go-ethereum/core/vm/contracts.go
2024-10-20 14:41:51 +03:00

1255 lines
40 KiB
Go

// Copyright 2014 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package vm
import (
"crypto/sha256"
"encoding/binary"
"errors"
"fmt"
"maps"
gomath "math"
"math/big"
"github.com/consensys/gnark-crypto/ecc"
bls12381 "github.com/consensys/gnark-crypto/ecc/bls12-381"
"github.com/consensys/gnark-crypto/ecc/bls12-381/fp"
"github.com/consensys/gnark-crypto/ecc/bls12-381/fr"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/common/math"
"github.com/ethereum/go-ethereum/core/tracing"
"github.com/ethereum/go-ethereum/crypto"
"github.com/ethereum/go-ethereum/crypto/blake2b"
"github.com/ethereum/go-ethereum/crypto/bn256"
"github.com/ethereum/go-ethereum/crypto/kzg4844"
"github.com/ethereum/go-ethereum/params"
"golang.org/x/crypto/ripemd160"
)
// PrecompiledContract is the basic interface for native Go contracts. The implementation
// requires a deterministic gas count based on the input size of the Run method of the
// contract.
type PrecompiledContract interface {
RequiredGas(input []byte) uint64 // RequiredPrice calculates the contract gas use
Run(input []byte) ([]byte, error) // Run runs the precompiled contract
}
// PrecompiledContracts contains the precompiled contracts supported at the given fork.
type PrecompiledContracts map[common.Address]PrecompiledContract
// PrecompiledContractsHomestead contains the default set of pre-compiled Ethereum
// contracts used in the Frontier and Homestead releases.
var PrecompiledContractsHomestead = PrecompiledContracts{
common.BytesToAddress([]byte{0x1}): &ecrecover{},
common.BytesToAddress([]byte{0x2}): &sha256hash{},
common.BytesToAddress([]byte{0x3}): &ripemd160hash{},
common.BytesToAddress([]byte{0x4}): &dataCopy{},
}
// PrecompiledContractsByzantium contains the default set of pre-compiled Ethereum
// contracts used in the Byzantium release.
var PrecompiledContractsByzantium = PrecompiledContracts{
common.BytesToAddress([]byte{0x1}): &ecrecover{},
common.BytesToAddress([]byte{0x2}): &sha256hash{},
common.BytesToAddress([]byte{0x3}): &ripemd160hash{},
common.BytesToAddress([]byte{0x4}): &dataCopy{},
common.BytesToAddress([]byte{0x5}): &bigModExp{eip2565: false},
common.BytesToAddress([]byte{0x6}): &bn256AddByzantium{},
common.BytesToAddress([]byte{0x7}): &bn256ScalarMulByzantium{},
common.BytesToAddress([]byte{0x8}): &bn256PairingByzantium{},
}
// PrecompiledContractsIstanbul contains the default set of pre-compiled Ethereum
// contracts used in the Istanbul release.
var PrecompiledContractsIstanbul = PrecompiledContracts{
common.BytesToAddress([]byte{0x1}): &ecrecover{},
common.BytesToAddress([]byte{0x2}): &sha256hash{},
common.BytesToAddress([]byte{0x3}): &ripemd160hash{},
common.BytesToAddress([]byte{0x4}): &dataCopy{},
common.BytesToAddress([]byte{0x5}): &bigModExp{eip2565: false},
common.BytesToAddress([]byte{0x6}): &bn256AddIstanbul{},
common.BytesToAddress([]byte{0x7}): &bn256ScalarMulIstanbul{},
common.BytesToAddress([]byte{0x8}): &bn256PairingIstanbul{},
common.BytesToAddress([]byte{0x9}): &blake2F{},
}
// PrecompiledContractsBerlin contains the default set of pre-compiled Ethereum
// contracts used in the Berlin release.
var PrecompiledContractsBerlin = PrecompiledContracts{
common.BytesToAddress([]byte{0x1}): &ecrecover{},
common.BytesToAddress([]byte{0x2}): &sha256hash{},
common.BytesToAddress([]byte{0x3}): &ripemd160hash{},
common.BytesToAddress([]byte{0x4}): &dataCopy{},
common.BytesToAddress([]byte{0x5}): &bigModExp{eip2565: true},
common.BytesToAddress([]byte{0x6}): &bn256AddIstanbul{},
common.BytesToAddress([]byte{0x7}): &bn256ScalarMulIstanbul{},
common.BytesToAddress([]byte{0x8}): &bn256PairingIstanbul{},
common.BytesToAddress([]byte{0x9}): &blake2F{},
}
// PrecompiledContractsCancun contains the default set of pre-compiled Ethereum
// contracts used in the Cancun release.
var PrecompiledContractsCancun = PrecompiledContracts{
common.BytesToAddress([]byte{0x1}): &ecrecover{},
common.BytesToAddress([]byte{0x2}): &sha256hash{},
common.BytesToAddress([]byte{0x3}): &ripemd160hash{},
common.BytesToAddress([]byte{0x4}): &dataCopy{},
common.BytesToAddress([]byte{0x5}): &bigModExp{eip2565: true},
common.BytesToAddress([]byte{0x6}): &bn256AddIstanbul{},
common.BytesToAddress([]byte{0x7}): &bn256ScalarMulIstanbul{},
common.BytesToAddress([]byte{0x8}): &bn256PairingIstanbul{},
common.BytesToAddress([]byte{0x9}): &blake2F{},
common.BytesToAddress([]byte{0xa}): &kzgPointEvaluation{},
}
// PrecompiledContractsPrague contains the set of pre-compiled Ethereum
// contracts used in the Prague release.
var PrecompiledContractsPrague = PrecompiledContracts{
common.BytesToAddress([]byte{0x01}): &ecrecover{},
common.BytesToAddress([]byte{0x02}): &sha256hash{},
common.BytesToAddress([]byte{0x03}): &ripemd160hash{},
common.BytesToAddress([]byte{0x04}): &dataCopy{},
common.BytesToAddress([]byte{0x05}): &bigModExp{eip2565: true},
common.BytesToAddress([]byte{0x06}): &bn256AddIstanbul{},
common.BytesToAddress([]byte{0x07}): &bn256ScalarMulIstanbul{},
common.BytesToAddress([]byte{0x08}): &bn256PairingIstanbul{},
common.BytesToAddress([]byte{0x09}): &blake2F{},
common.BytesToAddress([]byte{0x0a}): &kzgPointEvaluation{},
common.BytesToAddress([]byte{0x0b}): &bls12381G1Add{},
common.BytesToAddress([]byte{0x0c}): &bls12381G1Mul{},
common.BytesToAddress([]byte{0x0d}): &bls12381G1MultiExp{},
common.BytesToAddress([]byte{0x0e}): &bls12381G2Add{},
common.BytesToAddress([]byte{0x0f}): &bls12381G2Mul{},
common.BytesToAddress([]byte{0x10}): &bls12381G2MultiExp{},
common.BytesToAddress([]byte{0x11}): &bls12381Pairing{},
common.BytesToAddress([]byte{0x12}): &bls12381MapG1{},
common.BytesToAddress([]byte{0x13}): &bls12381MapG2{},
}
var PrecompiledContractsBLS = PrecompiledContractsPrague
var PrecompiledContractsVerkle = PrecompiledContractsPrague
var (
PrecompiledAddressesPrague []common.Address
PrecompiledAddressesCancun []common.Address
PrecompiledAddressesBerlin []common.Address
PrecompiledAddressesIstanbul []common.Address
PrecompiledAddressesByzantium []common.Address
PrecompiledAddressesHomestead []common.Address
)
func init() {
for k := range PrecompiledContractsHomestead {
PrecompiledAddressesHomestead = append(PrecompiledAddressesHomestead, k)
}
for k := range PrecompiledContractsByzantium {
PrecompiledAddressesByzantium = append(PrecompiledAddressesByzantium, k)
}
for k := range PrecompiledContractsIstanbul {
PrecompiledAddressesIstanbul = append(PrecompiledAddressesIstanbul, k)
}
for k := range PrecompiledContractsBerlin {
PrecompiledAddressesBerlin = append(PrecompiledAddressesBerlin, k)
}
for k := range PrecompiledContractsCancun {
PrecompiledAddressesCancun = append(PrecompiledAddressesCancun, k)
}
for k := range PrecompiledContractsPrague {
PrecompiledAddressesPrague = append(PrecompiledAddressesPrague, k)
}
}
func activePrecompiledContracts(rules params.Rules) PrecompiledContracts {
switch {
case rules.IsVerkle:
return PrecompiledContractsVerkle
case rules.IsPrague:
return PrecompiledContractsPrague
case rules.IsCancun:
return PrecompiledContractsCancun
case rules.IsBerlin:
return PrecompiledContractsBerlin
case rules.IsIstanbul:
return PrecompiledContractsIstanbul
case rules.IsByzantium:
return PrecompiledContractsByzantium
default:
return PrecompiledContractsHomestead
}
}
// ActivePrecompiledContracts returns a copy of precompiled contracts enabled with the current configuration.
func ActivePrecompiledContracts(rules params.Rules) PrecompiledContracts {
return maps.Clone(activePrecompiledContracts(rules))
}
// ActivePrecompiles returns the precompile addresses enabled with the current configuration.
func ActivePrecompiles(rules params.Rules) []common.Address {
switch {
case rules.IsPrague:
return PrecompiledAddressesPrague
case rules.IsCancun:
return PrecompiledAddressesCancun
case rules.IsBerlin:
return PrecompiledAddressesBerlin
case rules.IsIstanbul:
return PrecompiledAddressesIstanbul
case rules.IsByzantium:
return PrecompiledAddressesByzantium
default:
return PrecompiledAddressesHomestead
}
}
// RunPrecompiledContract runs and evaluates the output of a precompiled contract.
// It returns
// - the returned bytes,
// - the _remaining_ gas,
// - any error that occurred
func RunPrecompiledContract(p PrecompiledContract, input []byte, suppliedGas uint64, logger *tracing.Hooks) (ret []byte, remainingGas uint64, err error) {
gasCost := p.RequiredGas(input)
if suppliedGas < gasCost {
return nil, 0, ErrOutOfGas
}
if logger != nil && logger.OnGasChange != nil {
logger.OnGasChange(suppliedGas, suppliedGas-gasCost, tracing.GasChangeCallPrecompiledContract)
}
suppliedGas -= gasCost
output, err := p.Run(input)
return output, suppliedGas, err
}
// ecrecover implemented as a native contract.
type ecrecover struct{}
func (c *ecrecover) RequiredGas(input []byte) uint64 {
return params.EcrecoverGas
}
func (c *ecrecover) Run(input []byte) ([]byte, error) {
const ecRecoverInputLength = 128
input = common.RightPadBytes(input, ecRecoverInputLength)
// "input" is (hash, v, r, s), each 32 bytes
// but for ecrecover we want (r, s, v)
r := new(big.Int).SetBytes(input[64:96])
s := new(big.Int).SetBytes(input[96:128])
v := input[63] - 27
// tighter sig s values input homestead only apply to tx sigs
if !allZero(input[32:63]) || !crypto.ValidateSignatureValues(v, r, s, false) {
return nil, nil
}
// We must make sure not to modify the 'input', so placing the 'v' along with
// the signature needs to be done on a new allocation
sig := make([]byte, 65)
copy(sig, input[64:128])
sig[64] = v
// v needs to be at the end for libsecp256k1
pubKey, err := crypto.Ecrecover(input[:32], sig)
// make sure the public key is a valid one
if err != nil {
return nil, nil
}
// the first byte of pubkey is bitcoin heritage
return common.LeftPadBytes(crypto.Keccak256(pubKey[1:])[12:], 32), nil
}
// SHA256 implemented as a native contract.
type sha256hash struct{}
// RequiredGas returns the gas required to execute the pre-compiled contract.
//
// This method does not require any overflow checking as the input size gas costs
// required for anything significant is so high it's impossible to pay for.
func (c *sha256hash) RequiredGas(input []byte) uint64 {
return uint64(len(input)+31)/32*params.Sha256PerWordGas + params.Sha256BaseGas
}
func (c *sha256hash) Run(input []byte) ([]byte, error) {
h := sha256.Sum256(input)
return h[:], nil
}
// RIPEMD160 implemented as a native contract.
type ripemd160hash struct{}
// RequiredGas returns the gas required to execute the pre-compiled contract.
//
// This method does not require any overflow checking as the input size gas costs
// required for anything significant is so high it's impossible to pay for.
func (c *ripemd160hash) RequiredGas(input []byte) uint64 {
return uint64(len(input)+31)/32*params.Ripemd160PerWordGas + params.Ripemd160BaseGas
}
func (c *ripemd160hash) Run(input []byte) ([]byte, error) {
ripemd := ripemd160.New()
ripemd.Write(input)
return common.LeftPadBytes(ripemd.Sum(nil), 32), nil
}
// data copy implemented as a native contract.
type dataCopy struct{}
// RequiredGas returns the gas required to execute the pre-compiled contract.
//
// This method does not require any overflow checking as the input size gas costs
// required for anything significant is so high it's impossible to pay for.
func (c *dataCopy) RequiredGas(input []byte) uint64 {
return uint64(len(input)+31)/32*params.IdentityPerWordGas + params.IdentityBaseGas
}
func (c *dataCopy) Run(in []byte) ([]byte, error) {
return common.CopyBytes(in), nil
}
// bigModExp implements a native big integer exponential modular operation.
type bigModExp struct {
eip2565 bool
}
var (
big1 = big.NewInt(1)
big3 = big.NewInt(3)
big7 = big.NewInt(7)
big20 = big.NewInt(20)
big32 = big.NewInt(32)
big64 = big.NewInt(64)
big96 = big.NewInt(96)
big480 = big.NewInt(480)
big1024 = big.NewInt(1024)
big3072 = big.NewInt(3072)
big199680 = big.NewInt(199680)
)
// modexpMultComplexity implements bigModexp multComplexity formula, as defined in EIP-198
//
// def mult_complexity(x):
// if x <= 64: return x ** 2
// elif x <= 1024: return x ** 2 // 4 + 96 * x - 3072
// else: return x ** 2 // 16 + 480 * x - 199680
//
// where is x is max(length_of_MODULUS, length_of_BASE)
func modexpMultComplexity(x *big.Int) *big.Int {
switch {
case x.Cmp(big64) <= 0:
x.Mul(x, x) // x ** 2
case x.Cmp(big1024) <= 0:
// (x ** 2 // 4 ) + ( 96 * x - 3072)
x = new(big.Int).Add(
new(big.Int).Rsh(new(big.Int).Mul(x, x), 2),
new(big.Int).Sub(new(big.Int).Mul(big96, x), big3072),
)
default:
// (x ** 2 // 16) + (480 * x - 199680)
x = new(big.Int).Add(
new(big.Int).Rsh(new(big.Int).Mul(x, x), 4),
new(big.Int).Sub(new(big.Int).Mul(big480, x), big199680),
)
}
return x
}
// RequiredGas returns the gas required to execute the pre-compiled contract.
func (c *bigModExp) RequiredGas(input []byte) uint64 {
var (
baseLen = new(big.Int).SetBytes(getData(input, 0, 32))
expLen = new(big.Int).SetBytes(getData(input, 32, 32))
modLen = new(big.Int).SetBytes(getData(input, 64, 32))
)
if len(input) > 96 {
input = input[96:]
} else {
input = input[:0]
}
// Retrieve the head 32 bytes of exp for the adjusted exponent length
var expHead *big.Int
if big.NewInt(int64(len(input))).Cmp(baseLen) <= 0 {
expHead = new(big.Int)
} else {
if expLen.Cmp(big32) > 0 {
expHead = new(big.Int).SetBytes(getData(input, baseLen.Uint64(), 32))
} else {
expHead = new(big.Int).SetBytes(getData(input, baseLen.Uint64(), expLen.Uint64()))
}
}
// Calculate the adjusted exponent length
var msb int
if bitlen := expHead.BitLen(); bitlen > 0 {
msb = bitlen - 1
}
adjExpLen := new(big.Int)
if expLen.Cmp(big32) > 0 {
adjExpLen.Sub(expLen, big32)
adjExpLen.Lsh(adjExpLen, 3)
}
adjExpLen.Add(adjExpLen, big.NewInt(int64(msb)))
// Calculate the gas cost of the operation
gas := new(big.Int).Set(math.BigMax(modLen, baseLen))
if c.eip2565 {
// EIP-2565 has three changes
// 1. Different multComplexity (inlined here)
// in EIP-2565 (https://eips.ethereum.org/EIPS/eip-2565):
//
// def mult_complexity(x):
// ceiling(x/8)^2
//
//where is x is max(length_of_MODULUS, length_of_BASE)
gas.Add(gas, big7)
gas.Rsh(gas, 3)
gas.Mul(gas, gas)
gas.Mul(gas, math.BigMax(adjExpLen, big1))
// 2. Different divisor (`GQUADDIVISOR`) (3)
gas.Div(gas, big3)
if gas.BitLen() > 64 {
return gomath.MaxUint64
}
// 3. Minimum price of 200 gas
if gas.Uint64() < 200 {
return 200
}
return gas.Uint64()
}
gas = modexpMultComplexity(gas)
gas.Mul(gas, math.BigMax(adjExpLen, big1))
gas.Div(gas, big20)
if gas.BitLen() > 64 {
return gomath.MaxUint64
}
return gas.Uint64()
}
func (c *bigModExp) Run(input []byte) ([]byte, error) {
var (
baseLen = new(big.Int).SetBytes(getData(input, 0, 32)).Uint64()
expLen = new(big.Int).SetBytes(getData(input, 32, 32)).Uint64()
modLen = new(big.Int).SetBytes(getData(input, 64, 32)).Uint64()
)
if len(input) > 96 {
input = input[96:]
} else {
input = input[:0]
}
// Handle a special case when both the base and mod length is zero
if baseLen == 0 && modLen == 0 {
return []byte{}, nil
}
// Retrieve the operands and execute the exponentiation
var (
base = new(big.Int).SetBytes(getData(input, 0, baseLen))
exp = new(big.Int).SetBytes(getData(input, baseLen, expLen))
mod = new(big.Int).SetBytes(getData(input, baseLen+expLen, modLen))
v []byte
)
switch {
case mod.BitLen() == 0:
// Modulo 0 is undefined, return zero
return common.LeftPadBytes([]byte{}, int(modLen)), nil
case base.BitLen() == 1: // a bit length of 1 means it's 1 (or -1).
//If base == 1, then we can just return base % mod (if mod >= 1, which it is)
v = base.Mod(base, mod).Bytes()
default:
v = base.Exp(base, exp, mod).Bytes()
}
return common.LeftPadBytes(v, int(modLen)), nil
}
// newCurvePoint unmarshals a binary blob into a bn256 elliptic curve point,
// returning it, or an error if the point is invalid.
func newCurvePoint(blob []byte) (*bn256.G1, error) {
p := new(bn256.G1)
if _, err := p.Unmarshal(blob); err != nil {
return nil, err
}
return p, nil
}
// newTwistPoint unmarshals a binary blob into a bn256 elliptic curve point,
// returning it, or an error if the point is invalid.
func newTwistPoint(blob []byte) (*bn256.G2, error) {
p := new(bn256.G2)
if _, err := p.Unmarshal(blob); err != nil {
return nil, err
}
return p, nil
}
// runBn256Add implements the Bn256Add precompile, referenced by both
// Byzantium and Istanbul operations.
func runBn256Add(input []byte) ([]byte, error) {
x, err := newCurvePoint(getData(input, 0, 64))
if err != nil {
return nil, err
}
y, err := newCurvePoint(getData(input, 64, 64))
if err != nil {
return nil, err
}
res := new(bn256.G1)
res.Add(x, y)
return res.Marshal(), nil
}
// bn256AddIstanbul implements a native elliptic curve point addition conforming to
// Istanbul consensus rules.
type bn256AddIstanbul struct{}
// RequiredGas returns the gas required to execute the pre-compiled contract.
func (c *bn256AddIstanbul) RequiredGas(input []byte) uint64 {
return params.Bn256AddGasIstanbul
}
func (c *bn256AddIstanbul) Run(input []byte) ([]byte, error) {
return runBn256Add(input)
}
// bn256AddByzantium implements a native elliptic curve point addition
// conforming to Byzantium consensus rules.
type bn256AddByzantium struct{}
// RequiredGas returns the gas required to execute the pre-compiled contract.
func (c *bn256AddByzantium) RequiredGas(input []byte) uint64 {
return params.Bn256AddGasByzantium
}
func (c *bn256AddByzantium) Run(input []byte) ([]byte, error) {
return runBn256Add(input)
}
// runBn256ScalarMul implements the Bn256ScalarMul precompile, referenced by
// both Byzantium and Istanbul operations.
func runBn256ScalarMul(input []byte) ([]byte, error) {
p, err := newCurvePoint(getData(input, 0, 64))
if err != nil {
return nil, err
}
res := new(bn256.G1)
res.ScalarMult(p, new(big.Int).SetBytes(getData(input, 64, 32)))
return res.Marshal(), nil
}
// bn256ScalarMulIstanbul implements a native elliptic curve scalar
// multiplication conforming to Istanbul consensus rules.
type bn256ScalarMulIstanbul struct{}
// RequiredGas returns the gas required to execute the pre-compiled contract.
func (c *bn256ScalarMulIstanbul) RequiredGas(input []byte) uint64 {
return params.Bn256ScalarMulGasIstanbul
}
func (c *bn256ScalarMulIstanbul) Run(input []byte) ([]byte, error) {
return runBn256ScalarMul(input)
}
// bn256ScalarMulByzantium implements a native elliptic curve scalar
// multiplication conforming to Byzantium consensus rules.
type bn256ScalarMulByzantium struct{}
// RequiredGas returns the gas required to execute the pre-compiled contract.
func (c *bn256ScalarMulByzantium) RequiredGas(input []byte) uint64 {
return params.Bn256ScalarMulGasByzantium
}
func (c *bn256ScalarMulByzantium) Run(input []byte) ([]byte, error) {
return runBn256ScalarMul(input)
}
var (
// true32Byte is returned if the bn256 pairing check succeeds.
true32Byte = []byte{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1}
// false32Byte is returned if the bn256 pairing check fails.
false32Byte = make([]byte, 32)
// errBadPairingInput is returned if the bn256 pairing input is invalid.
errBadPairingInput = errors.New("bad elliptic curve pairing size")
)
// runBn256Pairing implements the Bn256Pairing precompile, referenced by both
// Byzantium and Istanbul operations.
func runBn256Pairing(input []byte) ([]byte, error) {
// Handle some corner cases cheaply
if len(input)%192 > 0 {
return nil, errBadPairingInput
}
// Convert the input into a set of coordinates
var (
cs []*bn256.G1
ts []*bn256.G2
)
for i := 0; i < len(input); i += 192 {
c, err := newCurvePoint(input[i : i+64])
if err != nil {
return nil, err
}
t, err := newTwistPoint(input[i+64 : i+192])
if err != nil {
return nil, err
}
cs = append(cs, c)
ts = append(ts, t)
}
// Execute the pairing checks and return the results
if bn256.PairingCheck(cs, ts) {
return true32Byte, nil
}
return false32Byte, nil
}
// bn256PairingIstanbul implements a pairing pre-compile for the bn256 curve
// conforming to Istanbul consensus rules.
type bn256PairingIstanbul struct{}
// RequiredGas returns the gas required to execute the pre-compiled contract.
func (c *bn256PairingIstanbul) RequiredGas(input []byte) uint64 {
return params.Bn256PairingBaseGasIstanbul + uint64(len(input)/192)*params.Bn256PairingPerPointGasIstanbul
}
func (c *bn256PairingIstanbul) Run(input []byte) ([]byte, error) {
return runBn256Pairing(input)
}
// bn256PairingByzantium implements a pairing pre-compile for the bn256 curve
// conforming to Byzantium consensus rules.
type bn256PairingByzantium struct{}
// RequiredGas returns the gas required to execute the pre-compiled contract.
func (c *bn256PairingByzantium) RequiredGas(input []byte) uint64 {
return params.Bn256PairingBaseGasByzantium + uint64(len(input)/192)*params.Bn256PairingPerPointGasByzantium
}
func (c *bn256PairingByzantium) Run(input []byte) ([]byte, error) {
return runBn256Pairing(input)
}
type blake2F struct{}
func (c *blake2F) RequiredGas(input []byte) uint64 {
// If the input is malformed, we can't calculate the gas, return 0 and let the
// actual call choke and fault.
if len(input) != blake2FInputLength {
return 0
}
return uint64(binary.BigEndian.Uint32(input[0:4]))
}
const (
blake2FInputLength = 213
blake2FFinalBlockBytes = byte(1)
blake2FNonFinalBlockBytes = byte(0)
)
var (
errBlake2FInvalidInputLength = errors.New("invalid input length")
errBlake2FInvalidFinalFlag = errors.New("invalid final flag")
)
func (c *blake2F) Run(input []byte) ([]byte, error) {
// Make sure the input is valid (correct length and final flag)
if len(input) != blake2FInputLength {
return nil, errBlake2FInvalidInputLength
}
if input[212] != blake2FNonFinalBlockBytes && input[212] != blake2FFinalBlockBytes {
return nil, errBlake2FInvalidFinalFlag
}
// Parse the input into the Blake2b call parameters
var (
rounds = binary.BigEndian.Uint32(input[0:4])
final = input[212] == blake2FFinalBlockBytes
h [8]uint64
m [16]uint64
t [2]uint64
)
for i := 0; i < 8; i++ {
offset := 4 + i*8
h[i] = binary.LittleEndian.Uint64(input[offset : offset+8])
}
for i := 0; i < 16; i++ {
offset := 68 + i*8
m[i] = binary.LittleEndian.Uint64(input[offset : offset+8])
}
t[0] = binary.LittleEndian.Uint64(input[196:204])
t[1] = binary.LittleEndian.Uint64(input[204:212])
// Execute the compression function, extract and return the result
blake2b.F(&h, m, t, final, rounds)
output := make([]byte, 64)
for i := 0; i < 8; i++ {
offset := i * 8
binary.LittleEndian.PutUint64(output[offset:offset+8], h[i])
}
return output, nil
}
var (
errBLS12381InvalidInputLength = errors.New("invalid input length")
errBLS12381InvalidFieldElementTopBytes = errors.New("invalid field element top bytes")
errBLS12381G1PointSubgroup = errors.New("g1 point is not on correct subgroup")
errBLS12381G2PointSubgroup = errors.New("g2 point is not on correct subgroup")
)
// bls12381G1Add implements EIP-2537 G1Add precompile.
type bls12381G1Add struct{}
// RequiredGas returns the gas required to execute the pre-compiled contract.
func (c *bls12381G1Add) RequiredGas(input []byte) uint64 {
return params.Bls12381G1AddGas
}
func (c *bls12381G1Add) Run(input []byte) ([]byte, error) {
// Implements EIP-2537 G1Add precompile.
// > G1 addition call expects `256` bytes as an input that is interpreted as byte concatenation of two G1 points (`128` bytes each).
// > Output is an encoding of addition operation result - single G1 point (`128` bytes).
if len(input) != 256 {
return nil, errBLS12381InvalidInputLength
}
var err error
var p0, p1 *bls12381.G1Affine
// Decode G1 point p_0
if p0, err = decodePointG1(input[:128]); err != nil {
return nil, err
}
// Decode G1 point p_1
if p1, err = decodePointG1(input[128:]); err != nil {
return nil, err
}
// No need to check the subgroup here, as specified by EIP-2537
// Compute r = p_0 + p_1
p0.Add(p0, p1)
// Encode the G1 point result into 128 bytes
return encodePointG1(p0), nil
}
// bls12381G1Mul implements EIP-2537 G1Mul precompile.
type bls12381G1Mul struct{}
// RequiredGas returns the gas required to execute the pre-compiled contract.
func (c *bls12381G1Mul) RequiredGas(input []byte) uint64 {
return params.Bls12381G1MulGas
}
func (c *bls12381G1Mul) Run(input []byte) ([]byte, error) {
// Implements EIP-2537 G1Mul precompile.
// > G1 multiplication call expects `160` bytes as an input that is interpreted as byte concatenation of encoding of G1 point (`128` bytes) and encoding of a scalar value (`32` bytes).
// > Output is an encoding of multiplication operation result - single G1 point (`128` bytes).
if len(input) != 160 {
return nil, errBLS12381InvalidInputLength
}
var err error
var p0 *bls12381.G1Affine
// Decode G1 point
if p0, err = decodePointG1(input[:128]); err != nil {
return nil, err
}
// 'point is on curve' check already done,
// Here we need to apply subgroup checks.
if !p0.IsInSubGroup() {
return nil, errBLS12381G1PointSubgroup
}
// Decode scalar value
e := new(big.Int).SetBytes(input[128:])
// Compute r = e * p_0
r := new(bls12381.G1Affine)
r.ScalarMultiplication(p0, e)
// Encode the G1 point into 128 bytes
return encodePointG1(r), nil
}
// bls12381G1MultiExp implements EIP-2537 G1MultiExp precompile.
type bls12381G1MultiExp struct{}
// RequiredGas returns the gas required to execute the pre-compiled contract.
func (c *bls12381G1MultiExp) RequiredGas(input []byte) uint64 {
// Calculate G1 point, scalar value pair length
k := len(input) / 160
if k == 0 {
// Return 0 gas for small input length
return 0
}
// Lookup discount value for G1 point, scalar value pair length
var discount uint64
if dLen := len(params.Bls12381MultiExpDiscountTable); k < dLen {
discount = params.Bls12381MultiExpDiscountTable[k-1]
} else {
discount = params.Bls12381MultiExpDiscountTable[dLen-1]
}
// Calculate gas and return the result
return (uint64(k) * params.Bls12381G1MulGas * discount) / 1000
}
func (c *bls12381G1MultiExp) Run(input []byte) ([]byte, error) {
// Implements EIP-2537 G1MultiExp precompile.
// G1 multiplication call expects `160*k` bytes as an input that is interpreted as byte concatenation of `k` slices each of them being a byte concatenation of encoding of G1 point (`128` bytes) and encoding of a scalar value (`32` bytes).
// Output is an encoding of multiexponentiation operation result - single G1 point (`128` bytes).
k := len(input) / 160
if len(input) == 0 || len(input)%160 != 0 {
return nil, errBLS12381InvalidInputLength
}
points := make([]bls12381.G1Affine, k)
scalars := make([]fr.Element, k)
// Decode point scalar pairs
for i := 0; i < k; i++ {
off := 160 * i
t0, t1, t2 := off, off+128, off+160
// Decode G1 point
p, err := decodePointG1(input[t0:t1])
if err != nil {
return nil, err
}
// 'point is on curve' check already done,
// Here we need to apply subgroup checks.
if !p.IsInSubGroup() {
return nil, errBLS12381G1PointSubgroup
}
points[i] = *p
// Decode scalar value
scalars[i] = *new(fr.Element).SetBytes(input[t1:t2])
}
// Compute r = e_0 * p_0 + e_1 * p_1 + ... + e_(k-1) * p_(k-1)
r := new(bls12381.G1Affine)
r.MultiExp(points, scalars, ecc.MultiExpConfig{})
// Encode the G1 point to 128 bytes
return encodePointG1(r), nil
}
// bls12381G2Add implements EIP-2537 G2Add precompile.
type bls12381G2Add struct{}
// RequiredGas returns the gas required to execute the pre-compiled contract.
func (c *bls12381G2Add) RequiredGas(input []byte) uint64 {
return params.Bls12381G2AddGas
}
func (c *bls12381G2Add) Run(input []byte) ([]byte, error) {
// Implements EIP-2537 G2Add precompile.
// > G2 addition call expects `512` bytes as an input that is interpreted as byte concatenation of two G2 points (`256` bytes each).
// > Output is an encoding of addition operation result - single G2 point (`256` bytes).
if len(input) != 512 {
return nil, errBLS12381InvalidInputLength
}
var err error
var p0, p1 *bls12381.G2Affine
// Decode G2 point p_0
if p0, err = decodePointG2(input[:256]); err != nil {
return nil, err
}
// Decode G2 point p_1
if p1, err = decodePointG2(input[256:]); err != nil {
return nil, err
}
// No need to check the subgroup here, as specified by EIP-2537
// Compute r = p_0 + p_1
r := new(bls12381.G2Affine)
r.Add(p0, p1)
// Encode the G2 point into 256 bytes
return encodePointG2(r), nil
}
// bls12381G2Mul implements EIP-2537 G2Mul precompile.
type bls12381G2Mul struct{}
// RequiredGas returns the gas required to execute the pre-compiled contract.
func (c *bls12381G2Mul) RequiredGas(input []byte) uint64 {
return params.Bls12381G2MulGas
}
func (c *bls12381G2Mul) Run(input []byte) ([]byte, error) {
// Implements EIP-2537 G2MUL precompile logic.
// > G2 multiplication call expects `288` bytes as an input that is interpreted as byte concatenation of encoding of G2 point (`256` bytes) and encoding of a scalar value (`32` bytes).
// > Output is an encoding of multiplication operation result - single G2 point (`256` bytes).
if len(input) != 288 {
return nil, errBLS12381InvalidInputLength
}
var err error
var p0 *bls12381.G2Affine
// Decode G2 point
if p0, err = decodePointG2(input[:256]); err != nil {
return nil, err
}
// 'point is on curve' check already done,
// Here we need to apply subgroup checks.
if !p0.IsInSubGroup() {
return nil, errBLS12381G2PointSubgroup
}
// Decode scalar value
e := new(big.Int).SetBytes(input[256:])
// Compute r = e * p_0
r := new(bls12381.G2Affine)
r.ScalarMultiplication(p0, e)
// Encode the G2 point into 256 bytes
return encodePointG2(r), nil
}
// bls12381G2MultiExp implements EIP-2537 G2MultiExp precompile.
type bls12381G2MultiExp struct{}
// RequiredGas returns the gas required to execute the pre-compiled contract.
func (c *bls12381G2MultiExp) RequiredGas(input []byte) uint64 {
// Calculate G2 point, scalar value pair length
k := len(input) / 288
if k == 0 {
// Return 0 gas for small input length
return 0
}
// Lookup discount value for G2 point, scalar value pair length
var discount uint64
if dLen := len(params.Bls12381MultiExpDiscountTable); k < dLen {
discount = params.Bls12381MultiExpDiscountTable[k-1]
} else {
discount = params.Bls12381MultiExpDiscountTable[dLen-1]
}
// Calculate gas and return the result
return (uint64(k) * params.Bls12381G2MulGas * discount) / 1000
}
func (c *bls12381G2MultiExp) Run(input []byte) ([]byte, error) {
// Implements EIP-2537 G2MultiExp precompile logic
// > G2 multiplication call expects `288*k` bytes as an input that is interpreted as byte concatenation of `k` slices each of them being a byte concatenation of encoding of G2 point (`256` bytes) and encoding of a scalar value (`32` bytes).
// > Output is an encoding of multiexponentiation operation result - single G2 point (`256` bytes).
k := len(input) / 288
if len(input) == 0 || len(input)%288 != 0 {
return nil, errBLS12381InvalidInputLength
}
points := make([]bls12381.G2Affine, k)
scalars := make([]fr.Element, k)
// Decode point scalar pairs
for i := 0; i < k; i++ {
off := 288 * i
t0, t1, t2 := off, off+256, off+288
// Decode G2 point
p, err := decodePointG2(input[t0:t1])
if err != nil {
return nil, err
}
// 'point is on curve' check already done,
// Here we need to apply subgroup checks.
if !p.IsInSubGroup() {
return nil, errBLS12381G2PointSubgroup
}
points[i] = *p
// Decode scalar value
scalars[i] = *new(fr.Element).SetBytes(input[t1:t2])
}
// Compute r = e_0 * p_0 + e_1 * p_1 + ... + e_(k-1) * p_(k-1)
r := new(bls12381.G2Affine)
r.MultiExp(points, scalars, ecc.MultiExpConfig{})
// Encode the G2 point to 256 bytes.
return encodePointG2(r), nil
}
// bls12381Pairing implements EIP-2537 Pairing precompile.
type bls12381Pairing struct{}
// RequiredGas returns the gas required to execute the pre-compiled contract.
func (c *bls12381Pairing) RequiredGas(input []byte) uint64 {
return params.Bls12381PairingBaseGas + uint64(len(input)/384)*params.Bls12381PairingPerPairGas
}
func (c *bls12381Pairing) Run(input []byte) ([]byte, error) {
// Implements EIP-2537 Pairing precompile logic.
// > Pairing call expects `384*k` bytes as an inputs that is interpreted as byte concatenation of `k` slices. Each slice has the following structure:
// > - `128` bytes of G1 point encoding
// > - `256` bytes of G2 point encoding
// > Output is a `32` bytes where last single byte is `0x01` if pairing result is equal to multiplicative identity in a pairing target field and `0x00` otherwise
// > (which is equivalent of Big Endian encoding of Solidity values `uint256(1)` and `uin256(0)` respectively).
k := len(input) / 384
if len(input) == 0 || len(input)%384 != 0 {
return nil, errBLS12381InvalidInputLength
}
var (
p []bls12381.G1Affine
q []bls12381.G2Affine
)
// Decode pairs
for i := 0; i < k; i++ {
off := 384 * i
t0, t1, t2 := off, off+128, off+384
// Decode G1 point
p1, err := decodePointG1(input[t0:t1])
if err != nil {
return nil, err
}
// Decode G2 point
p2, err := decodePointG2(input[t1:t2])
if err != nil {
return nil, err
}
// 'point is on curve' check already done,
// Here we need to apply subgroup checks.
if !p1.IsInSubGroup() {
return nil, errBLS12381G1PointSubgroup
}
if !p2.IsInSubGroup() {
return nil, errBLS12381G2PointSubgroup
}
p = append(p, *p1)
q = append(q, *p2)
}
// Prepare 32 byte output
out := make([]byte, 32)
// Compute pairing and set the result
ok, err := bls12381.PairingCheck(p, q)
if err == nil && ok {
out[31] = 1
}
return out, nil
}
func decodePointG1(in []byte) (*bls12381.G1Affine, error) {
if len(in) != 128 {
return nil, errors.New("invalid g1 point length")
}
// decode x
x, err := decodeBLS12381FieldElement(in[:64])
if err != nil {
return nil, err
}
// decode y
y, err := decodeBLS12381FieldElement(in[64:])
if err != nil {
return nil, err
}
elem := bls12381.G1Affine{X: x, Y: y}
if !elem.IsOnCurve() {
return nil, errors.New("invalid point: not on curve")
}
return &elem, nil
}
// decodePointG2 given encoded (x, y) coordinates in 256 bytes returns a valid G2 Point.
func decodePointG2(in []byte) (*bls12381.G2Affine, error) {
if len(in) != 256 {
return nil, errors.New("invalid g2 point length")
}
x0, err := decodeBLS12381FieldElement(in[:64])
if err != nil {
return nil, err
}
x1, err := decodeBLS12381FieldElement(in[64:128])
if err != nil {
return nil, err
}
y0, err := decodeBLS12381FieldElement(in[128:192])
if err != nil {
return nil, err
}
y1, err := decodeBLS12381FieldElement(in[192:])
if err != nil {
return nil, err
}
p := bls12381.G2Affine{X: bls12381.E2{A0: x0, A1: x1}, Y: bls12381.E2{A0: y0, A1: y1}}
if !p.IsOnCurve() {
return nil, errors.New("invalid point: not on curve")
}
return &p, err
}
// decodeBLS12381FieldElement decodes BLS12-381 elliptic curve field element.
// Removes top 16 bytes of 64 byte input.
func decodeBLS12381FieldElement(in []byte) (fp.Element, error) {
if len(in) != 64 {
return fp.Element{}, errors.New("invalid field element length")
}
// check top bytes
for i := 0; i < 16; i++ {
if in[i] != byte(0x00) {
return fp.Element{}, errBLS12381InvalidFieldElementTopBytes
}
}
var res [48]byte
copy(res[:], in[16:])
return fp.BigEndian.Element(&res)
}
// encodePointG1 encodes a point into 128 bytes.
func encodePointG1(p *bls12381.G1Affine) []byte {
out := make([]byte, 128)
fp.BigEndian.PutElement((*[fp.Bytes]byte)(out[16:]), p.X)
fp.BigEndian.PutElement((*[fp.Bytes]byte)(out[64+16:]), p.Y)
return out
}
// encodePointG2 encodes a point into 256 bytes.
func encodePointG2(p *bls12381.G2Affine) []byte {
out := make([]byte, 256)
// encode x
fp.BigEndian.PutElement((*[fp.Bytes]byte)(out[16:16+48]), p.X.A0)
fp.BigEndian.PutElement((*[fp.Bytes]byte)(out[80:80+48]), p.X.A1)
// encode y
fp.BigEndian.PutElement((*[fp.Bytes]byte)(out[144:144+48]), p.Y.A0)
fp.BigEndian.PutElement((*[fp.Bytes]byte)(out[208:208+48]), p.Y.A1)
return out
}
// bls12381MapG1 implements EIP-2537 MapG1 precompile.
type bls12381MapG1 struct{}
// RequiredGas returns the gas required to execute the pre-compiled contract.
func (c *bls12381MapG1) RequiredGas(input []byte) uint64 {
return params.Bls12381MapG1Gas
}
func (c *bls12381MapG1) Run(input []byte) ([]byte, error) {
// Implements EIP-2537 Map_To_G1 precompile.
// > Field-to-curve call expects an `64` bytes input that is interpreted as an element of the base field.
// > Output of this call is `128` bytes and is G1 point following respective encoding rules.
if len(input) != 64 {
return nil, errBLS12381InvalidInputLength
}
// Decode input field element
fe, err := decodeBLS12381FieldElement(input)
if err != nil {
return nil, err
}
// Compute mapping
r := bls12381.MapToG1(fe)
// Encode the G1 point to 128 bytes
return encodePointG1(&r), nil
}
// bls12381MapG2 implements EIP-2537 MapG2 precompile.
type bls12381MapG2 struct{}
// RequiredGas returns the gas required to execute the pre-compiled contract.
func (c *bls12381MapG2) RequiredGas(input []byte) uint64 {
return params.Bls12381MapG2Gas
}
func (c *bls12381MapG2) Run(input []byte) ([]byte, error) {
// Implements EIP-2537 Map_FP2_TO_G2 precompile logic.
// > Field-to-curve call expects an `128` bytes input that is interpreted as an element of the quadratic extension field.
// > Output of this call is `256` bytes and is G2 point following respective encoding rules.
if len(input) != 128 {
return nil, errBLS12381InvalidInputLength
}
// Decode input field element
c0, err := decodeBLS12381FieldElement(input[:64])
if err != nil {
return nil, err
}
c1, err := decodeBLS12381FieldElement(input[64:])
if err != nil {
return nil, err
}
// Compute mapping
r := bls12381.MapToG2(bls12381.E2{A0: c0, A1: c1})
// Encode the G2 point to 256 bytes
return encodePointG2(&r), nil
}
// kzgPointEvaluation implements the EIP-4844 point evaluation precompile.
type kzgPointEvaluation struct{}
// RequiredGas estimates the gas required for running the point evaluation precompile.
func (b *kzgPointEvaluation) RequiredGas(input []byte) uint64 {
return params.BlobTxPointEvaluationPrecompileGas
}
const (
blobVerifyInputLength = 192 // Max input length for the point evaluation precompile.
blobCommitmentVersionKZG uint8 = 0x01 // Version byte for the point evaluation precompile.
blobPrecompileReturnValue = "000000000000000000000000000000000000000000000000000000000000100073eda753299d7d483339d80809a1d80553bda402fffe5bfeffffffff00000001"
)
var (
errBlobVerifyInvalidInputLength = errors.New("invalid input length")
errBlobVerifyMismatchedVersion = errors.New("mismatched versioned hash")
errBlobVerifyKZGProof = errors.New("error verifying kzg proof")
)
// Run executes the point evaluation precompile.
func (b *kzgPointEvaluation) Run(input []byte) ([]byte, error) {
if len(input) != blobVerifyInputLength {
return nil, errBlobVerifyInvalidInputLength
}
// versioned hash: first 32 bytes
var versionedHash common.Hash
copy(versionedHash[:], input[:])
var (
point kzg4844.Point
claim kzg4844.Claim
)
// Evaluation point: next 32 bytes
copy(point[:], input[32:])
// Expected output: next 32 bytes
copy(claim[:], input[64:])
// input kzg point: next 48 bytes
var commitment kzg4844.Commitment
copy(commitment[:], input[96:])
if kZGToVersionedHash(commitment) != versionedHash {
return nil, errBlobVerifyMismatchedVersion
}
// Proof: next 48 bytes
var proof kzg4844.Proof
copy(proof[:], input[144:])
if err := kzg4844.VerifyProof(commitment, point, claim, proof); err != nil {
return nil, fmt.Errorf("%w: %v", errBlobVerifyKZGProof, err)
}
return common.Hex2Bytes(blobPrecompileReturnValue), nil
}
// kZGToVersionedHash implements kzg_to_versioned_hash from EIP-4844
func kZGToVersionedHash(kzg kzg4844.Commitment) common.Hash {
h := sha256.Sum256(kzg[:])
h[0] = blobCommitmentVersionKZG
return h
}