go-ethereum/tests/fuzzers/txfetcher/txfetcher_fuzzer.go
Marius van der Wijden d10a2f6ab7
tests/fuzzers: update fuzzers to be based on go-native fuzzing (#28352)
This change modifies the fuzzers to use the native golang fuzzing framework instead of go-fuzz
2023-10-18 15:01:16 +02:00

211 lines
5.6 KiB
Go

// Copyright 2020 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package txfetcher
import (
"bytes"
"fmt"
"math/big"
"math/rand"
"time"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/common/mclock"
"github.com/ethereum/go-ethereum/core/types"
"github.com/ethereum/go-ethereum/eth/fetcher"
)
var (
peers []string
txs []*types.Transaction
)
func init() {
// Random is nice, but we need it deterministic
rand := rand.New(rand.NewSource(0x3a29))
peers = make([]string, 10)
for i := 0; i < len(peers); i++ {
peers[i] = fmt.Sprintf("Peer #%d", i)
}
txs = make([]*types.Transaction, 65536) // We need to bump enough to hit all the limits
for i := 0; i < len(txs); i++ {
txs[i] = types.NewTransaction(rand.Uint64(), common.Address{byte(rand.Intn(256))}, new(big.Int), 0, new(big.Int), nil)
}
}
func fuzz(input []byte) int {
// Don't generate insanely large test cases, not much value in them
if len(input) > 16*1024 {
return 0
}
verbose := false
r := bytes.NewReader(input)
// Reduce the problem space for certain fuzz runs. Small tx space is better
// for testing clashes and in general the fetcher, but we should still run
// some tests with large spaces to hit potential issues on limits.
limit, err := r.ReadByte()
if err != nil {
return 0
}
switch limit % 4 {
case 0:
txs = txs[:4]
case 1:
txs = txs[:256]
case 2:
txs = txs[:4096]
case 3:
// Full run
}
// Create a fetcher and hook into it's simulated fields
clock := new(mclock.Simulated)
rand := rand.New(rand.NewSource(0x3a29)) // Same used in package tests!!!
f := fetcher.NewTxFetcherForTests(
func(common.Hash) bool { return false },
func(txs []*types.Transaction) []error {
return make([]error, len(txs))
},
func(string, []common.Hash) error { return nil },
nil,
clock, rand,
)
f.Start()
defer f.Stop()
// Try to throw random junk at the fetcher
for {
// Read the next command and abort if we're done
cmd, err := r.ReadByte()
if err != nil {
return 0
}
switch cmd % 4 {
case 0:
// Notify a new set of transactions:
// Byte 1: Peer index to announce with
// Byte 2: Number of hashes to announce
// Byte 3-4, 5-6, etc: Transaction indices (2 byte) to announce
peerIdx, err := r.ReadByte()
if err != nil {
return 0
}
peer := peers[int(peerIdx)%len(peers)]
announceCnt, err := r.ReadByte()
if err != nil {
return 0
}
announce := int(announceCnt) % (2 * len(txs)) // No point in generating too many duplicates
var (
announceIdxs = make([]int, announce)
announces = make([]common.Hash, announce)
types = make([]byte, announce)
sizes = make([]uint32, announce)
)
for i := 0; i < len(announces); i++ {
annBuf := make([]byte, 2)
if n, err := r.Read(annBuf); err != nil || n != 2 {
return 0
}
announceIdxs[i] = (int(annBuf[0])*256 + int(annBuf[1])) % len(txs)
announces[i] = txs[announceIdxs[i]].Hash()
types[i] = txs[announceIdxs[i]].Type()
sizes[i] = uint32(txs[announceIdxs[i]].Size())
}
if verbose {
fmt.Println("Notify", peer, announceIdxs)
}
if err := f.Notify(peer, types, sizes, announces); err != nil {
panic(err)
}
case 1:
// Deliver a new set of transactions:
// Byte 1: Peer index to announce with
// Byte 2: Number of hashes to announce
// Byte 3-4, 5-6, etc: Transaction indices (2 byte) to announce
peerIdx, err := r.ReadByte()
if err != nil {
return 0
}
peer := peers[int(peerIdx)%len(peers)]
deliverCnt, err := r.ReadByte()
if err != nil {
return 0
}
deliver := int(deliverCnt) % (2 * len(txs)) // No point in generating too many duplicates
var (
deliverIdxs = make([]int, deliver)
deliveries = make([]*types.Transaction, deliver)
)
for i := 0; i < len(deliveries); i++ {
deliverBuf := make([]byte, 2)
if n, err := r.Read(deliverBuf); err != nil || n != 2 {
return 0
}
deliverIdxs[i] = (int(deliverBuf[0])*256 + int(deliverBuf[1])) % len(txs)
deliveries[i] = txs[deliverIdxs[i]]
}
directFlag, err := r.ReadByte()
if err != nil {
return 0
}
direct := (directFlag % 2) == 0
if verbose {
fmt.Println("Enqueue", peer, deliverIdxs, direct)
}
if err := f.Enqueue(peer, deliveries, direct); err != nil {
panic(err)
}
case 2:
// Drop a peer:
// Byte 1: Peer index to drop
peerIdx, err := r.ReadByte()
if err != nil {
return 0
}
peer := peers[int(peerIdx)%len(peers)]
if verbose {
fmt.Println("Drop", peer)
}
if err := f.Drop(peer); err != nil {
panic(err)
}
case 3:
// Move the simulated clock forward
// Byte 1: 100ms increment to move forward
tickCnt, err := r.ReadByte()
if err != nil {
return 0
}
tick := time.Duration(tickCnt) * 100 * time.Millisecond
if verbose {
fmt.Println("Sleep", tick)
}
clock.Run(tick)
}
}
}