go-ethereum/core/txpool/legacypool/legacypool2_test.go
rjl493456442 623b17ba20
core/state: state reader abstraction (#29761)
This pull request introduces a state.Reader interface for state
accessing.

The interface could be implemented in various ways. It can be pure trie
only reader, or the combination of trie and state snapshot. What's more,
this interface allows us to have more flexibility in the future, e.g.
the
archive reader (for accessing archive state).

Additionally, this pull request removes the following metrics

- `chain/snapshot/account/reads`
- `chain/snapshot/storage/reads`
2024-09-05 13:10:47 +03:00

242 lines
9.5 KiB
Go

// Copyright 2023 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package legacypool
import (
"crypto/ecdsa"
"math/big"
"testing"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/core/state"
"github.com/ethereum/go-ethereum/core/tracing"
"github.com/ethereum/go-ethereum/core/types"
"github.com/ethereum/go-ethereum/crypto"
"github.com/ethereum/go-ethereum/event"
"github.com/holiman/uint256"
)
func pricedValuedTransaction(nonce uint64, value int64, gaslimit uint64, gasprice *big.Int, key *ecdsa.PrivateKey) *types.Transaction {
tx, _ := types.SignTx(types.NewTransaction(nonce, common.Address{}, big.NewInt(value), gaslimit, gasprice, nil), types.HomesteadSigner{}, key)
return tx
}
func count(t *testing.T, pool *LegacyPool) (pending int, queued int) {
t.Helper()
pending, queued = pool.stats()
if err := validatePoolInternals(pool); err != nil {
t.Fatalf("pool internal state corrupted: %v", err)
}
return pending, queued
}
func fillPool(t testing.TB, pool *LegacyPool) {
t.Helper()
// Create a number of test accounts, fund them and make transactions
executableTxs := types.Transactions{}
nonExecutableTxs := types.Transactions{}
for i := 0; i < 384; i++ {
key, _ := crypto.GenerateKey()
pool.currentState.AddBalance(crypto.PubkeyToAddress(key.PublicKey), uint256.NewInt(10000000000), tracing.BalanceChangeUnspecified)
// Add executable ones
for j := 0; j < int(pool.config.AccountSlots); j++ {
executableTxs = append(executableTxs, pricedTransaction(uint64(j), 100000, big.NewInt(300), key))
}
}
// Import the batch and verify that limits have been enforced
pool.addRemotesSync(executableTxs)
pool.addRemotesSync(nonExecutableTxs)
pending, queued := pool.Stats()
slots := pool.all.Slots()
// sanity-check that the test prerequisites are ok (pending full)
if have, want := pending, slots; have != want {
t.Fatalf("have %d, want %d", have, want)
}
if have, want := queued, 0; have != want {
t.Fatalf("have %d, want %d", have, want)
}
t.Logf("pool.config: GlobalSlots=%d, GlobalQueue=%d\n", pool.config.GlobalSlots, pool.config.GlobalQueue)
t.Logf("pending: %d queued: %d, all: %d\n", pending, queued, slots)
}
// Tests that if a batch high-priced of non-executables arrive, they do not kick out
// executable transactions
func TestTransactionFutureAttack(t *testing.T) {
t.Parallel()
// Create the pool to test the limit enforcement with
statedb, _ := state.New(types.EmptyRootHash, state.NewDatabaseForTesting())
blockchain := newTestBlockChain(eip1559Config, 1000000, statedb, new(event.Feed))
config := testTxPoolConfig
config.GlobalQueue = 100
config.GlobalSlots = 100
pool := New(config, blockchain)
pool.Init(config.PriceLimit, blockchain.CurrentBlock(), makeAddressReserver())
defer pool.Close()
fillPool(t, pool)
pending, _ := pool.Stats()
// Now, future transaction attack starts, let's add a bunch of expensive non-executables, and see if the pending-count drops
{
key, _ := crypto.GenerateKey()
pool.currentState.AddBalance(crypto.PubkeyToAddress(key.PublicKey), uint256.NewInt(100000000000), tracing.BalanceChangeUnspecified)
futureTxs := types.Transactions{}
for j := 0; j < int(pool.config.GlobalSlots+pool.config.GlobalQueue); j++ {
futureTxs = append(futureTxs, pricedTransaction(1000+uint64(j), 100000, big.NewInt(500), key))
}
for i := 0; i < 5; i++ {
pool.addRemotesSync(futureTxs)
newPending, newQueued := count(t, pool)
t.Logf("pending: %d queued: %d, all: %d\n", newPending, newQueued, pool.all.Slots())
}
}
newPending, _ := pool.Stats()
// Pending should not have been touched
if have, want := newPending, pending; have < want {
t.Errorf("wrong pending-count, have %d, want %d (GlobalSlots: %d)",
have, want, pool.config.GlobalSlots)
}
}
// Tests that if a batch high-priced of non-executables arrive, they do not kick out
// executable transactions
func TestTransactionFuture1559(t *testing.T) {
t.Parallel()
// Create the pool to test the pricing enforcement with
statedb, _ := state.New(types.EmptyRootHash, state.NewDatabaseForTesting())
blockchain := newTestBlockChain(eip1559Config, 1000000, statedb, new(event.Feed))
pool := New(testTxPoolConfig, blockchain)
pool.Init(testTxPoolConfig.PriceLimit, blockchain.CurrentBlock(), makeAddressReserver())
defer pool.Close()
// Create a number of test accounts, fund them and make transactions
fillPool(t, pool)
pending, _ := pool.Stats()
// Now, future transaction attack starts, let's add a bunch of expensive non-executables, and see if the pending-count drops
{
key, _ := crypto.GenerateKey()
pool.currentState.AddBalance(crypto.PubkeyToAddress(key.PublicKey), uint256.NewInt(100000000000), tracing.BalanceChangeUnspecified)
futureTxs := types.Transactions{}
for j := 0; j < int(pool.config.GlobalSlots+pool.config.GlobalQueue); j++ {
futureTxs = append(futureTxs, dynamicFeeTx(1000+uint64(j), 100000, big.NewInt(200), big.NewInt(101), key))
}
pool.addRemotesSync(futureTxs)
}
newPending, _ := pool.Stats()
// Pending should not have been touched
if have, want := newPending, pending; have != want {
t.Errorf("Wrong pending-count, have %d, want %d (GlobalSlots: %d)",
have, want, pool.config.GlobalSlots)
}
}
// Tests that if a batch of balance-overdraft txs arrive, they do not kick out
// executable transactions
func TestTransactionZAttack(t *testing.T) {
t.Parallel()
// Create the pool to test the pricing enforcement with
statedb, _ := state.New(types.EmptyRootHash, state.NewDatabaseForTesting())
blockchain := newTestBlockChain(eip1559Config, 1000000, statedb, new(event.Feed))
pool := New(testTxPoolConfig, blockchain)
pool.Init(testTxPoolConfig.PriceLimit, blockchain.CurrentBlock(), makeAddressReserver())
defer pool.Close()
// Create a number of test accounts, fund them and make transactions
fillPool(t, pool)
countInvalidPending := func() int {
t.Helper()
var ivpendingNum int
pendingtxs, _ := pool.Content()
for account, txs := range pendingtxs {
cur_balance := new(big.Int).Set(pool.currentState.GetBalance(account).ToBig())
for _, tx := range txs {
if cur_balance.Cmp(tx.Value()) <= 0 {
ivpendingNum++
} else {
cur_balance.Sub(cur_balance, tx.Value())
}
}
}
if err := validatePoolInternals(pool); err != nil {
t.Fatalf("pool internal state corrupted: %v", err)
}
return ivpendingNum
}
ivPending := countInvalidPending()
t.Logf("invalid pending: %d\n", ivPending)
// Now, DETER-Z attack starts, let's add a bunch of expensive non-executables (from N accounts) along with balance-overdraft txs (from one account), and see if the pending-count drops
for j := 0; j < int(pool.config.GlobalQueue); j++ {
futureTxs := types.Transactions{}
key, _ := crypto.GenerateKey()
pool.currentState.AddBalance(crypto.PubkeyToAddress(key.PublicKey), uint256.NewInt(100000000000), tracing.BalanceChangeUnspecified)
futureTxs = append(futureTxs, pricedTransaction(1000+uint64(j), 21000, big.NewInt(500), key))
pool.addRemotesSync(futureTxs)
}
overDraftTxs := types.Transactions{}
{
key, _ := crypto.GenerateKey()
pool.currentState.AddBalance(crypto.PubkeyToAddress(key.PublicKey), uint256.NewInt(100000000000), tracing.BalanceChangeUnspecified)
for j := 0; j < int(pool.config.GlobalSlots); j++ {
overDraftTxs = append(overDraftTxs, pricedValuedTransaction(uint64(j), 600000000000, 21000, big.NewInt(500), key))
}
}
pool.addRemotesSync(overDraftTxs)
pool.addRemotesSync(overDraftTxs)
pool.addRemotesSync(overDraftTxs)
pool.addRemotesSync(overDraftTxs)
pool.addRemotesSync(overDraftTxs)
newPending, newQueued := count(t, pool)
newIvPending := countInvalidPending()
t.Logf("pool.all.Slots(): %d\n", pool.all.Slots())
t.Logf("pending: %d queued: %d, all: %d\n", newPending, newQueued, pool.all.Slots())
t.Logf("invalid pending: %d\n", newIvPending)
// Pending should not have been touched
if newIvPending != ivPending {
t.Errorf("Wrong invalid pending-count, have %d, want %d (GlobalSlots: %d, queued: %d)",
newIvPending, ivPending, pool.config.GlobalSlots, newQueued)
}
}
func BenchmarkFutureAttack(b *testing.B) {
// Create the pool to test the limit enforcement with
statedb, _ := state.New(types.EmptyRootHash, state.NewDatabaseForTesting())
blockchain := newTestBlockChain(eip1559Config, 1000000, statedb, new(event.Feed))
config := testTxPoolConfig
config.GlobalQueue = 100
config.GlobalSlots = 100
pool := New(config, blockchain)
pool.Init(testTxPoolConfig.PriceLimit, blockchain.CurrentBlock(), makeAddressReserver())
defer pool.Close()
fillPool(b, pool)
key, _ := crypto.GenerateKey()
pool.currentState.AddBalance(crypto.PubkeyToAddress(key.PublicKey), uint256.NewInt(100000000000), tracing.BalanceChangeUnspecified)
futureTxs := types.Transactions{}
for n := 0; n < b.N; n++ {
futureTxs = append(futureTxs, pricedTransaction(1000+uint64(n), 100000, big.NewInt(500), key))
}
b.ResetTimer()
for i := 0; i < 5; i++ {
pool.addRemotesSync(futureTxs)
}
}