go-ethereum/common/prque/lazyqueue.go
Felföldi Zsolt 4996fce25a
les, les/lespay/server: refactor client pool (#21236)
* les, les/lespay/server: refactor client pool

* les: use ns.Operation and sub calls where needed

* les: fixed tests

* les: removed active/inactive logic from peerSet

* les: removed active/inactive peer logic

* les: fixed linter warnings

* les: fixed more linter errors and added missing metrics

* les: addressed comments

* cmd/geth: fixed TestPriorityClient

* les: simplified clientPool state machine

* les/lespay/server: do not use goroutine for balance callbacks

* internal/web3ext: fix addBalance required parameters

* les: removed freeCapacity, always connect at minCapacity initially

* les: only allow capacity change with priority status

Co-authored-by: rjl493456442 <garyrong0905@gmail.com>
2020-09-14 22:44:20 +02:00

198 lines
6.3 KiB
Go

// Copyright 2019 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package prque
import (
"container/heap"
"time"
"github.com/ethereum/go-ethereum/common/mclock"
)
// LazyQueue is a priority queue data structure where priorities can change over
// time and are only evaluated on demand.
// Two callbacks are required:
// - priority evaluates the actual priority of an item
// - maxPriority gives an upper estimate for the priority in any moment between
// now and the given absolute time
// If the upper estimate is exceeded then Update should be called for that item.
// A global Refresh function should also be called periodically.
type LazyQueue struct {
clock mclock.Clock
// Items are stored in one of two internal queues ordered by estimated max
// priority until the next and the next-after-next refresh. Update and Refresh
// always places items in queue[1].
queue [2]*sstack
popQueue *sstack
period time.Duration
maxUntil mclock.AbsTime
indexOffset int
setIndex SetIndexCallback
priority PriorityCallback
maxPriority MaxPriorityCallback
lastRefresh1, lastRefresh2 mclock.AbsTime
}
type (
PriorityCallback func(data interface{}, now mclock.AbsTime) int64 // actual priority callback
MaxPriorityCallback func(data interface{}, until mclock.AbsTime) int64 // estimated maximum priority callback
)
// NewLazyQueue creates a new lazy queue
func NewLazyQueue(setIndex SetIndexCallback, priority PriorityCallback, maxPriority MaxPriorityCallback, clock mclock.Clock, refreshPeriod time.Duration) *LazyQueue {
q := &LazyQueue{
popQueue: newSstack(nil),
setIndex: setIndex,
priority: priority,
maxPriority: maxPriority,
clock: clock,
period: refreshPeriod,
lastRefresh1: clock.Now(),
lastRefresh2: clock.Now(),
}
q.Reset()
q.refresh(clock.Now())
return q
}
// Reset clears the contents of the queue
func (q *LazyQueue) Reset() {
q.queue[0] = newSstack(q.setIndex0)
q.queue[1] = newSstack(q.setIndex1)
}
// Refresh performs queue re-evaluation if necessary
func (q *LazyQueue) Refresh() {
now := q.clock.Now()
for time.Duration(now-q.lastRefresh2) >= q.period*2 {
q.refresh(now)
q.lastRefresh2 = q.lastRefresh1
q.lastRefresh1 = now
}
}
// refresh re-evaluates items in the older queue and swaps the two queues
func (q *LazyQueue) refresh(now mclock.AbsTime) {
q.maxUntil = now + mclock.AbsTime(q.period)
for q.queue[0].Len() != 0 {
q.Push(heap.Pop(q.queue[0]).(*item).value)
}
q.queue[0], q.queue[1] = q.queue[1], q.queue[0]
q.indexOffset = 1 - q.indexOffset
q.maxUntil += mclock.AbsTime(q.period)
}
// Push adds an item to the queue
func (q *LazyQueue) Push(data interface{}) {
heap.Push(q.queue[1], &item{data, q.maxPriority(data, q.maxUntil)})
}
// Update updates the upper priority estimate for the item with the given queue index
func (q *LazyQueue) Update(index int) {
q.Push(q.Remove(index))
}
// Pop removes and returns the item with the greatest actual priority
func (q *LazyQueue) Pop() (interface{}, int64) {
var (
resData interface{}
resPri int64
)
q.MultiPop(func(data interface{}, priority int64) bool {
resData = data
resPri = priority
return false
})
return resData, resPri
}
// peekIndex returns the index of the internal queue where the item with the
// highest estimated priority is or -1 if both are empty
func (q *LazyQueue) peekIndex() int {
if q.queue[0].Len() != 0 {
if q.queue[1].Len() != 0 && q.queue[1].blocks[0][0].priority > q.queue[0].blocks[0][0].priority {
return 1
}
return 0
}
if q.queue[1].Len() != 0 {
return 1
}
return -1
}
// MultiPop pops multiple items from the queue and is more efficient than calling
// Pop multiple times. Popped items are passed to the callback. MultiPop returns
// when the callback returns false or there are no more items to pop.
func (q *LazyQueue) MultiPop(callback func(data interface{}, priority int64) bool) {
now := q.clock.Now()
nextIndex := q.peekIndex()
for nextIndex != -1 {
data := heap.Pop(q.queue[nextIndex]).(*item).value
heap.Push(q.popQueue, &item{data, q.priority(data, now)})
nextIndex = q.peekIndex()
for q.popQueue.Len() != 0 && (nextIndex == -1 || q.queue[nextIndex].blocks[0][0].priority < q.popQueue.blocks[0][0].priority) {
i := heap.Pop(q.popQueue).(*item)
if !callback(i.value, i.priority) {
for q.popQueue.Len() != 0 {
q.Push(heap.Pop(q.popQueue).(*item).value)
}
return
}
nextIndex = q.peekIndex() // re-check because callback is allowed to push items back
}
}
}
// PopItem pops the item from the queue only, dropping the associated priority value.
func (q *LazyQueue) PopItem() interface{} {
i, _ := q.Pop()
return i
}
// Remove removes removes the item with the given index.
func (q *LazyQueue) Remove(index int) interface{} {
if index < 0 {
return nil
}
return heap.Remove(q.queue[index&1^q.indexOffset], index>>1).(*item).value
}
// Empty checks whether the priority queue is empty.
func (q *LazyQueue) Empty() bool {
return q.queue[0].Len() == 0 && q.queue[1].Len() == 0
}
// Size returns the number of items in the priority queue.
func (q *LazyQueue) Size() int {
return q.queue[0].Len() + q.queue[1].Len()
}
// setIndex0 translates internal queue item index to the virtual index space of LazyQueue
func (q *LazyQueue) setIndex0(data interface{}, index int) {
if index == -1 {
q.setIndex(data, -1)
} else {
q.setIndex(data, index+index)
}
}
// setIndex1 translates internal queue item index to the virtual index space of LazyQueue
func (q *LazyQueue) setIndex1(data interface{}, index int) {
q.setIndex(data, index+index+1)
}