298 lines
9.6 KiB
Go
298 lines
9.6 KiB
Go
// Copyright 2010 The Go Authors. All rights reserved.
|
|
// Copyright 2011 ThePiachu. All rights reserved.
|
|
// Copyright 2015 Jeffrey Wilcke, Felix Lange, Gustav Simonsson. All rights reserved.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are
|
|
// met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above
|
|
// copyright notice, this list of conditions and the following disclaimer
|
|
// in the documentation and/or other materials provided with the
|
|
// distribution.
|
|
// * Neither the name of Google Inc. nor the names of its
|
|
// contributors may be used to endorse or promote products derived from
|
|
// this software without specific prior written permission.
|
|
// * The name of ThePiachu may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
package secp256k1
|
|
|
|
import (
|
|
"crypto/elliptic"
|
|
"math/big"
|
|
)
|
|
|
|
const (
|
|
// number of bits in a big.Word
|
|
wordBits = 32 << (uint64(^big.Word(0)) >> 63)
|
|
// number of bytes in a big.Word
|
|
wordBytes = wordBits / 8
|
|
)
|
|
|
|
// readBits encodes the absolute value of bigint as big-endian bytes. Callers
|
|
// must ensure that buf has enough space. If buf is too short the result will
|
|
// be incomplete.
|
|
func readBits(bigint *big.Int, buf []byte) {
|
|
i := len(buf)
|
|
for _, d := range bigint.Bits() {
|
|
for j := 0; j < wordBytes && i > 0; j++ {
|
|
i--
|
|
buf[i] = byte(d)
|
|
d >>= 8
|
|
}
|
|
}
|
|
}
|
|
|
|
// This code is from https://github.com/ThePiachu/GoBit and implements
|
|
// several Koblitz elliptic curves over prime fields.
|
|
//
|
|
// The curve methods, internally, on Jacobian coordinates. For a given
|
|
// (x, y) position on the curve, the Jacobian coordinates are (x1, y1,
|
|
// z1) where x = x1/z1² and y = y1/z1³. The greatest speedups come
|
|
// when the whole calculation can be performed within the transform
|
|
// (as in ScalarMult and ScalarBaseMult). But even for Add and Double,
|
|
// it's faster to apply and reverse the transform than to operate in
|
|
// affine coordinates.
|
|
|
|
// A BitCurve represents a Koblitz Curve with a=0.
|
|
// See http://www.hyperelliptic.org/EFD/g1p/auto-shortw.html
|
|
type BitCurve struct {
|
|
P *big.Int // the order of the underlying field
|
|
N *big.Int // the order of the base point
|
|
B *big.Int // the constant of the BitCurve equation
|
|
Gx, Gy *big.Int // (x,y) of the base point
|
|
BitSize int // the size of the underlying field
|
|
}
|
|
|
|
func (bitCurve *BitCurve) Params() *elliptic.CurveParams {
|
|
return &elliptic.CurveParams{
|
|
P: bitCurve.P,
|
|
N: bitCurve.N,
|
|
B: bitCurve.B,
|
|
Gx: bitCurve.Gx,
|
|
Gy: bitCurve.Gy,
|
|
BitSize: bitCurve.BitSize,
|
|
}
|
|
}
|
|
|
|
// IsOnCurve returns true if the given (x,y) lies on the BitCurve.
|
|
func (bitCurve *BitCurve) IsOnCurve(x, y *big.Int) bool {
|
|
// y² = x³ + b
|
|
y2 := new(big.Int).Mul(y, y) //y²
|
|
y2.Mod(y2, bitCurve.P) //y²%P
|
|
|
|
x3 := new(big.Int).Mul(x, x) //x²
|
|
x3.Mul(x3, x) //x³
|
|
|
|
x3.Add(x3, bitCurve.B) //x³+B
|
|
x3.Mod(x3, bitCurve.P) //(x³+B)%P
|
|
|
|
return x3.Cmp(y2) == 0
|
|
}
|
|
|
|
// affineFromJacobian reverses the Jacobian transform. See the comment at the
|
|
// top of the file.
|
|
func (bitCurve *BitCurve) affineFromJacobian(x, y, z *big.Int) (xOut, yOut *big.Int) {
|
|
if z.Sign() == 0 {
|
|
return new(big.Int), new(big.Int)
|
|
}
|
|
|
|
zinv := new(big.Int).ModInverse(z, bitCurve.P)
|
|
zinvsq := new(big.Int).Mul(zinv, zinv)
|
|
|
|
xOut = new(big.Int).Mul(x, zinvsq)
|
|
xOut.Mod(xOut, bitCurve.P)
|
|
zinvsq.Mul(zinvsq, zinv)
|
|
yOut = new(big.Int).Mul(y, zinvsq)
|
|
yOut.Mod(yOut, bitCurve.P)
|
|
return
|
|
}
|
|
|
|
// Add returns the sum of (x1,y1) and (x2,y2)
|
|
func (bitCurve *BitCurve) Add(x1, y1, x2, y2 *big.Int) (*big.Int, *big.Int) {
|
|
// If one point is at infinity, return the other point.
|
|
// Adding the point at infinity to any point will preserve the other point.
|
|
if x1.Sign() == 0 && y1.Sign() == 0 {
|
|
return x2, y2
|
|
}
|
|
if x2.Sign() == 0 && y2.Sign() == 0 {
|
|
return x1, y1
|
|
}
|
|
z := new(big.Int).SetInt64(1)
|
|
if x1.Cmp(x2) == 0 && y1.Cmp(y2) == 0 {
|
|
return bitCurve.affineFromJacobian(bitCurve.doubleJacobian(x1, y1, z))
|
|
}
|
|
return bitCurve.affineFromJacobian(bitCurve.addJacobian(x1, y1, z, x2, y2, z))
|
|
}
|
|
|
|
// addJacobian takes two points in Jacobian coordinates, (x1, y1, z1) and
|
|
// (x2, y2, z2) and returns their sum, also in Jacobian form.
|
|
func (bitCurve *BitCurve) addJacobian(x1, y1, z1, x2, y2, z2 *big.Int) (*big.Int, *big.Int, *big.Int) {
|
|
// See http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-add-2007-bl
|
|
z1z1 := new(big.Int).Mul(z1, z1)
|
|
z1z1.Mod(z1z1, bitCurve.P)
|
|
z2z2 := new(big.Int).Mul(z2, z2)
|
|
z2z2.Mod(z2z2, bitCurve.P)
|
|
|
|
u1 := new(big.Int).Mul(x1, z2z2)
|
|
u1.Mod(u1, bitCurve.P)
|
|
u2 := new(big.Int).Mul(x2, z1z1)
|
|
u2.Mod(u2, bitCurve.P)
|
|
h := new(big.Int).Sub(u2, u1)
|
|
if h.Sign() == -1 {
|
|
h.Add(h, bitCurve.P)
|
|
}
|
|
i := new(big.Int).Lsh(h, 1)
|
|
i.Mul(i, i)
|
|
j := new(big.Int).Mul(h, i)
|
|
|
|
s1 := new(big.Int).Mul(y1, z2)
|
|
s1.Mul(s1, z2z2)
|
|
s1.Mod(s1, bitCurve.P)
|
|
s2 := new(big.Int).Mul(y2, z1)
|
|
s2.Mul(s2, z1z1)
|
|
s2.Mod(s2, bitCurve.P)
|
|
r := new(big.Int).Sub(s2, s1)
|
|
if r.Sign() == -1 {
|
|
r.Add(r, bitCurve.P)
|
|
}
|
|
r.Lsh(r, 1)
|
|
v := new(big.Int).Mul(u1, i)
|
|
|
|
x3 := new(big.Int).Set(r)
|
|
x3.Mul(x3, x3)
|
|
x3.Sub(x3, j)
|
|
x3.Sub(x3, v)
|
|
x3.Sub(x3, v)
|
|
x3.Mod(x3, bitCurve.P)
|
|
|
|
y3 := new(big.Int).Set(r)
|
|
v.Sub(v, x3)
|
|
y3.Mul(y3, v)
|
|
s1.Mul(s1, j)
|
|
s1.Lsh(s1, 1)
|
|
y3.Sub(y3, s1)
|
|
y3.Mod(y3, bitCurve.P)
|
|
|
|
z3 := new(big.Int).Add(z1, z2)
|
|
z3.Mul(z3, z3)
|
|
z3.Sub(z3, z1z1)
|
|
if z3.Sign() == -1 {
|
|
z3.Add(z3, bitCurve.P)
|
|
}
|
|
z3.Sub(z3, z2z2)
|
|
if z3.Sign() == -1 {
|
|
z3.Add(z3, bitCurve.P)
|
|
}
|
|
z3.Mul(z3, h)
|
|
z3.Mod(z3, bitCurve.P)
|
|
|
|
return x3, y3, z3
|
|
}
|
|
|
|
// Double returns 2*(x,y)
|
|
func (bitCurve *BitCurve) Double(x1, y1 *big.Int) (*big.Int, *big.Int) {
|
|
z1 := new(big.Int).SetInt64(1)
|
|
return bitCurve.affineFromJacobian(bitCurve.doubleJacobian(x1, y1, z1))
|
|
}
|
|
|
|
// doubleJacobian takes a point in Jacobian coordinates, (x, y, z), and
|
|
// returns its double, also in Jacobian form.
|
|
func (bitCurve *BitCurve) doubleJacobian(x, y, z *big.Int) (*big.Int, *big.Int, *big.Int) {
|
|
// See http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#doubling-dbl-2009-l
|
|
|
|
a := new(big.Int).Mul(x, x) //X1²
|
|
b := new(big.Int).Mul(y, y) //Y1²
|
|
c := new(big.Int).Mul(b, b) //B²
|
|
|
|
d := new(big.Int).Add(x, b) //X1+B
|
|
d.Mul(d, d) //(X1+B)²
|
|
d.Sub(d, a) //(X1+B)²-A
|
|
d.Sub(d, c) //(X1+B)²-A-C
|
|
d.Mul(d, big.NewInt(2)) //2*((X1+B)²-A-C)
|
|
|
|
e := new(big.Int).Mul(big.NewInt(3), a) //3*A
|
|
f := new(big.Int).Mul(e, e) //E²
|
|
|
|
x3 := new(big.Int).Mul(big.NewInt(2), d) //2*D
|
|
x3.Sub(f, x3) //F-2*D
|
|
x3.Mod(x3, bitCurve.P)
|
|
|
|
y3 := new(big.Int).Sub(d, x3) //D-X3
|
|
y3.Mul(e, y3) //E*(D-X3)
|
|
y3.Sub(y3, new(big.Int).Mul(big.NewInt(8), c)) //E*(D-X3)-8*C
|
|
y3.Mod(y3, bitCurve.P)
|
|
|
|
z3 := new(big.Int).Mul(y, z) //Y1*Z1
|
|
z3.Mul(big.NewInt(2), z3) //3*Y1*Z1
|
|
z3.Mod(z3, bitCurve.P)
|
|
|
|
return x3, y3, z3
|
|
}
|
|
|
|
// ScalarBaseMult returns k*G, where G is the base point of the group and k is
|
|
// an integer in big-endian form.
|
|
func (bitCurve *BitCurve) ScalarBaseMult(k []byte) (*big.Int, *big.Int) {
|
|
return bitCurve.ScalarMult(bitCurve.Gx, bitCurve.Gy, k)
|
|
}
|
|
|
|
// Marshal converts a point into the form specified in section 4.3.6 of ANSI
|
|
// X9.62.
|
|
func (bitCurve *BitCurve) Marshal(x, y *big.Int) []byte {
|
|
byteLen := (bitCurve.BitSize + 7) >> 3
|
|
ret := make([]byte, 1+2*byteLen)
|
|
ret[0] = 4 // uncompressed point flag
|
|
readBits(x, ret[1:1+byteLen])
|
|
readBits(y, ret[1+byteLen:])
|
|
return ret
|
|
}
|
|
|
|
// Unmarshal converts a point, serialised by Marshal, into an x, y pair. On
|
|
// error, x = nil.
|
|
func (bitCurve *BitCurve) Unmarshal(data []byte) (x, y *big.Int) {
|
|
byteLen := (bitCurve.BitSize + 7) >> 3
|
|
if len(data) != 1+2*byteLen {
|
|
return
|
|
}
|
|
if data[0] != 4 { // uncompressed form
|
|
return
|
|
}
|
|
x = new(big.Int).SetBytes(data[1 : 1+byteLen])
|
|
y = new(big.Int).SetBytes(data[1+byteLen:])
|
|
return
|
|
}
|
|
|
|
var theCurve = new(BitCurve)
|
|
|
|
func init() {
|
|
// See SEC 2 section 2.7.1
|
|
// curve parameters taken from:
|
|
// http://www.secg.org/sec2-v2.pdf
|
|
theCurve.P, _ = new(big.Int).SetString("0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F", 0)
|
|
theCurve.N, _ = new(big.Int).SetString("0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141", 0)
|
|
theCurve.B, _ = new(big.Int).SetString("0x0000000000000000000000000000000000000000000000000000000000000007", 0)
|
|
theCurve.Gx, _ = new(big.Int).SetString("0x79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798", 0)
|
|
theCurve.Gy, _ = new(big.Int).SetString("0x483ADA7726A3C4655DA4FBFC0E1108A8FD17B448A68554199C47D08FFB10D4B8", 0)
|
|
theCurve.BitSize = 256
|
|
}
|
|
|
|
// S256 returns a BitCurve which implements secp256k1.
|
|
func S256() *BitCurve {
|
|
return theCurve
|
|
}
|