go-ethereum/core/vm/evm.go
lightclient f808d7357e
all: implement eip-7702 set code tx (#30078)
This PR implements EIP-7702: "Set EOA account code". 
Specification: https://eips.ethereum.org/EIPS/eip-7702

> Add a new transaction type that adds a list of `[chain_id, address,
nonce, y_parity, r, s]` authorization tuples. For each tuple, write a
delegation designator `(0xef0100 ++ address)` to the signing account’s
code. All code reading operations must load the code pointed to by the
designator.

---------

Co-authored-by: Mario Vega <marioevz@gmail.com>
Co-authored-by: Martin Holst Swende <martin@swende.se>
Co-authored-by: Felix Lange <fjl@twurst.com>
2024-12-16 11:29:37 +01:00

641 lines
26 KiB
Go

// Copyright 2014 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package vm
import (
"errors"
"math/big"
"sync/atomic"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/core/state"
"github.com/ethereum/go-ethereum/core/tracing"
"github.com/ethereum/go-ethereum/core/types"
"github.com/ethereum/go-ethereum/crypto"
"github.com/ethereum/go-ethereum/params"
"github.com/holiman/uint256"
)
type (
// CanTransferFunc is the signature of a transfer guard function
CanTransferFunc func(StateDB, common.Address, *uint256.Int) bool
// TransferFunc is the signature of a transfer function
TransferFunc func(StateDB, common.Address, common.Address, *uint256.Int)
// GetHashFunc returns the n'th block hash in the blockchain
// and is used by the BLOCKHASH EVM op code.
GetHashFunc func(uint64) common.Hash
)
func (evm *EVM) precompile(addr common.Address) (PrecompiledContract, bool) {
p, ok := evm.precompiles[addr]
return p, ok
}
// BlockContext provides the EVM with auxiliary information. Once provided
// it shouldn't be modified.
type BlockContext struct {
// CanTransfer returns whether the account contains
// sufficient ether to transfer the value
CanTransfer CanTransferFunc
// Transfer transfers ether from one account to the other
Transfer TransferFunc
// GetHash returns the hash corresponding to n
GetHash GetHashFunc
// Block information
Coinbase common.Address // Provides information for COINBASE
GasLimit uint64 // Provides information for GASLIMIT
BlockNumber *big.Int // Provides information for NUMBER
Time uint64 // Provides information for TIME
Difficulty *big.Int // Provides information for DIFFICULTY
BaseFee *big.Int // Provides information for BASEFEE (0 if vm runs with NoBaseFee flag and 0 gas price)
BlobBaseFee *big.Int // Provides information for BLOBBASEFEE (0 if vm runs with NoBaseFee flag and 0 blob gas price)
Random *common.Hash // Provides information for PREVRANDAO
}
// TxContext provides the EVM with information about a transaction.
// All fields can change between transactions.
type TxContext struct {
// Message information
Origin common.Address // Provides information for ORIGIN
GasPrice *big.Int // Provides information for GASPRICE (and is used to zero the basefee if NoBaseFee is set)
BlobHashes []common.Hash // Provides information for BLOBHASH
BlobFeeCap *big.Int // Is used to zero the blobbasefee if NoBaseFee is set
AccessEvents *state.AccessEvents // Capture all state accesses for this tx
}
// EVM is the Ethereum Virtual Machine base object and provides
// the necessary tools to run a contract on the given state with
// the provided context. It should be noted that any error
// generated through any of the calls should be considered a
// revert-state-and-consume-all-gas operation, no checks on
// specific errors should ever be performed. The interpreter makes
// sure that any errors generated are to be considered faulty code.
//
// The EVM should never be reused and is not thread safe.
type EVM struct {
// Context provides auxiliary blockchain related information
Context BlockContext
TxContext
// StateDB gives access to the underlying state
StateDB StateDB
// Depth is the current call stack
depth int
// chainConfig contains information about the current chain
chainConfig *params.ChainConfig
// chain rules contains the chain rules for the current epoch
chainRules params.Rules
// virtual machine configuration options used to initialise the
// evm.
Config Config
// global (to this context) ethereum virtual machine
// used throughout the execution of the tx.
interpreter *EVMInterpreter
// abort is used to abort the EVM calling operations
abort atomic.Bool
// callGasTemp holds the gas available for the current call. This is needed because the
// available gas is calculated in gasCall* according to the 63/64 rule and later
// applied in opCall*.
callGasTemp uint64
// precompiles holds the precompiled contracts for the current epoch
precompiles map[common.Address]PrecompiledContract
}
// NewEVM constructs an EVM instance with the supplied block context, state
// database and several configs. It meant to be used throughout the entire
// state transition of a block, with the transaction context switched as
// needed by calling evm.SetTxContext.
func NewEVM(blockCtx BlockContext, statedb StateDB, chainConfig *params.ChainConfig, config Config) *EVM {
evm := &EVM{
Context: blockCtx,
StateDB: statedb,
Config: config,
chainConfig: chainConfig,
chainRules: chainConfig.Rules(blockCtx.BlockNumber, blockCtx.Random != nil, blockCtx.Time),
}
evm.precompiles = activePrecompiledContracts(evm.chainRules)
evm.interpreter = NewEVMInterpreter(evm)
return evm
}
// SetTracer sets the tracer for following state transition.
func (evm *EVM) SetTracer(tracer *tracing.Hooks) {
evm.Config.Tracer = tracer
}
// SetPrecompiles sets the precompiled contracts for the EVM.
// This method is only used through RPC calls.
// It is not thread-safe.
func (evm *EVM) SetPrecompiles(precompiles PrecompiledContracts) {
evm.precompiles = precompiles
}
// SetTxContext resets the EVM with a new transaction context.
// This is not threadsafe and should only be done very cautiously.
func (evm *EVM) SetTxContext(txCtx TxContext) {
if evm.chainRules.IsEIP4762 {
txCtx.AccessEvents = state.NewAccessEvents(evm.StateDB.PointCache())
}
evm.TxContext = txCtx
}
// Cancel cancels any running EVM operation. This may be called concurrently and
// it's safe to be called multiple times.
func (evm *EVM) Cancel() {
evm.abort.Store(true)
}
// Cancelled returns true if Cancel has been called
func (evm *EVM) Cancelled() bool {
return evm.abort.Load()
}
// Interpreter returns the current interpreter
func (evm *EVM) Interpreter() *EVMInterpreter {
return evm.interpreter
}
// Call executes the contract associated with the addr with the given input as
// parameters. It also handles any necessary value transfer required and takes
// the necessary steps to create accounts and reverses the state in case of an
// execution error or failed value transfer.
func (evm *EVM) Call(caller ContractRef, addr common.Address, input []byte, gas uint64, value *uint256.Int) (ret []byte, leftOverGas uint64, err error) {
// Capture the tracer start/end events in debug mode
if evm.Config.Tracer != nil {
evm.captureBegin(evm.depth, CALL, caller.Address(), addr, input, gas, value.ToBig())
defer func(startGas uint64) {
evm.captureEnd(evm.depth, startGas, leftOverGas, ret, err)
}(gas)
}
// Fail if we're trying to execute above the call depth limit
if evm.depth > int(params.CallCreateDepth) {
return nil, gas, ErrDepth
}
// Fail if we're trying to transfer more than the available balance
if !value.IsZero() && !evm.Context.CanTransfer(evm.StateDB, caller.Address(), value) {
return nil, gas, ErrInsufficientBalance
}
snapshot := evm.StateDB.Snapshot()
p, isPrecompile := evm.precompile(addr)
if !evm.StateDB.Exist(addr) {
if !isPrecompile && evm.chainRules.IsEIP4762 {
// add proof of absence to witness
wgas := evm.AccessEvents.AddAccount(addr, false)
if gas < wgas {
evm.StateDB.RevertToSnapshot(snapshot)
return nil, 0, ErrOutOfGas
}
gas -= wgas
}
if !isPrecompile && evm.chainRules.IsEIP158 && value.IsZero() {
// Calling a non-existing account, don't do anything.
return nil, gas, nil
}
evm.StateDB.CreateAccount(addr)
}
evm.Context.Transfer(evm.StateDB, caller.Address(), addr, value)
if isPrecompile {
ret, gas, err = RunPrecompiledContract(p, input, gas, evm.Config.Tracer)
} else {
// Initialise a new contract and set the code that is to be used by the EVM.
// The contract is a scoped environment for this execution context only.
code := evm.resolveCode(addr)
if len(code) == 0 {
ret, err = nil, nil // gas is unchanged
} else {
addrCopy := addr
// If the account has no code, we can abort here
// The depth-check is already done, and precompiles handled above
contract := NewContract(caller, AccountRef(addrCopy), value, gas)
contract.SetCallCode(&addrCopy, evm.resolveCodeHash(addrCopy), code)
ret, err = evm.interpreter.Run(contract, input, false)
gas = contract.Gas
}
}
// When an error was returned by the EVM or when setting the creation code
// above we revert to the snapshot and consume any gas remaining. Additionally,
// when we're in homestead this also counts for code storage gas errors.
if err != nil {
evm.StateDB.RevertToSnapshot(snapshot)
if err != ErrExecutionReverted {
if evm.Config.Tracer != nil && evm.Config.Tracer.OnGasChange != nil {
evm.Config.Tracer.OnGasChange(gas, 0, tracing.GasChangeCallFailedExecution)
}
gas = 0
}
// TODO: consider clearing up unused snapshots:
//} else {
// evm.StateDB.DiscardSnapshot(snapshot)
}
return ret, gas, err
}
// CallCode executes the contract associated with the addr with the given input
// as parameters. It also handles any necessary value transfer required and takes
// the necessary steps to create accounts and reverses the state in case of an
// execution error or failed value transfer.
//
// CallCode differs from Call in the sense that it executes the given address'
// code with the caller as context.
func (evm *EVM) CallCode(caller ContractRef, addr common.Address, input []byte, gas uint64, value *uint256.Int) (ret []byte, leftOverGas uint64, err error) {
// Invoke tracer hooks that signal entering/exiting a call frame
if evm.Config.Tracer != nil {
evm.captureBegin(evm.depth, CALLCODE, caller.Address(), addr, input, gas, value.ToBig())
defer func(startGas uint64) {
evm.captureEnd(evm.depth, startGas, leftOverGas, ret, err)
}(gas)
}
// Fail if we're trying to execute above the call depth limit
if evm.depth > int(params.CallCreateDepth) {
return nil, gas, ErrDepth
}
// Fail if we're trying to transfer more than the available balance
// Note although it's noop to transfer X ether to caller itself. But
// if caller doesn't have enough balance, it would be an error to allow
// over-charging itself. So the check here is necessary.
if !evm.Context.CanTransfer(evm.StateDB, caller.Address(), value) {
return nil, gas, ErrInsufficientBalance
}
var snapshot = evm.StateDB.Snapshot()
// It is allowed to call precompiles, even via delegatecall
if p, isPrecompile := evm.precompile(addr); isPrecompile {
ret, gas, err = RunPrecompiledContract(p, input, gas, evm.Config.Tracer)
} else {
addrCopy := addr
// Initialise a new contract and set the code that is to be used by the EVM.
// The contract is a scoped environment for this execution context only.
contract := NewContract(caller, AccountRef(caller.Address()), value, gas)
contract.SetCallCode(&addrCopy, evm.resolveCodeHash(addrCopy), evm.resolveCode(addrCopy))
ret, err = evm.interpreter.Run(contract, input, false)
gas = contract.Gas
}
if err != nil {
evm.StateDB.RevertToSnapshot(snapshot)
if err != ErrExecutionReverted {
if evm.Config.Tracer != nil && evm.Config.Tracer.OnGasChange != nil {
evm.Config.Tracer.OnGasChange(gas, 0, tracing.GasChangeCallFailedExecution)
}
gas = 0
}
}
return ret, gas, err
}
// DelegateCall executes the contract associated with the addr with the given input
// as parameters. It reverses the state in case of an execution error.
//
// DelegateCall differs from CallCode in the sense that it executes the given address'
// code with the caller as context and the caller is set to the caller of the caller.
func (evm *EVM) DelegateCall(caller ContractRef, addr common.Address, input []byte, gas uint64) (ret []byte, leftOverGas uint64, err error) {
// Invoke tracer hooks that signal entering/exiting a call frame
if evm.Config.Tracer != nil {
// NOTE: caller must, at all times be a contract. It should never happen
// that caller is something other than a Contract.
parent := caller.(*Contract)
// DELEGATECALL inherits value from parent call
evm.captureBegin(evm.depth, DELEGATECALL, caller.Address(), addr, input, gas, parent.value.ToBig())
defer func(startGas uint64) {
evm.captureEnd(evm.depth, startGas, leftOverGas, ret, err)
}(gas)
}
// Fail if we're trying to execute above the call depth limit
if evm.depth > int(params.CallCreateDepth) {
return nil, gas, ErrDepth
}
var snapshot = evm.StateDB.Snapshot()
// It is allowed to call precompiles, even via delegatecall
if p, isPrecompile := evm.precompile(addr); isPrecompile {
ret, gas, err = RunPrecompiledContract(p, input, gas, evm.Config.Tracer)
} else {
addrCopy := addr
// Initialise a new contract and make initialise the delegate values
contract := NewContract(caller, AccountRef(caller.Address()), nil, gas).AsDelegate()
contract.SetCallCode(&addrCopy, evm.resolveCodeHash(addrCopy), evm.resolveCode(addrCopy))
ret, err = evm.interpreter.Run(contract, input, false)
gas = contract.Gas
}
if err != nil {
evm.StateDB.RevertToSnapshot(snapshot)
if err != ErrExecutionReverted {
if evm.Config.Tracer != nil && evm.Config.Tracer.OnGasChange != nil {
evm.Config.Tracer.OnGasChange(gas, 0, tracing.GasChangeCallFailedExecution)
}
gas = 0
}
}
return ret, gas, err
}
// StaticCall executes the contract associated with the addr with the given input
// as parameters while disallowing any modifications to the state during the call.
// Opcodes that attempt to perform such modifications will result in exceptions
// instead of performing the modifications.
func (evm *EVM) StaticCall(caller ContractRef, addr common.Address, input []byte, gas uint64) (ret []byte, leftOverGas uint64, err error) {
// Invoke tracer hooks that signal entering/exiting a call frame
if evm.Config.Tracer != nil {
evm.captureBegin(evm.depth, STATICCALL, caller.Address(), addr, input, gas, nil)
defer func(startGas uint64) {
evm.captureEnd(evm.depth, startGas, leftOverGas, ret, err)
}(gas)
}
// Fail if we're trying to execute above the call depth limit
if evm.depth > int(params.CallCreateDepth) {
return nil, gas, ErrDepth
}
// We take a snapshot here. This is a bit counter-intuitive, and could probably be skipped.
// However, even a staticcall is considered a 'touch'. On mainnet, static calls were introduced
// after all empty accounts were deleted, so this is not required. However, if we omit this,
// then certain tests start failing; stRevertTest/RevertPrecompiledTouchExactOOG.json.
// We could change this, but for now it's left for legacy reasons
var snapshot = evm.StateDB.Snapshot()
// We do an AddBalance of zero here, just in order to trigger a touch.
// This doesn't matter on Mainnet, where all empties are gone at the time of Byzantium,
// but is the correct thing to do and matters on other networks, in tests, and potential
// future scenarios
evm.StateDB.AddBalance(addr, new(uint256.Int), tracing.BalanceChangeTouchAccount)
if p, isPrecompile := evm.precompile(addr); isPrecompile {
ret, gas, err = RunPrecompiledContract(p, input, gas, evm.Config.Tracer)
} else {
// At this point, we use a copy of address. If we don't, the go compiler will
// leak the 'contract' to the outer scope, and make allocation for 'contract'
// even if the actual execution ends on RunPrecompiled above.
addrCopy := addr
// Initialise a new contract and set the code that is to be used by the EVM.
// The contract is a scoped environment for this execution context only.
contract := NewContract(caller, AccountRef(addrCopy), new(uint256.Int), gas)
contract.SetCallCode(&addrCopy, evm.resolveCodeHash(addrCopy), evm.resolveCode(addrCopy))
// When an error was returned by the EVM or when setting the creation code
// above we revert to the snapshot and consume any gas remaining. Additionally
// when we're in Homestead this also counts for code storage gas errors.
ret, err = evm.interpreter.Run(contract, input, true)
gas = contract.Gas
}
if err != nil {
evm.StateDB.RevertToSnapshot(snapshot)
if err != ErrExecutionReverted {
if evm.Config.Tracer != nil && evm.Config.Tracer.OnGasChange != nil {
evm.Config.Tracer.OnGasChange(gas, 0, tracing.GasChangeCallFailedExecution)
}
gas = 0
}
}
return ret, gas, err
}
type codeAndHash struct {
code []byte
hash common.Hash
}
func (c *codeAndHash) Hash() common.Hash {
if c.hash == (common.Hash{}) {
c.hash = crypto.Keccak256Hash(c.code)
}
return c.hash
}
// create creates a new contract using code as deployment code.
func (evm *EVM) create(caller ContractRef, codeAndHash *codeAndHash, gas uint64, value *uint256.Int, address common.Address, typ OpCode) (ret []byte, createAddress common.Address, leftOverGas uint64, err error) {
if evm.Config.Tracer != nil {
evm.captureBegin(evm.depth, typ, caller.Address(), address, codeAndHash.code, gas, value.ToBig())
defer func(startGas uint64) {
evm.captureEnd(evm.depth, startGas, leftOverGas, ret, err)
}(gas)
}
// Depth check execution. Fail if we're trying to execute above the
// limit.
if evm.depth > int(params.CallCreateDepth) {
return nil, common.Address{}, gas, ErrDepth
}
if !evm.Context.CanTransfer(evm.StateDB, caller.Address(), value) {
return nil, common.Address{}, gas, ErrInsufficientBalance
}
nonce := evm.StateDB.GetNonce(caller.Address())
if nonce+1 < nonce {
return nil, common.Address{}, gas, ErrNonceUintOverflow
}
evm.StateDB.SetNonce(caller.Address(), nonce+1)
// Charge the contract creation init gas in verkle mode
if evm.chainRules.IsEIP4762 {
statelessGas := evm.AccessEvents.ContractCreatePreCheckGas(address)
if statelessGas > gas {
return nil, common.Address{}, 0, ErrOutOfGas
}
if evm.Config.Tracer != nil && evm.Config.Tracer.OnGasChange != nil {
evm.Config.Tracer.OnGasChange(gas, gas-statelessGas, tracing.GasChangeWitnessContractCollisionCheck)
}
gas = gas - statelessGas
}
// We add this to the access list _before_ taking a snapshot. Even if the
// creation fails, the access-list change should not be rolled back.
if evm.chainRules.IsEIP2929 {
evm.StateDB.AddAddressToAccessList(address)
}
// Ensure there's no existing contract already at the designated address.
// Account is regarded as existent if any of these three conditions is met:
// - the nonce is non-zero
// - the code is non-empty
// - the storage is non-empty
contractHash := evm.StateDB.GetCodeHash(address)
storageRoot := evm.StateDB.GetStorageRoot(address)
if evm.StateDB.GetNonce(address) != 0 ||
(contractHash != (common.Hash{}) && contractHash != types.EmptyCodeHash) || // non-empty code
(storageRoot != (common.Hash{}) && storageRoot != types.EmptyRootHash) { // non-empty storage
if evm.Config.Tracer != nil && evm.Config.Tracer.OnGasChange != nil {
evm.Config.Tracer.OnGasChange(gas, 0, tracing.GasChangeCallFailedExecution)
}
return nil, common.Address{}, 0, ErrContractAddressCollision
}
// Create a new account on the state only if the object was not present.
// It might be possible the contract code is deployed to a pre-existent
// account with non-zero balance.
snapshot := evm.StateDB.Snapshot()
if !evm.StateDB.Exist(address) {
evm.StateDB.CreateAccount(address)
}
// CreateContract means that regardless of whether the account previously existed
// in the state trie or not, it _now_ becomes created as a _contract_ account.
// This is performed _prior_ to executing the initcode, since the initcode
// acts inside that account.
evm.StateDB.CreateContract(address)
if evm.chainRules.IsEIP158 {
evm.StateDB.SetNonce(address, 1)
}
// Charge the contract creation init gas in verkle mode
if evm.chainRules.IsEIP4762 {
statelessGas := evm.AccessEvents.ContractCreateInitGas(address)
if statelessGas > gas {
return nil, common.Address{}, 0, ErrOutOfGas
}
if evm.Config.Tracer != nil && evm.Config.Tracer.OnGasChange != nil {
evm.Config.Tracer.OnGasChange(gas, gas-statelessGas, tracing.GasChangeWitnessContractInit)
}
gas = gas - statelessGas
}
evm.Context.Transfer(evm.StateDB, caller.Address(), address, value)
// Initialise a new contract and set the code that is to be used by the EVM.
// The contract is a scoped environment for this execution context only.
contract := NewContract(caller, AccountRef(address), value, gas)
contract.SetCodeOptionalHash(&address, codeAndHash)
contract.IsDeployment = true
ret, err = evm.initNewContract(contract, address, value)
if err != nil && (evm.chainRules.IsHomestead || err != ErrCodeStoreOutOfGas) {
evm.StateDB.RevertToSnapshot(snapshot)
if err != ErrExecutionReverted {
contract.UseGas(contract.Gas, evm.Config.Tracer, tracing.GasChangeCallFailedExecution)
}
}
return ret, address, contract.Gas, err
}
// initNewContract runs a new contract's creation code, performs checks on the
// resulting code that is to be deployed, and consumes necessary gas.
func (evm *EVM) initNewContract(contract *Contract, address common.Address, value *uint256.Int) ([]byte, error) {
ret, err := evm.interpreter.Run(contract, nil, false)
if err != nil {
return ret, err
}
// Check whether the max code size has been exceeded, assign err if the case.
if evm.chainRules.IsEIP158 && len(ret) > params.MaxCodeSize {
return ret, ErrMaxCodeSizeExceeded
}
// Reject code starting with 0xEF if EIP-3541 is enabled.
if len(ret) >= 1 && ret[0] == 0xEF && evm.chainRules.IsLondon {
return ret, ErrInvalidCode
}
if !evm.chainRules.IsEIP4762 {
createDataGas := uint64(len(ret)) * params.CreateDataGas
if !contract.UseGas(createDataGas, evm.Config.Tracer, tracing.GasChangeCallCodeStorage) {
return ret, ErrCodeStoreOutOfGas
}
} else {
if len(ret) > 0 && !contract.UseGas(evm.AccessEvents.CodeChunksRangeGas(address, 0, uint64(len(ret)), uint64(len(ret)), true), evm.Config.Tracer, tracing.GasChangeWitnessCodeChunk) {
return ret, ErrCodeStoreOutOfGas
}
}
evm.StateDB.SetCode(address, ret)
return ret, nil
}
// Create creates a new contract using code as deployment code.
func (evm *EVM) Create(caller ContractRef, code []byte, gas uint64, value *uint256.Int) (ret []byte, contractAddr common.Address, leftOverGas uint64, err error) {
contractAddr = crypto.CreateAddress(caller.Address(), evm.StateDB.GetNonce(caller.Address()))
return evm.create(caller, &codeAndHash{code: code}, gas, value, contractAddr, CREATE)
}
// Create2 creates a new contract using code as deployment code.
//
// The different between Create2 with Create is Create2 uses keccak256(0xff ++ msg.sender ++ salt ++ keccak256(init_code))[12:]
// instead of the usual sender-and-nonce-hash as the address where the contract is initialized at.
func (evm *EVM) Create2(caller ContractRef, code []byte, gas uint64, endowment *uint256.Int, salt *uint256.Int) (ret []byte, contractAddr common.Address, leftOverGas uint64, err error) {
codeAndHash := &codeAndHash{code: code}
contractAddr = crypto.CreateAddress2(caller.Address(), salt.Bytes32(), codeAndHash.Hash().Bytes())
return evm.create(caller, codeAndHash, gas, endowment, contractAddr, CREATE2)
}
// resolveCode returns the code associated with the provided account. After
// Prague, it can also resolve code pointed to by a delegation designator.
func (evm *EVM) resolveCode(addr common.Address) []byte {
code := evm.StateDB.GetCode(addr)
if !evm.chainRules.IsPrague {
return code
}
if target, ok := types.ParseDelegation(code); ok {
// Note we only follow one level of delegation.
return evm.StateDB.GetCode(target)
}
return code
}
// resolveCodeHash returns the code hash associated with the provided address.
// After Prague, it can also resolve code hash of the account pointed to by a
// delegation designator. Although this is not accessible in the EVM it is used
// internally to associate jumpdest analysis to code.
func (evm *EVM) resolveCodeHash(addr common.Address) common.Hash {
if evm.chainRules.IsPrague {
code := evm.StateDB.GetCode(addr)
if target, ok := types.ParseDelegation(code); ok {
// Note we only follow one level of delegation.
return evm.StateDB.GetCodeHash(target)
}
}
return evm.StateDB.GetCodeHash(addr)
}
// ChainConfig returns the environment's chain configuration
func (evm *EVM) ChainConfig() *params.ChainConfig { return evm.chainConfig }
func (evm *EVM) captureBegin(depth int, typ OpCode, from common.Address, to common.Address, input []byte, startGas uint64, value *big.Int) {
tracer := evm.Config.Tracer
if tracer.OnEnter != nil {
tracer.OnEnter(depth, byte(typ), from, to, input, startGas, value)
}
if tracer.OnGasChange != nil {
tracer.OnGasChange(0, startGas, tracing.GasChangeCallInitialBalance)
}
}
func (evm *EVM) captureEnd(depth int, startGas uint64, leftOverGas uint64, ret []byte, err error) {
tracer := evm.Config.Tracer
if leftOverGas != 0 && tracer.OnGasChange != nil {
tracer.OnGasChange(leftOverGas, 0, tracing.GasChangeCallLeftOverReturned)
}
var reverted bool
if err != nil {
reverted = true
}
if !evm.chainRules.IsHomestead && errors.Is(err, ErrCodeStoreOutOfGas) {
reverted = false
}
if tracer.OnExit != nil {
tracer.OnExit(depth, ret, startGas-leftOverGas, VMErrorFromErr(err), reverted)
}
}
// GetVMContext provides context about the block being executed as well as state
// to the tracers.
func (evm *EVM) GetVMContext() *tracing.VMContext {
return &tracing.VMContext{
Coinbase: evm.Context.Coinbase,
BlockNumber: evm.Context.BlockNumber,
Time: evm.Context.Time,
Random: evm.Context.Random,
BaseFee: evm.Context.BaseFee,
StateDB: evm.StateDB,
}
}