go-ethereum/metrics/writer.go
Martin HS 9045b79bc2
metrics, cmd/geth: change init-process of metrics (#30814)
This PR modifies how the metrics library handles `Enabled`: previously,
the package `init` decided whether to serve real metrics or just
dummy-types.

This has several drawbacks: 
- During pkg init, we need to determine whether metrics are enabled or
not. So we first hacked in a check if certain geth-specific
commandline-flags were enabled. Then we added a similar check for
geth-env-vars. Then we almost added a very elaborate check for
toml-config-file, plus toml parsing.

- Using "real" types and dummy types interchangeably means that
everything is hidden behind interfaces. This has a performance penalty,
and also it just adds a lot of code.

This PR removes the interface stuff, uses concrete types, and allows for
the setting of Enabled to happen later. It is still assumed that
`metrics.Enable()` is invoked early on.

The somewhat 'heavy' operations, such as ticking meters and exp-decay,
now checks the enable-flag to prevent resource leak.

The change may be large, but it's mostly pretty trivial, and from the
last time I gutted the metrics, I ensured that we have fairly good test
coverage.

---------

Co-authored-by: Felix Lange <fjl@twurst.com>
2024-12-10 13:27:29 +01:00

100 lines
3.6 KiB
Go

package metrics
import (
"fmt"
"io"
"slices"
"strings"
"time"
)
// Write sorts writes each metric in the given registry periodically to the
// given io.Writer.
func Write(r Registry, d time.Duration, w io.Writer) {
for range time.Tick(d) {
WriteOnce(r, w)
}
}
// WriteOnce sorts and writes metrics in the given registry to the given
// io.Writer.
func WriteOnce(r Registry, w io.Writer) {
var namedMetrics []namedMetric
r.Each(func(name string, i interface{}) {
namedMetrics = append(namedMetrics, namedMetric{name, i})
})
slices.SortFunc(namedMetrics, namedMetric.cmp)
for _, namedMetric := range namedMetrics {
switch metric := namedMetric.m.(type) {
case *Counter:
fmt.Fprintf(w, "counter %s\n", namedMetric.name)
fmt.Fprintf(w, " count: %9d\n", metric.Snapshot().Count())
case *CounterFloat64:
fmt.Fprintf(w, "counter %s\n", namedMetric.name)
fmt.Fprintf(w, " count: %f\n", metric.Snapshot().Count())
case *Gauge:
fmt.Fprintf(w, "gauge %s\n", namedMetric.name)
fmt.Fprintf(w, " value: %9d\n", metric.Snapshot().Value())
case *GaugeFloat64:
fmt.Fprintf(w, "gauge %s\n", namedMetric.name)
fmt.Fprintf(w, " value: %f\n", metric.Snapshot().Value())
case *GaugeInfo:
fmt.Fprintf(w, "gauge %s\n", namedMetric.name)
fmt.Fprintf(w, " value: %s\n", metric.Snapshot().Value().String())
case *Healthcheck:
metric.Check()
fmt.Fprintf(w, "healthcheck %s\n", namedMetric.name)
fmt.Fprintf(w, " error: %v\n", metric.Error())
case Histogram:
h := metric.Snapshot()
ps := h.Percentiles([]float64{0.5, 0.75, 0.95, 0.99, 0.999})
fmt.Fprintf(w, "histogram %s\n", namedMetric.name)
fmt.Fprintf(w, " count: %9d\n", h.Count())
fmt.Fprintf(w, " min: %9d\n", h.Min())
fmt.Fprintf(w, " max: %9d\n", h.Max())
fmt.Fprintf(w, " mean: %12.2f\n", h.Mean())
fmt.Fprintf(w, " stddev: %12.2f\n", h.StdDev())
fmt.Fprintf(w, " median: %12.2f\n", ps[0])
fmt.Fprintf(w, " 75%%: %12.2f\n", ps[1])
fmt.Fprintf(w, " 95%%: %12.2f\n", ps[2])
fmt.Fprintf(w, " 99%%: %12.2f\n", ps[3])
fmt.Fprintf(w, " 99.9%%: %12.2f\n", ps[4])
case *Meter:
m := metric.Snapshot()
fmt.Fprintf(w, "meter %s\n", namedMetric.name)
fmt.Fprintf(w, " count: %9d\n", m.Count())
fmt.Fprintf(w, " 1-min rate: %12.2f\n", m.Rate1())
fmt.Fprintf(w, " 5-min rate: %12.2f\n", m.Rate5())
fmt.Fprintf(w, " 15-min rate: %12.2f\n", m.Rate15())
fmt.Fprintf(w, " mean rate: %12.2f\n", m.RateMean())
case *Timer:
t := metric.Snapshot()
ps := t.Percentiles([]float64{0.5, 0.75, 0.95, 0.99, 0.999})
fmt.Fprintf(w, "timer %s\n", namedMetric.name)
fmt.Fprintf(w, " count: %9d\n", t.Count())
fmt.Fprintf(w, " min: %9d\n", t.Min())
fmt.Fprintf(w, " max: %9d\n", t.Max())
fmt.Fprintf(w, " mean: %12.2f\n", t.Mean())
fmt.Fprintf(w, " stddev: %12.2f\n", t.StdDev())
fmt.Fprintf(w, " median: %12.2f\n", ps[0])
fmt.Fprintf(w, " 75%%: %12.2f\n", ps[1])
fmt.Fprintf(w, " 95%%: %12.2f\n", ps[2])
fmt.Fprintf(w, " 99%%: %12.2f\n", ps[3])
fmt.Fprintf(w, " 99.9%%: %12.2f\n", ps[4])
fmt.Fprintf(w, " 1-min rate: %12.2f\n", t.Rate1())
fmt.Fprintf(w, " 5-min rate: %12.2f\n", t.Rate5())
fmt.Fprintf(w, " 15-min rate: %12.2f\n", t.Rate15())
fmt.Fprintf(w, " mean rate: %12.2f\n", t.RateMean())
}
}
}
type namedMetric struct {
name string
m interface{}
}
func (m namedMetric) cmp(other namedMetric) int {
return strings.Compare(m.name, other.name)
}