go-ethereum/consensus/ethash/consensus_test.go
Martin Holst Swende 4d3525610e
all: remove deprecated uses of math.rand (#26710)
This PR is a (superior) alternative to https://github.com/ethereum/go-ethereum/pull/26708, it handles deprecation, primarily two specific cases. 

`rand.Seed` is typically used in two ways
- `rand.Seed(time.Now().UnixNano())` -- we seed it, just to be sure to get some random, and not always get the same thing on every run. This is not needed, with global seeding, so those are just removed. 
- `rand.Seed(1)` this is typically done to ensure we have a stable test. If we rely on this, we need to fix up the tests to use a deterministic prng-source. A few occurrences like this has been replaced with a proper custom source. 

`rand.Read` has been replaced by `crypto/rand`.`Read` in this PR.
2023-02-16 14:36:58 -05:00

189 lines
5.3 KiB
Go

// Copyright 2017 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package ethash
import (
crand "crypto/rand"
"encoding/binary"
"encoding/json"
"math/big"
"math/rand"
"os"
"path/filepath"
"testing"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/common/math"
"github.com/ethereum/go-ethereum/core/types"
"github.com/ethereum/go-ethereum/params"
)
type diffTest struct {
ParentTimestamp uint64
ParentDifficulty *big.Int
CurrentTimestamp uint64
CurrentBlocknumber *big.Int
CurrentDifficulty *big.Int
}
func (d *diffTest) UnmarshalJSON(b []byte) (err error) {
var ext struct {
ParentTimestamp string
ParentDifficulty string
CurrentTimestamp string
CurrentBlocknumber string
CurrentDifficulty string
}
if err := json.Unmarshal(b, &ext); err != nil {
return err
}
d.ParentTimestamp = math.MustParseUint64(ext.ParentTimestamp)
d.ParentDifficulty = math.MustParseBig256(ext.ParentDifficulty)
d.CurrentTimestamp = math.MustParseUint64(ext.CurrentTimestamp)
d.CurrentBlocknumber = math.MustParseBig256(ext.CurrentBlocknumber)
d.CurrentDifficulty = math.MustParseBig256(ext.CurrentDifficulty)
return nil
}
func TestCalcDifficulty(t *testing.T) {
file, err := os.Open(filepath.Join("..", "..", "tests", "testdata", "BasicTests", "difficulty.json"))
if err != nil {
t.Skip(err)
}
defer file.Close()
tests := make(map[string]diffTest)
err = json.NewDecoder(file).Decode(&tests)
if err != nil {
t.Fatal(err)
}
config := &params.ChainConfig{HomesteadBlock: big.NewInt(1150000)}
for name, test := range tests {
number := new(big.Int).Sub(test.CurrentBlocknumber, big.NewInt(1))
diff := CalcDifficulty(config, test.CurrentTimestamp, &types.Header{
Number: number,
Time: test.ParentTimestamp,
Difficulty: test.ParentDifficulty,
})
if diff.Cmp(test.CurrentDifficulty) != 0 {
t.Error(name, "failed. Expected", test.CurrentDifficulty, "and calculated", diff)
}
}
}
func randSlice(min, max uint32) []byte {
var b = make([]byte, 4)
crand.Read(b)
a := binary.LittleEndian.Uint32(b)
size := min + a%(max-min)
out := make([]byte, size)
crand.Read(out)
return out
}
func TestDifficultyCalculators(t *testing.T) {
for i := 0; i < 5000; i++ {
// 1 to 300 seconds diff
var timeDelta = uint64(1 + rand.Uint32()%3000)
diffBig := new(big.Int).SetBytes(randSlice(2, 10))
if diffBig.Cmp(params.MinimumDifficulty) < 0 {
diffBig.Set(params.MinimumDifficulty)
}
//rand.Read(difficulty)
header := &types.Header{
Difficulty: diffBig,
Number: new(big.Int).SetUint64(rand.Uint64() % 50_000_000),
Time: rand.Uint64() - timeDelta,
}
if rand.Uint32()&1 == 0 {
header.UncleHash = types.EmptyUncleHash
}
bombDelay := new(big.Int).SetUint64(rand.Uint64() % 50_000_000)
for i, pair := range []struct {
bigFn func(time uint64, parent *types.Header) *big.Int
u256Fn func(time uint64, parent *types.Header) *big.Int
}{
{FrontierDifficultyCalculator, CalcDifficultyFrontierU256},
{HomesteadDifficultyCalculator, CalcDifficultyHomesteadU256},
{DynamicDifficultyCalculator(bombDelay), MakeDifficultyCalculatorU256(bombDelay)},
} {
time := header.Time + timeDelta
want := pair.bigFn(time, header)
have := pair.u256Fn(time, header)
if want.BitLen() > 256 {
continue
}
if want.Cmp(have) != 0 {
t.Fatalf("pair %d: want %x have %x\nparent.Number: %x\np.Time: %x\nc.Time: %x\nBombdelay: %v\n", i, want, have,
header.Number, header.Time, time, bombDelay)
}
}
}
}
func BenchmarkDifficultyCalculator(b *testing.B) {
x1 := makeDifficultyCalculator(big.NewInt(1000000))
x2 := MakeDifficultyCalculatorU256(big.NewInt(1000000))
h := &types.Header{
ParentHash: common.Hash{},
UncleHash: types.EmptyUncleHash,
Difficulty: big.NewInt(0xffffff),
Number: big.NewInt(500000),
Time: 1000000,
}
b.Run("big-frontier", func(b *testing.B) {
b.ReportAllocs()
for i := 0; i < b.N; i++ {
calcDifficultyFrontier(1000014, h)
}
})
b.Run("u256-frontier", func(b *testing.B) {
b.ReportAllocs()
for i := 0; i < b.N; i++ {
CalcDifficultyFrontierU256(1000014, h)
}
})
b.Run("big-homestead", func(b *testing.B) {
b.ReportAllocs()
for i := 0; i < b.N; i++ {
calcDifficultyHomestead(1000014, h)
}
})
b.Run("u256-homestead", func(b *testing.B) {
b.ReportAllocs()
for i := 0; i < b.N; i++ {
CalcDifficultyHomesteadU256(1000014, h)
}
})
b.Run("big-generic", func(b *testing.B) {
b.ReportAllocs()
for i := 0; i < b.N; i++ {
x1(1000014, h)
}
})
b.Run("u256-generic", func(b *testing.B) {
b.ReportAllocs()
for i := 0; i < b.N; i++ {
x2(1000014, h)
}
})
}