go-ethereum/common/math/big.go
2024-10-20 15:38:31 +03:00

196 lines
5.1 KiB
Go

// Copyright 2017 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
// Package math provides integer math utilities.
package math
import (
"fmt"
"math/big"
)
// Various big integer limit values.
var (
tt256 = BigPow(2, 256)
tt256m1 = new(big.Int).Sub(tt256, big.NewInt(1))
MaxBig256 = new(big.Int).Set(tt256m1)
)
const (
// number of bits in a big.Word
wordBits = 32 << (uint64(^big.Word(0)) >> 63)
// number of bytes in a big.Word
wordBytes = wordBits / 8
)
// HexOrDecimal256 marshals big.Int as hex or decimal.
type HexOrDecimal256 big.Int
// NewHexOrDecimal256 creates a new HexOrDecimal256
func NewHexOrDecimal256(x int64) *HexOrDecimal256 {
b := big.NewInt(x)
h := HexOrDecimal256(*b)
return &h
}
// UnmarshalJSON implements json.Unmarshaler.
//
// It is similar to UnmarshalText, but allows parsing real decimals too, not just
// quoted decimal strings.
func (i *HexOrDecimal256) UnmarshalJSON(input []byte) error {
if len(input) > 1 && input[0] == '"' {
input = input[1 : len(input)-1]
}
return i.UnmarshalText(input)
}
// UnmarshalText implements encoding.TextUnmarshaler.
func (i *HexOrDecimal256) UnmarshalText(input []byte) error {
bigint, ok := ParseBig256(string(input))
if !ok {
return fmt.Errorf("invalid hex or decimal integer %q", input)
}
*i = HexOrDecimal256(*bigint)
return nil
}
// MarshalText implements encoding.TextMarshaler.
func (i *HexOrDecimal256) MarshalText() ([]byte, error) {
if i == nil {
return []byte("0x0"), nil
}
return []byte(fmt.Sprintf("%#x", (*big.Int)(i))), nil
}
// Decimal256 unmarshals big.Int as a decimal string. When unmarshalling,
// it however accepts either "0x"-prefixed (hex encoded) or non-prefixed (decimal)
type Decimal256 big.Int
// NewDecimal256 creates a new Decimal256
func NewDecimal256(x int64) *Decimal256 {
b := big.NewInt(x)
d := Decimal256(*b)
return &d
}
// UnmarshalText implements encoding.TextUnmarshaler.
func (i *Decimal256) UnmarshalText(input []byte) error {
bigint, ok := ParseBig256(string(input))
if !ok {
return fmt.Errorf("invalid hex or decimal integer %q", input)
}
*i = Decimal256(*bigint)
return nil
}
// MarshalText implements encoding.TextMarshaler.
func (i *Decimal256) MarshalText() ([]byte, error) {
return []byte(i.String()), nil
}
// String implements Stringer.
func (i *Decimal256) String() string {
if i == nil {
return "0"
}
return fmt.Sprintf("%#d", (*big.Int)(i))
}
// ParseBig256 parses s as a 256 bit integer in decimal or hexadecimal syntax.
// Leading zeros are accepted. The empty string parses as zero.
func ParseBig256(s string) (*big.Int, bool) {
if s == "" {
return new(big.Int), true
}
var bigint *big.Int
var ok bool
if len(s) >= 2 && (s[:2] == "0x" || s[:2] == "0X") {
bigint, ok = new(big.Int).SetString(s[2:], 16)
} else {
bigint, ok = new(big.Int).SetString(s, 10)
}
if ok && bigint.BitLen() > 256 {
bigint, ok = nil, false
}
return bigint, ok
}
// MustParseBig256 parses s as a 256 bit big integer and panics if the string is invalid.
func MustParseBig256(s string) *big.Int {
v, ok := ParseBig256(s)
if !ok {
panic("invalid 256 bit integer: " + s)
}
return v
}
// BigPow returns a ** b as a big integer.
func BigPow(a, b int64) *big.Int {
r := big.NewInt(a)
return r.Exp(r, big.NewInt(b), nil)
}
// BigMax returns the larger of x or y.
func BigMax(x, y *big.Int) *big.Int {
if x.Cmp(y) < 0 {
return y
}
return x
}
// BigMin returns the smaller of x or y.
func BigMin(x, y *big.Int) *big.Int {
if x.Cmp(y) > 0 {
return y
}
return x
}
// PaddedBigBytes encodes a big integer as a big-endian byte slice. The length
// of the slice is at least n bytes.
func PaddedBigBytes(bigint *big.Int, n int) []byte {
if bigint.BitLen()/8 >= n {
return bigint.Bytes()
}
ret := make([]byte, n)
ReadBits(bigint, ret)
return ret
}
// ReadBits encodes the absolute value of bigint as big-endian bytes. Callers must ensure
// that buf has enough space. If buf is too short the result will be incomplete.
func ReadBits(bigint *big.Int, buf []byte) {
i := len(buf)
for _, d := range bigint.Bits() {
for j := 0; j < wordBytes && i > 0; j++ {
i--
buf[i] = byte(d)
d >>= 8
}
}
}
// U256 encodes x as a 256 bit two's complement number. This operation is destructive.
func U256(x *big.Int) *big.Int {
return x.And(x, tt256m1)
}
// U256Bytes converts a big Int into a 256bit EVM number.
// This operation is destructive.
func U256Bytes(n *big.Int) []byte {
return PaddedBigBytes(U256(n), 32)
}