mrand.Intn(end - start) keys[index] = randBytes(32) // In theory it can't be same case 1: // Modified val index = mrand.Intn(end - start) vals[index] = randBytes(20) // In theory it can't be same case 2: // Gapped entry slice // There are only two elements, skip it. Dropped any element // will lead to single edge proof which is always correct. if end-start <= 2 { continue } // If the dropped element is the first or last one and it's a // batch of small size elements. In this special case, it can // happen that the proof for the edge element is exactly same // with the first/last second element(since small values are // embedded in the parent). Avoid this case. index = mrand.Intn(end - start) if (index == 0 && start < 100) || (index == end-start-1 && end <= 100) { continue } keys = append(keys[:index], keys[index+1:]...) vals = append(vals[:index], vals[index+1:]...) case 3: // Switched entry slice, same effect with gapped index = mrand.Intn(end - start) keys[index] = entries[len(entries)-1].k vals[index] = entries[len(entries)-1].v case 4: // Set random key to nil index = mrand.Intn(end - start) keys[index] = nil case 5: // Set random value to nil index = mrand.Intn(end - start) vals[index] = nil } err, _ := VerifyRangeProof(trie.Hash(), keys[0], keys, vals, firstProof, lastProof) if err == nil { t.Fatalf("%d Case %d index %d range: (%d->%d) expect error, got nil", i, testcase, index, start, end-1) } } } // TestGappedRangeProof focuses on the small trie with embedded nodes. // If the gapped node is embedded in the trie, it should be detected too. func TestGappedRangeProof(t *testing.T) { trie := new(Trie) var entries []*kv // Sorted entries for i := byte(0); i < 10; i++ { value := &kv{common.LeftPadBytes([]byte{i}, 32), []byte{i}, false} trie.Update(value.k, value.v) entries = append(entries, value) } first, last := 2, 8 firstProof, lastProof := memorydb.New(), memorydb.New() if err := trie.Prove(entries[first].k, 0, firstProof); err != nil { t.Fatalf("Failed to prove the first node %v", err) } if err := trie.Prove(entries[last-1].k, 0, lastProof); err != nil { t.Fatalf("Failed to prove the last node %v", err) } var keys [][]byte var vals [][]byte for i := first; i < last; i++ { if i == (first+last)/2 { continue } keys = append(keys, entries[i].k) vals = append(vals, entries[i].v) } err, _ := VerifyRangeProof(trie.Hash(), keys[0], keys, vals, firstProof, lastProof) if err == nil { t.Fatal("expect error, got nil") } } func TestHasRightElement(t *testing.T) { trie := new(Trie) var entries entrySlice for i := 0; i < 4096; i++ { value := &kv{randBytes(32), randBytes(20), false} trie.Update(value.k, value.v) entries = append(entries, value) } sort.Sort(entries) var cases = []struct { start int end int hasMore bool }{ {-1, 1, true}, // single element with non-existent left proof {0, 1, true}, // single element with existent left proof {0, 10, true}, {50, 100, true}, {50, len(entries), false}, // No more element expected {len(entries) - 1, len(entries), false}, // Single last element {0, len(entries), false}, // The whole set with existent left proof {-1, len(entries), false}, // The whole set with non-existent left proof } for _, c := range cases { var ( firstKey []byte start = c.start firstProof = memorydb.New() lastProof = memorydb.New() ) if c.start == -1 { firstKey, start = common.Hash{}.Bytes(), 0 if err := trie.Prove(firstKey, 0, firstProof); err != nil { t.Fatalf("Failed to prove the first node %v", err) } } else { firstKey = entries[c.start].k if err := trie.Prove(entries[c.start].k, 0, firstProof); err != nil { t.Fatalf("Failed to prove the first node %v", err) } } if err := trie.Prove(entries[c.end-1].k, 0, lastProof); err != nil { t.Fatalf("Failed to prove the first node %v", err) } k := make([][]byte, 0) v := make([][]byte, 0) for i := start; i < c.end; i++ { k = append(k, entries[i].k) v = append(v, entries[i].v) } err, hasMore := VerifyRangeProof(trie.Hash(), firstKey, k, v, firstProof, lastProof) if err != nil { t.Fatalf("Expected no error, got %v", err) } if hasMore != c.hasMore { t.Fatalf("Wrong hasMore indicator, want %t, got %t", c.hasMore, hasMore) } } } // mutateByte changes one byte in b. func mutateByte(b []byte) { for r := mrand.Intn(len(b)); ; { new := byte(mrand.Intn(255)) if new != b[r] { b[r] = new break } } } func increseKey(key []byte) []byte { for i := len(key) - 1; i >= 0; i-- { key[i]++ if key[i] != 0x0 { break } } return key } func decreseKey(key []byte) []byte { for i := len(key) - 1; i >= 0; i-- { key[i]-- if key[i] != 0xff { break } } return key } func BenchmarkProve(b *testing.B) { trie, vals := randomTrie(100) var keys []string for k := range vals { keys = append(keys, k) } b.ResetTimer() for i := 0; i < b.N; i++ { kv := vals[keys[i%len(keys)]] proofs := memorydb.New() if trie.Prove(kv.k, 0, proofs); proofs.Len() == 0 { b.Fatalf("zero length proof for %x", kv.k) } } } func BenchmarkVerifyProof(b *testing.B) { trie, vals := randomTrie(100) root := trie.Hash() var keys []string var proofs []*memorydb.Database for k := range vals { keys = append(keys, k) proof := memorydb.New() trie.Prove([]byte(k), 0, proof) proofs = append(proofs, proof) } b.ResetTimer() for i := 0; i < b.N; i++ { im := i % len(keys) if _, err := VerifyProof(root, []byte(keys[im]), proofs[im]); err != nil { b.Fatalf("key %x: %v", keys[im], err) } } } func BenchmarkVerifyRangeProof10(b *testing.B) { benchmarkVerifyRangeProof(b, 10) } func BenchmarkVerifyRangeProof100(b *testing.B) { benchmarkVerifyRangeProof(b, 100) } func BenchmarkVerifyRangeProof1000(b *testing.B) { benchmarkVerifyRangeProof(b, 1000) } func BenchmarkVerifyRangeProof5000(b *testing.B) { benchmarkVerifyRangeProof(b, 5000) } func benchmarkVerifyRangeProof(b *testing.B, size int) { trie, vals := randomTrie(8192) var entries entrySlice for _, kv := range vals { entries = append(entries, kv) } sort.Sort(entries) start := 2 end := start + size firstProof, lastProof := memorydb.New(), memorydb.New() if err := trie.Prove(entries[start].k, 0, firstProof); err != nil { b.Fatalf("Failed to prove the first node %v", err) } if err := trie.Prove(entries[end-1].k, 0, lastProof); err != nil { b.Fatalf("Failed to prove the last node %v", err) } var keys [][]byte var values [][]byte for i := start; i < end; i++ { keys = append(keys, entries[i].k) values = append(values, entries[i].v) } b.ResetTimer() for i := 0; i < b.N; i++ { err, _ := VerifyRangeProof(trie.Hash(), keys[0], keys, values, firstProof, lastProof) if err != nil { b.Fatalf("Case %d(%d->%d) expect no error, got %v", i, start, end-1, err) } } } func randomTrie(n int) (*Trie, map[string]*kv) { trie := new(Trie) vals := make(map[string]*kv) for i := byte(0); i < 100; i++ { value := &kv{common.LeftPadBytes([]byte{i}, 32), []byte{i}, false} value2 := &kv{common.LeftPadBytes([]byte{i + 10}, 32), []byte{i}, false} trie.Update(value.k, value.v) trie.Update(value2.k, value2.v) vals[string(value.k)] = value vals[string(value2.k)] = value2 } for i := 0; i < n; i++ { value := &kv{randBytes(32), randBytes(20), false} trie.Update(value.k, value.v) vals[string(value.k)] = value } return trie, vals } func randBytes(n int) []byte { r := make([]byte, n) crand.Read(r) return r }