go-ethereum/metrics/sample.go
Martin HS 9045b79bc2
metrics, cmd/geth: change init-process of metrics (#30814)
This PR modifies how the metrics library handles `Enabled`: previously,
the package `init` decided whether to serve real metrics or just
dummy-types.

This has several drawbacks: 
- During pkg init, we need to determine whether metrics are enabled or
not. So we first hacked in a check if certain geth-specific
commandline-flags were enabled. Then we added a similar check for
geth-env-vars. Then we almost added a very elaborate check for
toml-config-file, plus toml parsing.

- Using "real" types and dummy types interchangeably means that
everything is hidden behind interfaces. This has a performance penalty,
and also it just adds a lot of code.

This PR removes the interface stuff, uses concrete types, and allows for
the setting of Enabled to happen later. It is still assumed that
`metrics.Enable()` is invoked early on.

The somewhat 'heavy' operations, such as ticking meters and exp-decay,
now checks the enable-flag to prevent resource leak.

The change may be large, but it's mostly pretty trivial, and from the
last time I gutted the metrics, I ensured that we have fairly good test
coverage.

---------

Co-authored-by: Felix Lange <fjl@twurst.com>
2024-12-10 13:27:29 +01:00

426 lines
9.9 KiB
Go

package metrics
import (
"math"
"math/rand"
"slices"
"sync"
"time"
)
const rescaleThreshold = time.Hour
// Sample maintains a statistically-significant selection of values from
// a stream.
type Sample interface {
Snapshot() *sampleSnapshot
Clear()
Update(int64)
}
var (
_ Sample = (*ExpDecaySample)(nil)
_ Sample = (*UniformSample)(nil)
_ Sample = (*resettingSample)(nil)
)
// sampleSnapshot is a read-only copy of a Sample.
type sampleSnapshot struct {
count int64
values []int64
max int64
min int64
mean float64
sum int64
variance float64
}
// newSampleSnapshotPrecalculated creates a read-only sampleSnapShot, using
// precalculated sums to avoid iterating the values
func newSampleSnapshotPrecalculated(count int64, values []int64, min, max, sum int64) *sampleSnapshot {
if len(values) == 0 {
return &sampleSnapshot{
count: count,
values: values,
}
}
return &sampleSnapshot{
count: count,
values: values,
max: max,
min: min,
mean: float64(sum) / float64(len(values)),
sum: sum,
}
}
// newSampleSnapshot creates a read-only sampleSnapShot, and calculates some
// numbers.
func newSampleSnapshot(count int64, values []int64) *sampleSnapshot {
var (
max int64 = math.MinInt64
min int64 = math.MaxInt64
sum int64
)
for _, v := range values {
sum += v
if v > max {
max = v
}
if v < min {
min = v
}
}
return newSampleSnapshotPrecalculated(count, values, min, max, sum)
}
// Count returns the count of inputs at the time the snapshot was taken.
func (s *sampleSnapshot) Count() int64 { return s.count }
// Max returns the maximal value at the time the snapshot was taken.
func (s *sampleSnapshot) Max() int64 { return s.max }
// Mean returns the mean value at the time the snapshot was taken.
func (s *sampleSnapshot) Mean() float64 { return s.mean }
// Min returns the minimal value at the time the snapshot was taken.
func (s *sampleSnapshot) Min() int64 { return s.min }
// Percentile returns an arbitrary percentile of values at the time the
// snapshot was taken.
func (s *sampleSnapshot) Percentile(p float64) float64 {
return SamplePercentile(s.values, p)
}
// Percentiles returns a slice of arbitrary percentiles of values at the time
// the snapshot was taken.
func (s *sampleSnapshot) Percentiles(ps []float64) []float64 {
return CalculatePercentiles(s.values, ps)
}
// Size returns the size of the sample at the time the snapshot was taken.
func (s *sampleSnapshot) Size() int { return len(s.values) }
// StdDev returns the standard deviation of values at the time the snapshot was
// taken.
func (s *sampleSnapshot) StdDev() float64 {
if s.variance == 0.0 {
s.variance = SampleVariance(s.mean, s.values)
}
return math.Sqrt(s.variance)
}
// Sum returns the sum of values at the time the snapshot was taken.
func (s *sampleSnapshot) Sum() int64 { return s.sum }
// Values returns a copy of the values in the sample.
func (s *sampleSnapshot) Values() []int64 {
return slices.Clone(s.values)
}
// Variance returns the variance of values at the time the snapshot was taken.
func (s *sampleSnapshot) Variance() float64 {
if s.variance == 0.0 {
s.variance = SampleVariance(s.mean, s.values)
}
return s.variance
}
// ExpDecaySample is an exponentially-decaying sample using a forward-decaying
// priority reservoir. See Cormode et al's "Forward Decay: A Practical Time
// Decay Model for Streaming Systems".
//
// <http://dimacs.rutgers.edu/~graham/pubs/papers/fwddecay.pdf>
type ExpDecaySample struct {
alpha float64
count int64
mutex sync.Mutex
reservoirSize int
t0, t1 time.Time
values *expDecaySampleHeap
rand *rand.Rand
}
// NewExpDecaySample constructs a new exponentially-decaying sample with the
// given reservoir size and alpha.
func NewExpDecaySample(reservoirSize int, alpha float64) Sample {
s := &ExpDecaySample{
alpha: alpha,
reservoirSize: reservoirSize,
t0: time.Now(),
values: newExpDecaySampleHeap(reservoirSize),
}
s.t1 = s.t0.Add(rescaleThreshold)
return s
}
// SetRand sets the random source (useful in tests)
func (s *ExpDecaySample) SetRand(prng *rand.Rand) Sample {
s.rand = prng
return s
}
// Clear clears all samples.
func (s *ExpDecaySample) Clear() {
s.mutex.Lock()
defer s.mutex.Unlock()
s.count = 0
s.t0 = time.Now()
s.t1 = s.t0.Add(rescaleThreshold)
s.values.Clear()
}
// Snapshot returns a read-only copy of the sample.
func (s *ExpDecaySample) Snapshot() *sampleSnapshot {
s.mutex.Lock()
defer s.mutex.Unlock()
var (
samples = s.values.Values()
values = make([]int64, len(samples))
max int64 = math.MinInt64
min int64 = math.MaxInt64
sum int64
)
for i, item := range samples {
v := item.v
values[i] = v
sum += v
if v > max {
max = v
}
if v < min {
min = v
}
}
return newSampleSnapshotPrecalculated(s.count, values, min, max, sum)
}
// Update samples a new value.
func (s *ExpDecaySample) Update(v int64) {
if !metricsEnabled {
return
}
s.update(time.Now(), v)
}
// update samples a new value at a particular timestamp. This is a method all
// its own to facilitate testing.
func (s *ExpDecaySample) update(t time.Time, v int64) {
s.mutex.Lock()
defer s.mutex.Unlock()
s.count++
if s.values.Size() == s.reservoirSize {
s.values.Pop()
}
var f64 float64
if s.rand != nil {
f64 = s.rand.Float64()
} else {
f64 = rand.Float64()
}
s.values.Push(expDecaySample{
k: math.Exp(t.Sub(s.t0).Seconds()*s.alpha) / f64,
v: v,
})
if t.After(s.t1) {
values := s.values.Values()
t0 := s.t0
s.values.Clear()
s.t0 = t
s.t1 = s.t0.Add(rescaleThreshold)
for _, v := range values {
v.k = v.k * math.Exp(-s.alpha*s.t0.Sub(t0).Seconds())
s.values.Push(v)
}
}
}
// SamplePercentile returns an arbitrary percentile of the slice of int64.
func SamplePercentile(values []int64, p float64) float64 {
return CalculatePercentiles(values, []float64{p})[0]
}
// CalculatePercentiles returns a slice of arbitrary percentiles of the slice of
// int64. This method returns interpolated results, so e.g. if there are only two
// values, [0, 10], a 50% percentile will land between them.
//
// Note: As a side-effect, this method will also sort the slice of values.
// Note2: The input format for percentiles is NOT percent! To express 50%, use 0.5, not 50.
func CalculatePercentiles(values []int64, ps []float64) []float64 {
scores := make([]float64, len(ps))
size := len(values)
if size == 0 {
return scores
}
slices.Sort(values)
for i, p := range ps {
pos := p * float64(size+1)
if pos < 1.0 {
scores[i] = float64(values[0])
} else if pos >= float64(size) {
scores[i] = float64(values[size-1])
} else {
lower := float64(values[int(pos)-1])
upper := float64(values[int(pos)])
scores[i] = lower + (pos-math.Floor(pos))*(upper-lower)
}
}
return scores
}
// SampleVariance returns the variance of the slice of int64.
func SampleVariance(mean float64, values []int64) float64 {
if len(values) == 0 {
return 0.0
}
var sum float64
for _, v := range values {
d := float64(v) - mean
sum += d * d
}
return sum / float64(len(values))
}
// UniformSample implements a uniform sample using Vitter's Algorithm R.
//
// <http://www.cs.umd.edu/~samir/498/vitter.pdf>
type UniformSample struct {
count int64
mutex sync.Mutex
reservoirSize int
values []int64
rand *rand.Rand
}
// NewUniformSample constructs a new uniform sample with the given reservoir
// size.
func NewUniformSample(reservoirSize int) Sample {
return &UniformSample{
reservoirSize: reservoirSize,
values: make([]int64, 0, reservoirSize),
}
}
// SetRand sets the random source (useful in tests)
func (s *UniformSample) SetRand(prng *rand.Rand) Sample {
s.rand = prng
return s
}
// Clear clears all samples.
func (s *UniformSample) Clear() {
s.mutex.Lock()
defer s.mutex.Unlock()
s.count = 0
clear(s.values)
}
// Snapshot returns a read-only copy of the sample.
func (s *UniformSample) Snapshot() *sampleSnapshot {
s.mutex.Lock()
values := slices.Clone(s.values)
count := s.count
s.mutex.Unlock()
return newSampleSnapshot(count, values)
}
// Update samples a new value.
func (s *UniformSample) Update(v int64) {
if !metricsEnabled {
return
}
s.mutex.Lock()
defer s.mutex.Unlock()
s.count++
if len(s.values) < s.reservoirSize {
s.values = append(s.values, v)
return
}
var r int64
if s.rand != nil {
r = s.rand.Int63n(s.count)
} else {
r = rand.Int63n(s.count)
}
if r < int64(len(s.values)) {
s.values[int(r)] = v
}
}
// expDecaySample represents an individual sample in a heap.
type expDecaySample struct {
k float64
v int64
}
func newExpDecaySampleHeap(reservoirSize int) *expDecaySampleHeap {
return &expDecaySampleHeap{make([]expDecaySample, 0, reservoirSize)}
}
// expDecaySampleHeap is a min-heap of expDecaySamples.
// The internal implementation is copied from the standard library's container/heap
type expDecaySampleHeap struct {
s []expDecaySample
}
func (h *expDecaySampleHeap) Clear() {
h.s = h.s[:0]
}
func (h *expDecaySampleHeap) Push(s expDecaySample) {
n := len(h.s)
h.s = h.s[0 : n+1]
h.s[n] = s
h.up(n)
}
func (h *expDecaySampleHeap) Pop() expDecaySample {
n := len(h.s) - 1
h.s[0], h.s[n] = h.s[n], h.s[0]
h.down(0, n)
n = len(h.s)
s := h.s[n-1]
h.s = h.s[0 : n-1]
return s
}
func (h *expDecaySampleHeap) Size() int {
return len(h.s)
}
func (h *expDecaySampleHeap) Values() []expDecaySample {
return h.s
}
func (h *expDecaySampleHeap) up(j int) {
for {
i := (j - 1) / 2 // parent
if i == j || !(h.s[j].k < h.s[i].k) {
break
}
h.s[i], h.s[j] = h.s[j], h.s[i]
j = i
}
}
func (h *expDecaySampleHeap) down(i, n int) {
for {
j1 := 2*i + 1
if j1 >= n || j1 < 0 { // j1 < 0 after int overflow
break
}
j := j1 // left child
if j2 := j1 + 1; j2 < n && !(h.s[j1].k < h.s[j2].k) {
j = j2 // = 2*i + 2 // right child
}
if !(h.s[j].k < h.s[i].k) {
break
}
h.s[i], h.s[j] = h.s[j], h.s[i]
i = j
}
}