go-ethereum/rlp/encode.go
Felix Lange 32c576bd3c
rlp: minor optimizations for slice/array encoding (#23467)
As per benchmark results below, these changes speed up encoding/decoding of
consensus objects a bit.

    name                             old time/op    new time/op    delta
    EncodeRLP/legacy-header-8           384ns ± 1%     331ns ± 3%  -13.83%  (p=0.000 n=7+8)
    EncodeRLP/london-header-8           411ns ± 1%     359ns ± 2%  -12.53%  (p=0.000 n=8+8)
    EncodeRLP/receipt-for-storage-8     251ns ± 0%     239ns ± 0%   -4.97%  (p=0.000 n=8+8)
    EncodeRLP/receipt-full-8            319ns ± 0%     300ns ± 0%   -5.89%  (p=0.000 n=8+7)
    EncodeRLP/legacy-transaction-8      389ns ± 1%     387ns ± 1%     ~     (p=0.099 n=8+8)
    EncodeRLP/access-transaction-8      607ns ± 0%     581ns ± 0%   -4.26%  (p=0.000 n=8+8)
    EncodeRLP/1559-transaction-8        627ns ± 0%     606ns ± 1%   -3.44%  (p=0.000 n=8+8)
    DecodeRLP/legacy-header-8           831ns ± 1%     813ns ± 1%   -2.20%  (p=0.000 n=8+8)
    DecodeRLP/london-header-8           824ns ± 0%     804ns ± 1%   -2.44%  (p=0.000 n=8+7)

* rlp: pass length to byteArrayBytes

This makes it possible to inline byteArrayBytes. For arrays, the length is known
at encoder construction time, so the call to v.Len() can be avoided.

* rlp: avoid IsNil for pointer encoding

It's actually cheaper to use Elem first, because it performs less checks
on the value. If the pointer was nil, the result of Elem is 'invalid'.

* rlp: minor optimizations for slice/array encoding

For empty slices/arrays, we can avoid storing a list header entry in the
encoder buffer. Also avoid doing the tail check at encoding time because
it is already known at encoder construction time.
2021-08-25 19:01:10 +02:00

704 lines
17 KiB
Go

// Copyright 2014 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package rlp
import (
"fmt"
"io"
"math/big"
"reflect"
"sync"
)
var (
// Common encoded values.
// These are useful when implementing EncodeRLP.
EmptyString = []byte{0x80}
EmptyList = []byte{0xC0}
)
// Encoder is implemented by types that require custom
// encoding rules or want to encode private fields.
type Encoder interface {
// EncodeRLP should write the RLP encoding of its receiver to w.
// If the implementation is a pointer method, it may also be
// called for nil pointers.
//
// Implementations should generate valid RLP. The data written is
// not verified at the moment, but a future version might. It is
// recommended to write only a single value but writing multiple
// values or no value at all is also permitted.
EncodeRLP(io.Writer) error
}
// Encode writes the RLP encoding of val to w. Note that Encode may
// perform many small writes in some cases. Consider making w
// buffered.
//
// Please see package-level documentation of encoding rules.
func Encode(w io.Writer, val interface{}) error {
if outer, ok := w.(*encbuf); ok {
// Encode was called by some type's EncodeRLP.
// Avoid copying by writing to the outer encbuf directly.
return outer.encode(val)
}
eb := encbufPool.Get().(*encbuf)
defer encbufPool.Put(eb)
eb.reset()
if err := eb.encode(val); err != nil {
return err
}
return eb.toWriter(w)
}
// EncodeToBytes returns the RLP encoding of val.
// Please see package-level documentation for the encoding rules.
func EncodeToBytes(val interface{}) ([]byte, error) {
eb := encbufPool.Get().(*encbuf)
defer encbufPool.Put(eb)
eb.reset()
if err := eb.encode(val); err != nil {
return nil, err
}
return eb.toBytes(), nil
}
// EncodeToReader returns a reader from which the RLP encoding of val
// can be read. The returned size is the total size of the encoded
// data.
//
// Please see the documentation of Encode for the encoding rules.
func EncodeToReader(val interface{}) (size int, r io.Reader, err error) {
eb := encbufPool.Get().(*encbuf)
eb.reset()
if err := eb.encode(val); err != nil {
return 0, nil, err
}
return eb.size(), &encReader{buf: eb}, nil
}
type listhead struct {
offset int // index of this header in string data
size int // total size of encoded data (including list headers)
}
// encode writes head to the given buffer, which must be at least
// 9 bytes long. It returns the encoded bytes.
func (head *listhead) encode(buf []byte) []byte {
return buf[:puthead(buf, 0xC0, 0xF7, uint64(head.size))]
}
// headsize returns the size of a list or string header
// for a value of the given size.
func headsize(size uint64) int {
if size < 56 {
return 1
}
return 1 + intsize(size)
}
// puthead writes a list or string header to buf.
// buf must be at least 9 bytes long.
func puthead(buf []byte, smalltag, largetag byte, size uint64) int {
if size < 56 {
buf[0] = smalltag + byte(size)
return 1
}
sizesize := putint(buf[1:], size)
buf[0] = largetag + byte(sizesize)
return sizesize + 1
}
type encbuf struct {
str []byte // string data, contains everything except list headers
lheads []listhead // all list headers
lhsize int // sum of sizes of all encoded list headers
sizebuf [9]byte // auxiliary buffer for uint encoding
}
// encbufs are pooled.
var encbufPool = sync.Pool{
New: func() interface{} { return new(encbuf) },
}
func (w *encbuf) reset() {
w.lhsize = 0
w.str = w.str[:0]
w.lheads = w.lheads[:0]
}
// encbuf implements io.Writer so it can be passed it into EncodeRLP.
func (w *encbuf) Write(b []byte) (int, error) {
w.str = append(w.str, b...)
return len(b), nil
}
func (w *encbuf) encode(val interface{}) error {
rval := reflect.ValueOf(val)
writer, err := cachedWriter(rval.Type())
if err != nil {
return err
}
return writer(rval, w)
}
func (w *encbuf) encodeStringHeader(size int) {
if size < 56 {
w.str = append(w.str, 0x80+byte(size))
} else {
sizesize := putint(w.sizebuf[1:], uint64(size))
w.sizebuf[0] = 0xB7 + byte(sizesize)
w.str = append(w.str, w.sizebuf[:sizesize+1]...)
}
}
func (w *encbuf) encodeString(b []byte) {
if len(b) == 1 && b[0] <= 0x7F {
// fits single byte, no string header
w.str = append(w.str, b[0])
} else {
w.encodeStringHeader(len(b))
w.str = append(w.str, b...)
}
}
func (w *encbuf) encodeUint(i uint64) {
if i == 0 {
w.str = append(w.str, 0x80)
} else if i < 128 {
// fits single byte
w.str = append(w.str, byte(i))
} else {
s := putint(w.sizebuf[1:], i)
w.sizebuf[0] = 0x80 + byte(s)
w.str = append(w.str, w.sizebuf[:s+1]...)
}
}
// list adds a new list header to the header stack. It returns the index
// of the header. The caller must call listEnd with this index after encoding
// the content of the list.
func (w *encbuf) list() int {
w.lheads = append(w.lheads, listhead{offset: len(w.str), size: w.lhsize})
return len(w.lheads) - 1
}
func (w *encbuf) listEnd(index int) {
lh := &w.lheads[index]
lh.size = w.size() - lh.offset - lh.size
if lh.size < 56 {
w.lhsize++ // length encoded into kind tag
} else {
w.lhsize += 1 + intsize(uint64(lh.size))
}
}
func (w *encbuf) size() int {
return len(w.str) + w.lhsize
}
func (w *encbuf) toBytes() []byte {
out := make([]byte, w.size())
strpos := 0
pos := 0
for _, head := range w.lheads {
// write string data before header
n := copy(out[pos:], w.str[strpos:head.offset])
pos += n
strpos += n
// write the header
enc := head.encode(out[pos:])
pos += len(enc)
}
// copy string data after the last list header
copy(out[pos:], w.str[strpos:])
return out
}
func (w *encbuf) toWriter(out io.Writer) (err error) {
strpos := 0
for _, head := range w.lheads {
// write string data before header
if head.offset-strpos > 0 {
n, err := out.Write(w.str[strpos:head.offset])
strpos += n
if err != nil {
return err
}
}
// write the header
enc := head.encode(w.sizebuf[:])
if _, err = out.Write(enc); err != nil {
return err
}
}
if strpos < len(w.str) {
// write string data after the last list header
_, err = out.Write(w.str[strpos:])
}
return err
}
// encReader is the io.Reader returned by EncodeToReader.
// It releases its encbuf at EOF.
type encReader struct {
buf *encbuf // the buffer we're reading from. this is nil when we're at EOF.
lhpos int // index of list header that we're reading
strpos int // current position in string buffer
piece []byte // next piece to be read
}
func (r *encReader) Read(b []byte) (n int, err error) {
for {
if r.piece = r.next(); r.piece == nil {
// Put the encode buffer back into the pool at EOF when it
// is first encountered. Subsequent calls still return EOF
// as the error but the buffer is no longer valid.
if r.buf != nil {
encbufPool.Put(r.buf)
r.buf = nil
}
return n, io.EOF
}
nn := copy(b[n:], r.piece)
n += nn
if nn < len(r.piece) {
// piece didn't fit, see you next time.
r.piece = r.piece[nn:]
return n, nil
}
r.piece = nil
}
}
// next returns the next piece of data to be read.
// it returns nil at EOF.
func (r *encReader) next() []byte {
switch {
case r.buf == nil:
return nil
case r.piece != nil:
// There is still data available for reading.
return r.piece
case r.lhpos < len(r.buf.lheads):
// We're before the last list header.
head := r.buf.lheads[r.lhpos]
sizebefore := head.offset - r.strpos
if sizebefore > 0 {
// String data before header.
p := r.buf.str[r.strpos:head.offset]
r.strpos += sizebefore
return p
}
r.lhpos++
return head.encode(r.buf.sizebuf[:])
case r.strpos < len(r.buf.str):
// String data at the end, after all list headers.
p := r.buf.str[r.strpos:]
r.strpos = len(r.buf.str)
return p
default:
return nil
}
}
var encoderInterface = reflect.TypeOf(new(Encoder)).Elem()
// makeWriter creates a writer function for the given type.
func makeWriter(typ reflect.Type, ts tags) (writer, error) {
kind := typ.Kind()
switch {
case typ == rawValueType:
return writeRawValue, nil
case typ.AssignableTo(reflect.PtrTo(bigInt)):
return writeBigIntPtr, nil
case typ.AssignableTo(bigInt):
return writeBigIntNoPtr, nil
case kind == reflect.Ptr:
return makePtrWriter(typ, ts)
case reflect.PtrTo(typ).Implements(encoderInterface):
return makeEncoderWriter(typ), nil
case isUint(kind):
return writeUint, nil
case kind == reflect.Bool:
return writeBool, nil
case kind == reflect.String:
return writeString, nil
case kind == reflect.Slice && isByte(typ.Elem()):
return writeBytes, nil
case kind == reflect.Array && isByte(typ.Elem()):
return makeByteArrayWriter(typ), nil
case kind == reflect.Slice || kind == reflect.Array:
return makeSliceWriter(typ, ts)
case kind == reflect.Struct:
return makeStructWriter(typ)
case kind == reflect.Interface:
return writeInterface, nil
default:
return nil, fmt.Errorf("rlp: type %v is not RLP-serializable", typ)
}
}
func writeRawValue(val reflect.Value, w *encbuf) error {
w.str = append(w.str, val.Bytes()...)
return nil
}
func writeUint(val reflect.Value, w *encbuf) error {
w.encodeUint(val.Uint())
return nil
}
func writeBool(val reflect.Value, w *encbuf) error {
if val.Bool() {
w.str = append(w.str, 0x01)
} else {
w.str = append(w.str, 0x80)
}
return nil
}
func writeBigIntPtr(val reflect.Value, w *encbuf) error {
ptr := val.Interface().(*big.Int)
if ptr == nil {
w.str = append(w.str, 0x80)
return nil
}
return writeBigInt(ptr, w)
}
func writeBigIntNoPtr(val reflect.Value, w *encbuf) error {
i := val.Interface().(big.Int)
return writeBigInt(&i, w)
}
// wordBytes is the number of bytes in a big.Word
const wordBytes = (32 << (uint64(^big.Word(0)) >> 63)) / 8
func writeBigInt(i *big.Int, w *encbuf) error {
if i.Sign() == -1 {
return fmt.Errorf("rlp: cannot encode negative *big.Int")
}
bitlen := i.BitLen()
if bitlen <= 64 {
w.encodeUint(i.Uint64())
return nil
}
// Integer is larger than 64 bits, encode from i.Bits().
// The minimal byte length is bitlen rounded up to the next
// multiple of 8, divided by 8.
length := ((bitlen + 7) & -8) >> 3
w.encodeStringHeader(length)
w.str = append(w.str, make([]byte, length)...)
index := length
buf := w.str[len(w.str)-length:]
for _, d := range i.Bits() {
for j := 0; j < wordBytes && index > 0; j++ {
index--
buf[index] = byte(d)
d >>= 8
}
}
return nil
}
func writeBytes(val reflect.Value, w *encbuf) error {
w.encodeString(val.Bytes())
return nil
}
func makeByteArrayWriter(typ reflect.Type) writer {
switch typ.Len() {
case 0:
return writeLengthZeroByteArray
case 1:
return writeLengthOneByteArray
default:
length := typ.Len()
return func(val reflect.Value, w *encbuf) error {
if !val.CanAddr() {
// Getting the byte slice of val requires it to be addressable. Make it
// addressable by copying.
copy := reflect.New(val.Type()).Elem()
copy.Set(val)
val = copy
}
slice := byteArrayBytes(val, length)
w.encodeStringHeader(len(slice))
w.str = append(w.str, slice...)
return nil
}
}
}
func writeLengthZeroByteArray(val reflect.Value, w *encbuf) error {
w.str = append(w.str, 0x80)
return nil
}
func writeLengthOneByteArray(val reflect.Value, w *encbuf) error {
b := byte(val.Index(0).Uint())
if b <= 0x7f {
w.str = append(w.str, b)
} else {
w.str = append(w.str, 0x81, b)
}
return nil
}
func writeString(val reflect.Value, w *encbuf) error {
s := val.String()
if len(s) == 1 && s[0] <= 0x7f {
// fits single byte, no string header
w.str = append(w.str, s[0])
} else {
w.encodeStringHeader(len(s))
w.str = append(w.str, s...)
}
return nil
}
func writeInterface(val reflect.Value, w *encbuf) error {
if val.IsNil() {
// Write empty list. This is consistent with the previous RLP
// encoder that we had and should therefore avoid any
// problems.
w.str = append(w.str, 0xC0)
return nil
}
eval := val.Elem()
writer, err := cachedWriter(eval.Type())
if err != nil {
return err
}
return writer(eval, w)
}
func makeSliceWriter(typ reflect.Type, ts tags) (writer, error) {
etypeinfo := theTC.infoWhileGenerating(typ.Elem(), tags{})
if etypeinfo.writerErr != nil {
return nil, etypeinfo.writerErr
}
var wfn writer
if ts.tail {
// This is for struct tail slices.
// w.list is not called for them.
wfn = func(val reflect.Value, w *encbuf) error {
vlen := val.Len()
for i := 0; i < vlen; i++ {
if err := etypeinfo.writer(val.Index(i), w); err != nil {
return err
}
}
return nil
}
} else {
// This is for regular slices and arrays.
wfn = func(val reflect.Value, w *encbuf) error {
vlen := val.Len()
if vlen == 0 {
w.str = append(w.str, 0xC0)
return nil
}
listOffset := w.list()
for i := 0; i < vlen; i++ {
if err := etypeinfo.writer(val.Index(i), w); err != nil {
return err
}
}
w.listEnd(listOffset)
return nil
}
}
return wfn, nil
}
func makeStructWriter(typ reflect.Type) (writer, error) {
fields, err := structFields(typ)
if err != nil {
return nil, err
}
for _, f := range fields {
if f.info.writerErr != nil {
return nil, structFieldError{typ, f.index, f.info.writerErr}
}
}
var writer writer
firstOptionalField := firstOptionalField(fields)
if firstOptionalField == len(fields) {
// This is the writer function for structs without any optional fields.
writer = func(val reflect.Value, w *encbuf) error {
lh := w.list()
for _, f := range fields {
if err := f.info.writer(val.Field(f.index), w); err != nil {
return err
}
}
w.listEnd(lh)
return nil
}
} else {
// If there are any "optional" fields, the writer needs to perform additional
// checks to determine the output list length.
writer = func(val reflect.Value, w *encbuf) error {
lastField := len(fields) - 1
for ; lastField >= firstOptionalField; lastField-- {
if !val.Field(fields[lastField].index).IsZero() {
break
}
}
lh := w.list()
for i := 0; i <= lastField; i++ {
if err := fields[i].info.writer(val.Field(fields[i].index), w); err != nil {
return err
}
}
w.listEnd(lh)
return nil
}
}
return writer, nil
}
// nilEncoding returns the encoded value of a nil pointer.
func nilEncoding(typ reflect.Type, ts tags) uint8 {
var nilKind Kind
if ts.nilOK {
nilKind = ts.nilKind // use struct tag if provided
} else {
nilKind = defaultNilKind(typ.Elem())
}
switch nilKind {
case String:
return 0x80
case List:
return 0xC0
default:
panic(fmt.Errorf("rlp: invalid nil kind %d", nilKind))
}
}
func makePtrWriter(typ reflect.Type, ts tags) (writer, error) {
etypeinfo := theTC.infoWhileGenerating(typ.Elem(), tags{})
if etypeinfo.writerErr != nil {
return nil, etypeinfo.writerErr
}
nilEncoding := nilEncoding(typ, ts)
writer := func(val reflect.Value, w *encbuf) error {
if ev := val.Elem(); ev.IsValid() {
return etypeinfo.writer(ev, w)
}
w.str = append(w.str, nilEncoding)
return nil
}
return writer, nil
}
func makeEncoderWriter(typ reflect.Type) writer {
if typ.Implements(encoderInterface) {
return func(val reflect.Value, w *encbuf) error {
return val.Interface().(Encoder).EncodeRLP(w)
}
}
w := func(val reflect.Value, w *encbuf) error {
if !val.CanAddr() {
// package json simply doesn't call MarshalJSON for this case, but encodes the
// value as if it didn't implement the interface. We don't want to handle it that
// way.
return fmt.Errorf("rlp: unadressable value of type %v, EncodeRLP is pointer method", val.Type())
}
return val.Addr().Interface().(Encoder).EncodeRLP(w)
}
return w
}
// putint writes i to the beginning of b in big endian byte
// order, using the least number of bytes needed to represent i.
func putint(b []byte, i uint64) (size int) {
switch {
case i < (1 << 8):
b[0] = byte(i)
return 1
case i < (1 << 16):
b[0] = byte(i >> 8)
b[1] = byte(i)
return 2
case i < (1 << 24):
b[0] = byte(i >> 16)
b[1] = byte(i >> 8)
b[2] = byte(i)
return 3
case i < (1 << 32):
b[0] = byte(i >> 24)
b[1] = byte(i >> 16)
b[2] = byte(i >> 8)
b[3] = byte(i)
return 4
case i < (1 << 40):
b[0] = byte(i >> 32)
b[1] = byte(i >> 24)
b[2] = byte(i >> 16)
b[3] = byte(i >> 8)
b[4] = byte(i)
return 5
case i < (1 << 48):
b[0] = byte(i >> 40)
b[1] = byte(i >> 32)
b[2] = byte(i >> 24)
b[3] = byte(i >> 16)
b[4] = byte(i >> 8)
b[5] = byte(i)
return 6
case i < (1 << 56):
b[0] = byte(i >> 48)
b[1] = byte(i >> 40)
b[2] = byte(i >> 32)
b[3] = byte(i >> 24)
b[4] = byte(i >> 16)
b[5] = byte(i >> 8)
b[6] = byte(i)
return 7
default:
b[0] = byte(i >> 56)
b[1] = byte(i >> 48)
b[2] = byte(i >> 40)
b[3] = byte(i >> 32)
b[4] = byte(i >> 24)
b[5] = byte(i >> 16)
b[6] = byte(i >> 8)
b[7] = byte(i)
return 8
}
}
// intsize computes the minimum number of bytes required to store i.
func intsize(i uint64) (size int) {
for size = 1; ; size++ {
if i >>= 8; i == 0 {
return size
}
}
}