go-ethereum/triedb/pathdb/holdable_iterator.go
rjl493456442 bc1ec69008
trie/pathdb: state iterator (snapshot integration pt 4) (#30654)
In this pull request, the state iterator is implemented. It's mostly a copy-paste
from the original state snapshot package, but still has some important changes
to highlight here:

(a) The iterator for the disk layer consists of a diff iterator and a disk iterator.

Originally, the disk layer in the state snapshot was a wrapper around the disk, 
and its corresponding iterator was also a wrapper around the disk iterator.
However, due to structural differences, the disk layer iterator is divided into
two parts:

- The disk iterator, which traverses the content stored on disk.
- The diff iterator, which traverses the aggregated state buffer.

Checkout `BinaryIterator` and `FastIterator` for more details.

(b) The staleness management is improved in the diffAccountIterator and
diffStorageIterator

Originally, in the `diffAccountIterator`, the layer’s staleness had to be checked 
within the Next function to ensure the iterator remained usable. Additionally, 
a read lock on the associated diff layer was required to first retrieve the account 
blob. This read lock protection is essential to prevent concurrent map read/write. 
Afterward, a staleness check was performed to ensure the retrieved data was 
not outdated.

The entire logic can be simplified as follows: a loadAccount callback is provided 
to retrieve account data. If the corresponding state is immutable (e.g., diff layers
in the path database), the staleness check can be skipped, and a single account 
data retrieval is sufficient. However, if the corresponding state is mutable (e.g., 
the disk layer in the path database), the callback can operate as follows:

```go
func(hash common.Hash) ([]byte, error) {
    dl.lock.RLock()
    defer dl.lock.RUnlock()

    if dl.stale {
        return nil, errSnapshotStale
    }
    return dl.buffer.states.mustAccount(hash)
}
```

The callback solution can eliminate the complexity for managing
concurrency with the read lock for atomic operation.
2024-12-16 21:10:08 +08:00

98 lines
3.0 KiB
Go

// Copyright 2024 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package pathdb
import (
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/ethdb"
)
// holdableIterator is a wrapper of underlying database iterator. It extends
// the basic iterator interface by adding Hold which can hold the element
// locally where the iterator is currently located and serve it up next time.
type holdableIterator struct {
it ethdb.Iterator
key []byte
val []byte
atHeld bool
}
// newHoldableIterator initializes the holdableIterator with the given iterator.
func newHoldableIterator(it ethdb.Iterator) *holdableIterator {
return &holdableIterator{it: it}
}
// Hold holds the element locally where the iterator is currently located which
// can be served up next time.
func (it *holdableIterator) Hold() {
if it.it.Key() == nil {
return // nothing to hold
}
it.key = common.CopyBytes(it.it.Key())
it.val = common.CopyBytes(it.it.Value())
it.atHeld = false
}
// Next moves the iterator to the next key/value pair. It returns whether the
// iterator is exhausted.
func (it *holdableIterator) Next() bool {
if !it.atHeld && it.key != nil {
it.atHeld = true
} else if it.atHeld {
it.atHeld = false
it.key = nil
it.val = nil
}
if it.key != nil {
return true // shifted to locally held value
}
return it.it.Next()
}
// Error returns any accumulated error. Exhausting all the key/value pairs
// is not considered to be an error.
func (it *holdableIterator) Error() error { return it.it.Error() }
// Release releases associated resources. Release should always succeed and can
// be called multiple times without causing error.
func (it *holdableIterator) Release() {
it.atHeld = false
it.key = nil
it.val = nil
it.it.Release()
}
// Key returns the key of the current key/value pair, or nil if done. The caller
// should not modify the contents of the returned slice, and its contents may
// change on the next call to Next.
func (it *holdableIterator) Key() []byte {
if it.key != nil {
return it.key
}
return it.it.Key()
}
// Value returns the value of the current key/value pair, or nil if done. The
// caller should not modify the contents of the returned slice, and its contents
// may change on the next call to Next.
func (it *holdableIterator) Value() []byte {
if it.val != nil {
return it.val
}
return it.it.Value()
}