go-ethereum/core/vm/eof_validation_test.go
lightclient f808d7357e
all: implement eip-7702 set code tx (#30078)
This PR implements EIP-7702: "Set EOA account code". 
Specification: https://eips.ethereum.org/EIPS/eip-7702

> Add a new transaction type that adds a list of `[chain_id, address,
nonce, y_parity, r, s]` authorization tuples. For each tuple, write a
delegation designator `(0xef0100 ++ address)` to the signing account’s
code. All code reading operations must load the code pointed to by the
designator.

---------

Co-authored-by: Mario Vega <marioevz@gmail.com>
Co-authored-by: Martin Holst Swende <martin@swende.se>
Co-authored-by: Felix Lange <fjl@twurst.com>
2024-12-16 11:29:37 +01:00

518 lines
14 KiB
Go

// Copyright 2024 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package vm
import (
"encoding/binary"
"errors"
"testing"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/params"
)
func TestValidateCode(t *testing.T) {
for i, test := range []struct {
code []byte
section int
metadata []*functionMetadata
err error
}{
{
code: []byte{
byte(CALLER),
byte(POP),
byte(STOP),
},
section: 0,
metadata: []*functionMetadata{{inputs: 0, outputs: 0x80, maxStackHeight: 1}},
},
{
code: []byte{
byte(CALLF), 0x00, 0x00,
byte(RETF),
},
section: 0,
metadata: []*functionMetadata{{inputs: 0, outputs: 0, maxStackHeight: 0}},
},
{
code: []byte{
byte(ADDRESS),
byte(CALLF), 0x00, 0x00,
byte(POP),
byte(RETF),
},
section: 0,
metadata: []*functionMetadata{{inputs: 0, outputs: 0, maxStackHeight: 1}},
},
{
code: []byte{
byte(CALLER),
byte(POP),
},
section: 0,
metadata: []*functionMetadata{{inputs: 0, outputs: 0x80, maxStackHeight: 1}},
err: errInvalidCodeTermination,
},
{
code: []byte{
byte(RJUMP),
byte(0x00),
byte(0x01),
byte(CALLER),
byte(STOP),
},
section: 0,
metadata: []*functionMetadata{{inputs: 0, outputs: 0x80, maxStackHeight: 0}},
err: errUnreachableCode,
},
{
code: []byte{
byte(PUSH1),
byte(0x42),
byte(ADD),
byte(STOP),
},
section: 0,
metadata: []*functionMetadata{{inputs: 0, outputs: 0x80, maxStackHeight: 1}},
err: ErrStackUnderflow{stackLen: 1, required: 2},
},
{
code: []byte{
byte(PUSH1),
byte(0x42),
byte(POP),
byte(STOP),
},
section: 0,
metadata: []*functionMetadata{{inputs: 0, outputs: 0x80, maxStackHeight: 2}},
err: errInvalidMaxStackHeight,
},
{
code: []byte{
byte(PUSH0),
byte(RJUMPI),
byte(0x00),
byte(0x01),
byte(PUSH1),
byte(0x42), // jumps to here
byte(POP),
byte(STOP),
},
section: 0,
metadata: []*functionMetadata{{inputs: 0, outputs: 0x80, maxStackHeight: 1}},
err: errInvalidJumpDest,
},
{
code: []byte{
byte(PUSH0),
byte(RJUMPV),
byte(0x01),
byte(0x00),
byte(0x01),
byte(0x00),
byte(0x02),
byte(PUSH1),
byte(0x42), // jumps to here
byte(POP), // and here
byte(STOP),
},
section: 0,
metadata: []*functionMetadata{{inputs: 0, outputs: 0x80, maxStackHeight: 1}},
err: errInvalidJumpDest,
},
{
code: []byte{
byte(PUSH0),
byte(RJUMPV),
byte(0x00),
byte(STOP),
},
section: 0,
metadata: []*functionMetadata{{inputs: 0, outputs: 0x80, maxStackHeight: 1}},
err: errTruncatedImmediate,
},
{
code: []byte{
byte(RJUMP), 0x00, 0x03,
byte(JUMPDEST), // this code is unreachable to forward jumps alone
byte(JUMPDEST),
byte(RETURN),
byte(PUSH1), 20,
byte(PUSH1), 39,
byte(PUSH1), 0x00,
byte(DATACOPY),
byte(PUSH1), 20,
byte(PUSH1), 0x00,
byte(RJUMP), 0xff, 0xef,
},
section: 0,
metadata: []*functionMetadata{{inputs: 0, outputs: 0x80, maxStackHeight: 3}},
err: errUnreachableCode,
},
{
code: []byte{
byte(PUSH1), 1,
byte(RJUMPI), 0x00, 0x03,
byte(JUMPDEST),
byte(JUMPDEST),
byte(STOP),
byte(PUSH1), 20,
byte(PUSH1), 39,
byte(PUSH1), 0x00,
byte(DATACOPY),
byte(PUSH1), 20,
byte(PUSH1), 0x00,
byte(RETURN),
},
section: 0,
metadata: []*functionMetadata{{inputs: 0, outputs: 0x80, maxStackHeight: 3}},
},
{
code: []byte{
byte(PUSH1), 1,
byte(RJUMPV), 0x01, 0x00, 0x03, 0xff, 0xf8,
byte(JUMPDEST),
byte(JUMPDEST),
byte(STOP),
byte(PUSH1), 20,
byte(PUSH1), 39,
byte(PUSH1), 0x00,
byte(DATACOPY),
byte(PUSH1), 20,
byte(PUSH1), 0x00,
byte(RETURN),
},
section: 0,
metadata: []*functionMetadata{{inputs: 0, outputs: 0x80, maxStackHeight: 3}},
},
{
code: []byte{
byte(STOP),
byte(STOP),
byte(INVALID),
},
section: 0,
metadata: []*functionMetadata{{inputs: 0, outputs: 0x80, maxStackHeight: 0}},
err: errUnreachableCode,
},
{
code: []byte{
byte(RETF),
},
section: 0,
metadata: []*functionMetadata{{inputs: 0, outputs: 1, maxStackHeight: 0}},
err: errInvalidOutputs,
},
{
code: []byte{
byte(RETF),
},
section: 0,
metadata: []*functionMetadata{{inputs: 3, outputs: 3, maxStackHeight: 3}},
},
{
code: []byte{
byte(CALLF), 0x00, 0x01,
byte(POP),
byte(STOP),
},
section: 0,
metadata: []*functionMetadata{{inputs: 0, outputs: 0x80, maxStackHeight: 1}, {inputs: 0, outputs: 1, maxStackHeight: 0}},
},
{
code: []byte{
byte(ORIGIN),
byte(ORIGIN),
byte(CALLF), 0x00, 0x01,
byte(POP),
byte(RETF),
},
section: 0,
metadata: []*functionMetadata{{inputs: 0, outputs: 0, maxStackHeight: 2}, {inputs: 2, outputs: 1, maxStackHeight: 2}},
},
} {
container := &Container{
types: test.metadata,
data: make([]byte, 0),
subContainers: make([]*Container, 0),
}
_, err := validateCode(test.code, test.section, container, &eofInstructionSet, false)
if !errors.Is(err, test.err) {
t.Errorf("test %d (%s): unexpected error (want: %v, got: %v)", i, common.Bytes2Hex(test.code), test.err, err)
}
}
}
// BenchmarkRJUMPI tries to benchmark the RJUMPI opcode validation
// For this we do a bunch of RJUMPIs that jump backwards (in a potential infinite loop).
func BenchmarkRJUMPI(b *testing.B) {
snippet := []byte{
byte(PUSH0),
byte(RJUMPI), 0xFF, 0xFC,
}
code := []byte{}
for i := 0; i < params.MaxCodeSize/len(snippet)-1; i++ {
code = append(code, snippet...)
}
code = append(code, byte(STOP))
container := &Container{
types: []*functionMetadata{{inputs: 0, outputs: 0x80, maxStackHeight: 1}},
data: make([]byte, 0),
subContainers: make([]*Container, 0),
}
b.ResetTimer()
for i := 0; i < b.N; i++ {
_, err := validateCode(code, 0, container, &eofInstructionSet, false)
if err != nil {
b.Fatal(err)
}
}
}
// BenchmarkRJUMPV tries to benchmark the validation of the RJUMPV opcode
// for this we set up as many RJUMPV opcodes with a full jumptable (containing 0s) as possible.
func BenchmarkRJUMPV(b *testing.B) {
snippet := []byte{
byte(PUSH0),
byte(RJUMPV),
0xff, // count
0x00, 0x00,
}
for i := 0; i < 255; i++ {
snippet = append(snippet, []byte{0x00, 0x00}...)
}
code := []byte{}
for i := 0; i < 24576/len(snippet)-1; i++ {
code = append(code, snippet...)
}
code = append(code, byte(PUSH0))
code = append(code, byte(STOP))
container := &Container{
types: []*functionMetadata{{inputs: 0, outputs: 0x80, maxStackHeight: 1}},
data: make([]byte, 0),
subContainers: make([]*Container, 0),
}
b.ResetTimer()
for i := 0; i < b.N; i++ {
_, err := validateCode(code, 0, container, &pragueInstructionSet, false)
if err != nil {
b.Fatal(err)
}
}
}
// BenchmarkEOFValidation tries to benchmark the code validation for the CALLF/RETF operation.
// For this we set up code that calls into 1024 code sections which can either
// - just contain a RETF opcode
// - or code to again call into 1024 code sections.
// We can't have all code sections calling each other, otherwise we would exceed 48KB.
func BenchmarkEOFValidation(b *testing.B) {
var container Container
var code []byte
maxSections := 1024
for i := 0; i < maxSections; i++ {
code = append(code, byte(CALLF))
code = binary.BigEndian.AppendUint16(code, uint16(i%(maxSections-1))+1)
}
// First container
container.codeSections = append(container.codeSections, append(code, byte(STOP)))
container.types = append(container.types, &functionMetadata{inputs: 0, outputs: 0x80, maxStackHeight: 0})
inner := []byte{
byte(RETF),
}
for i := 0; i < 1023; i++ {
container.codeSections = append(container.codeSections, inner)
container.types = append(container.types, &functionMetadata{inputs: 0, outputs: 0, maxStackHeight: 0})
}
for i := 0; i < 12; i++ {
container.codeSections[i+1] = append(code, byte(RETF))
}
bin := container.MarshalBinary()
if len(bin) > 48*1024 {
b.Fatal("Exceeds 48Kb")
}
var container2 Container
b.ResetTimer()
for i := 0; i < b.N; i++ {
if err := container2.UnmarshalBinary(bin, true); err != nil {
b.Fatal(err)
}
if err := container2.ValidateCode(&pragueInstructionSet, false); err != nil {
b.Fatal(err)
}
}
}
// BenchmarkEOFValidation tries to benchmark the code validation for the CALLF/RETF operation.
// For this we set up code that calls into 1024 code sections which
// - contain calls to some other code sections.
// We can't have all code sections calling each other, otherwise we would exceed 48KB.
func BenchmarkEOFValidation2(b *testing.B) {
var container Container
var code []byte
maxSections := 1024
for i := 0; i < maxSections; i++ {
code = append(code, byte(CALLF))
code = binary.BigEndian.AppendUint16(code, uint16(i%(maxSections-1))+1)
}
code = append(code, byte(STOP))
// First container
container.codeSections = append(container.codeSections, code)
container.types = append(container.types, &functionMetadata{inputs: 0, outputs: 0x80, maxStackHeight: 0})
inner := []byte{
byte(CALLF), 0x03, 0xE8,
byte(CALLF), 0x03, 0xE9,
byte(CALLF), 0x03, 0xF0,
byte(CALLF), 0x03, 0xF1,
byte(CALLF), 0x03, 0xF2,
byte(CALLF), 0x03, 0xF3,
byte(CALLF), 0x03, 0xF4,
byte(CALLF), 0x03, 0xF5,
byte(CALLF), 0x03, 0xF6,
byte(CALLF), 0x03, 0xF7,
byte(CALLF), 0x03, 0xF8,
byte(CALLF), 0x03, 0xF,
byte(RETF),
}
for i := 0; i < 1023; i++ {
container.codeSections = append(container.codeSections, inner)
container.types = append(container.types, &functionMetadata{inputs: 0, outputs: 0, maxStackHeight: 0})
}
bin := container.MarshalBinary()
if len(bin) > 48*1024 {
b.Fatal("Exceeds 48Kb")
}
var container2 Container
b.ResetTimer()
for i := 0; i < b.N; i++ {
if err := container2.UnmarshalBinary(bin, true); err != nil {
b.Fatal(err)
}
if err := container2.ValidateCode(&pragueInstructionSet, false); err != nil {
b.Fatal(err)
}
}
}
// BenchmarkEOFValidation3 tries to benchmark the code validation for the CALLF/RETF and RJUMPI/V operations.
// For this we set up code that calls into 1024 code sections which either
// - contain an RJUMP opcode
// - contain calls to other code sections
// We can't have all code sections calling each other, otherwise we would exceed 48KB.
func BenchmarkEOFValidation3(b *testing.B) {
var container Container
var code []byte
snippet := []byte{
byte(PUSH0),
byte(RJUMPV),
0xff, // count
0x00, 0x00,
}
for i := 0; i < 255; i++ {
snippet = append(snippet, []byte{0x00, 0x00}...)
}
code = append(code, snippet...)
// First container, calls into all other containers
maxSections := 1024
for i := 0; i < maxSections; i++ {
code = append(code, byte(CALLF))
code = binary.BigEndian.AppendUint16(code, uint16(i%(maxSections-1))+1)
}
code = append(code, byte(STOP))
container.codeSections = append(container.codeSections, code)
container.types = append(container.types, &functionMetadata{inputs: 0, outputs: 0x80, maxStackHeight: 1})
// Other containers
for i := 0; i < 1023; i++ {
container.codeSections = append(container.codeSections, []byte{byte(RJUMP), 0x00, 0x00, byte(RETF)})
container.types = append(container.types, &functionMetadata{inputs: 0, outputs: 0, maxStackHeight: 0})
}
// Other containers
for i := 0; i < 68; i++ {
container.codeSections[i+1] = append(snippet, byte(RETF))
container.types[i+1] = &functionMetadata{inputs: 0, outputs: 0, maxStackHeight: 1}
}
bin := container.MarshalBinary()
if len(bin) > 48*1024 {
b.Fatal("Exceeds 48Kb")
}
b.ResetTimer()
b.ReportMetric(float64(len(bin)), "bytes")
for i := 0; i < b.N; i++ {
for k := 0; k < 40; k++ {
var container2 Container
if err := container2.UnmarshalBinary(bin, true); err != nil {
b.Fatal(err)
}
if err := container2.ValidateCode(&pragueInstructionSet, false); err != nil {
b.Fatal(err)
}
}
}
}
func BenchmarkRJUMPI_2(b *testing.B) {
code := []byte{
byte(PUSH0),
byte(RJUMPI), 0xFF, 0xFC,
}
for i := 0; i < params.MaxCodeSize/4-1; i++ {
code = append(code, byte(PUSH0))
x := -4 * i
code = append(code, byte(RJUMPI))
code = binary.BigEndian.AppendUint16(code, uint16(x))
}
code = append(code, byte(STOP))
container := &Container{
types: []*functionMetadata{{inputs: 0, outputs: 0x80, maxStackHeight: 1}},
data: make([]byte, 0),
subContainers: make([]*Container, 0),
}
b.ResetTimer()
for i := 0; i < b.N; i++ {
_, err := validateCode(code, 0, container, &pragueInstructionSet, false)
if err != nil {
b.Fatal(err)
}
}
}
func FuzzUnmarshalBinary(f *testing.F) {
f.Fuzz(func(_ *testing.T, input []byte) {
var container Container
container.UnmarshalBinary(input, true)
})
}
func FuzzValidate(f *testing.F) {
f.Fuzz(func(_ *testing.T, code []byte, maxStack uint16) {
var container Container
container.types = append(container.types, &functionMetadata{inputs: 0, outputs: 0x80, maxStackHeight: maxStack})
validateCode(code, 0, &container, &pragueInstructionSet, true)
})
}