go-ethereum/p2p/discover/v4_udp.go
Felix Lange 350a87dd3c
p2p/discover: add support for EIP-868 (v4 ENR extension) (#19540)
This change implements EIP-868. The UDPv4 transport announces support
for the extension in ping/pong and handles enrRequest messages.

There are two uses of the extension: If a remote node announces support
for EIP-868 in their pong, node revalidation pulls the node's record.
The Resolve method requests the record unconditionally.
2019-05-15 06:47:45 +02:00

1032 lines
30 KiB
Go

// Copyright 2015 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package discover
import (
"bytes"
"container/list"
"crypto/ecdsa"
crand "crypto/rand"
"errors"
"fmt"
"io"
"net"
"sync"
"time"
"github.com/ethereum/go-ethereum/crypto"
"github.com/ethereum/go-ethereum/log"
"github.com/ethereum/go-ethereum/p2p/enode"
"github.com/ethereum/go-ethereum/p2p/enr"
"github.com/ethereum/go-ethereum/p2p/netutil"
"github.com/ethereum/go-ethereum/rlp"
)
// Errors
var (
errPacketTooSmall = errors.New("too small")
errBadHash = errors.New("bad hash")
errExpired = errors.New("expired")
errUnsolicitedReply = errors.New("unsolicited reply")
errUnknownNode = errors.New("unknown node")
errTimeout = errors.New("RPC timeout")
errClockWarp = errors.New("reply deadline too far in the future")
errClosed = errors.New("socket closed")
)
const (
respTimeout = 500 * time.Millisecond
expiration = 20 * time.Second
bondExpiration = 24 * time.Hour
maxFindnodeFailures = 5 // nodes exceeding this limit are dropped
ntpFailureThreshold = 32 // Continuous timeouts after which to check NTP
ntpWarningCooldown = 10 * time.Minute // Minimum amount of time to pass before repeating NTP warning
driftThreshold = 10 * time.Second // Allowed clock drift before warning user
// Discovery packets are defined to be no larger than 1280 bytes.
// Packets larger than this size will be cut at the end and treated
// as invalid because their hash won't match.
maxPacketSize = 1280
)
// RPC packet types
const (
p_pingV4 = iota + 1 // zero is 'reserved'
p_pongV4
p_findnodeV4
p_neighborsV4
p_enrRequestV4
p_enrResponseV4
)
// RPC request structures
type (
pingV4 struct {
senderKey *ecdsa.PublicKey // filled in by preverify
Version uint
From, To rpcEndpoint
Expiration uint64
// Ignore additional fields (for forward compatibility).
Rest []rlp.RawValue `rlp:"tail"`
}
// pongV4 is the reply to pingV4.
pongV4 struct {
// This field should mirror the UDP envelope address
// of the ping packet, which provides a way to discover the
// the external address (after NAT).
To rpcEndpoint
ReplyTok []byte // This contains the hash of the ping packet.
Expiration uint64 // Absolute timestamp at which the packet becomes invalid.
// Ignore additional fields (for forward compatibility).
Rest []rlp.RawValue `rlp:"tail"`
}
// findnodeV4 is a query for nodes close to the given target.
findnodeV4 struct {
Target encPubkey
Expiration uint64
// Ignore additional fields (for forward compatibility).
Rest []rlp.RawValue `rlp:"tail"`
}
// neighborsV4 is the reply to findnodeV4.
neighborsV4 struct {
Nodes []rpcNode
Expiration uint64
// Ignore additional fields (for forward compatibility).
Rest []rlp.RawValue `rlp:"tail"`
}
// enrRequestV4 queries for the remote node's record.
enrRequestV4 struct {
Expiration uint64
// Ignore additional fields (for forward compatibility).
Rest []rlp.RawValue `rlp:"tail"`
}
// enrResponseV4 is the reply to enrRequestV4.
enrResponseV4 struct {
ReplyTok []byte // Hash of the enrRequest packet.
Record enr.Record
// Ignore additional fields (for forward compatibility).
Rest []rlp.RawValue `rlp:"tail"`
}
rpcNode struct {
IP net.IP // len 4 for IPv4 or 16 for IPv6
UDP uint16 // for discovery protocol
TCP uint16 // for RLPx protocol
ID encPubkey
}
rpcEndpoint struct {
IP net.IP // len 4 for IPv4 or 16 for IPv6
UDP uint16 // for discovery protocol
TCP uint16 // for RLPx protocol
}
)
// packetV4 is implemented by all v4 protocol messages.
type packetV4 interface {
// preverify checks whether the packet is valid and should be handled at all.
preverify(t *UDPv4, from *net.UDPAddr, fromID enode.ID, fromKey encPubkey) error
// handle handles the packet.
handle(t *UDPv4, from *net.UDPAddr, fromID enode.ID, mac []byte)
// packet name and type for logging purposes.
name() string
kind() byte
}
func makeEndpoint(addr *net.UDPAddr, tcpPort uint16) rpcEndpoint {
ip := net.IP{}
if ip4 := addr.IP.To4(); ip4 != nil {
ip = ip4
} else if ip6 := addr.IP.To16(); ip6 != nil {
ip = ip6
}
return rpcEndpoint{IP: ip, UDP: uint16(addr.Port), TCP: tcpPort}
}
func (t *UDPv4) nodeFromRPC(sender *net.UDPAddr, rn rpcNode) (*node, error) {
if rn.UDP <= 1024 {
return nil, errors.New("low port")
}
if err := netutil.CheckRelayIP(sender.IP, rn.IP); err != nil {
return nil, err
}
if t.netrestrict != nil && !t.netrestrict.Contains(rn.IP) {
return nil, errors.New("not contained in netrestrict whitelist")
}
key, err := decodePubkey(rn.ID)
if err != nil {
return nil, err
}
n := wrapNode(enode.NewV4(key, rn.IP, int(rn.TCP), int(rn.UDP)))
err = n.ValidateComplete()
return n, err
}
func nodeToRPC(n *node) rpcNode {
var key ecdsa.PublicKey
var ekey encPubkey
if err := n.Load((*enode.Secp256k1)(&key)); err == nil {
ekey = encodePubkey(&key)
}
return rpcNode{ID: ekey, IP: n.IP(), UDP: uint16(n.UDP()), TCP: uint16(n.TCP())}
}
// UDPv4 implements the v4 wire protocol.
type UDPv4 struct {
conn UDPConn
log log.Logger
netrestrict *netutil.Netlist
priv *ecdsa.PrivateKey
localNode *enode.LocalNode
db *enode.DB
tab *Table
closeOnce sync.Once
wg sync.WaitGroup
addReplyMatcher chan *replyMatcher
gotreply chan reply
closing chan struct{}
}
// replyMatcher represents a pending reply.
//
// Some implementations of the protocol wish to send more than one
// reply packet to findnode. In general, any neighbors packet cannot
// be matched up with a specific findnode packet.
//
// Our implementation handles this by storing a callback function for
// each pending reply. Incoming packets from a node are dispatched
// to all callback functions for that node.
type replyMatcher struct {
// these fields must match in the reply.
from enode.ID
ip net.IP
ptype byte
// time when the request must complete
deadline time.Time
// callback is called when a matching reply arrives. If it returns matched == true, the
// reply was acceptable. The second return value indicates whether the callback should
// be removed from the pending reply queue. If it returns false, the reply is considered
// incomplete and the callback will be invoked again for the next matching reply.
callback replyMatchFunc
// errc receives nil when the callback indicates completion or an
// error if no further reply is received within the timeout.
errc chan error
// reply contains the most recent reply. This field is safe for reading after errc has
// received a value.
reply packetV4
}
type replyMatchFunc func(interface{}) (matched bool, requestDone bool)
// reply is a reply packet from a certain node.
type reply struct {
from enode.ID
ip net.IP
data packetV4
// loop indicates whether there was
// a matching request by sending on this channel.
matched chan<- bool
}
func ListenV4(c UDPConn, ln *enode.LocalNode, cfg Config) (*UDPv4, error) {
t := &UDPv4{
conn: c,
priv: cfg.PrivateKey,
netrestrict: cfg.NetRestrict,
localNode: ln,
db: ln.Database(),
closing: make(chan struct{}),
gotreply: make(chan reply),
addReplyMatcher: make(chan *replyMatcher),
log: cfg.Log,
}
if t.log == nil {
t.log = log.Root()
}
tab, err := newTable(t, ln.Database(), cfg.Bootnodes, t.log)
if err != nil {
return nil, err
}
t.tab = tab
go tab.loop()
t.wg.Add(2)
go t.loop()
go t.readLoop(cfg.Unhandled)
return t, nil
}
// Self returns the local node.
func (t *UDPv4) Self() *enode.Node {
return t.localNode.Node()
}
// Close shuts down the socket and aborts any running queries.
func (t *UDPv4) Close() {
t.closeOnce.Do(func() {
close(t.closing)
t.conn.Close()
t.wg.Wait()
t.tab.close()
})
}
// ReadRandomNodes reads random nodes from the local table.
func (t *UDPv4) ReadRandomNodes(buf []*enode.Node) int {
return t.tab.ReadRandomNodes(buf)
}
// LookupRandom finds random nodes in the network.
func (t *UDPv4) LookupRandom() []*enode.Node {
if t.tab.len() == 0 {
// All nodes were dropped, refresh. The very first query will hit this
// case and run the bootstrapping logic.
<-t.tab.refresh()
}
return t.lookupRandom()
}
func (t *UDPv4) LookupPubkey(key *ecdsa.PublicKey) []*enode.Node {
if t.tab.len() == 0 {
// All nodes were dropped, refresh. The very first query will hit this
// case and run the bootstrapping logic.
<-t.tab.refresh()
}
return unwrapNodes(t.lookup(encodePubkey(key)))
}
func (t *UDPv4) lookupRandom() []*enode.Node {
var target encPubkey
crand.Read(target[:])
return unwrapNodes(t.lookup(target))
}
func (t *UDPv4) lookupSelf() []*enode.Node {
return unwrapNodes(t.lookup(encodePubkey(&t.priv.PublicKey)))
}
// lookup performs a network search for nodes close to the given target. It approaches the
// target by querying nodes that are closer to it on each iteration. The given target does
// not need to be an actual node identifier.
func (t *UDPv4) lookup(targetKey encPubkey) []*node {
var (
target = enode.ID(crypto.Keccak256Hash(targetKey[:]))
asked = make(map[enode.ID]bool)
seen = make(map[enode.ID]bool)
reply = make(chan []*node, alpha)
pendingQueries = 0
result *nodesByDistance
)
// Don't query further if we hit ourself.
// Unlikely to happen often in practice.
asked[t.Self().ID()] = true
// Generate the initial result set.
t.tab.mutex.Lock()
result = t.tab.closest(target, bucketSize, false)
t.tab.mutex.Unlock()
for {
// ask the alpha closest nodes that we haven't asked yet
for i := 0; i < len(result.entries) && pendingQueries < alpha; i++ {
n := result.entries[i]
if !asked[n.ID()] {
asked[n.ID()] = true
pendingQueries++
go t.lookupWorker(n, targetKey, reply)
}
}
if pendingQueries == 0 {
// we have asked all closest nodes, stop the search
break
}
select {
case nodes := <-reply:
for _, n := range nodes {
if n != nil && !seen[n.ID()] {
seen[n.ID()] = true
result.push(n, bucketSize)
}
}
case <-t.tab.closeReq:
return nil // shutdown, no need to continue.
}
pendingQueries--
}
return result.entries
}
func (t *UDPv4) lookupWorker(n *node, targetKey encPubkey, reply chan<- []*node) {
fails := t.db.FindFails(n.ID(), n.IP())
r, err := t.findnode(n.ID(), n.addr(), targetKey)
if err == errClosed {
// Avoid recording failures on shutdown.
reply <- nil
return
} else if len(r) == 0 {
fails++
t.db.UpdateFindFails(n.ID(), n.IP(), fails)
t.log.Trace("Findnode failed", "id", n.ID(), "failcount", fails, "err", err)
if fails >= maxFindnodeFailures {
t.log.Trace("Too many findnode failures, dropping", "id", n.ID(), "failcount", fails)
t.tab.delete(n)
}
} else if fails > 0 {
// Reset failure counter because it counts _consecutive_ failures.
t.db.UpdateFindFails(n.ID(), n.IP(), 0)
}
// Grab as many nodes as possible. Some of them might not be alive anymore, but we'll
// just remove those again during revalidation.
for _, n := range r {
t.tab.addSeenNode(n)
}
reply <- r
}
// Resolve searches for a specific node with the given ID and tries to get the most recent
// version of the node record for it. It returns n if the node could not be resolved.
func (t *UDPv4) Resolve(n *enode.Node) *enode.Node {
// Try asking directly. This works if the node is still responding on the endpoint we have.
if rn, err := t.requestENR(n); err == nil {
return rn
}
// Check table for the ID, we might have a newer version there.
if intable := t.tab.getNode(n.ID()); intable != nil && intable.Seq() > n.Seq() {
n = intable
if rn, err := t.requestENR(n); err == nil {
return rn
}
}
// Otherwise perform a network lookup.
var key *enode.Secp256k1
if n.Load(key) != nil {
return n // no secp256k1 key
}
result := t.LookupPubkey((*ecdsa.PublicKey)(key))
for _, rn := range result {
if rn.ID() == n.ID() {
if rn, err := t.requestENR(rn); err == nil {
return rn
}
}
}
return n
}
func (t *UDPv4) ourEndpoint() rpcEndpoint {
n := t.Self()
a := &net.UDPAddr{IP: n.IP(), Port: n.UDP()}
return makeEndpoint(a, uint16(n.TCP()))
}
// ping sends a ping message to the given node and waits for a reply.
func (t *UDPv4) ping(n *enode.Node) (seq uint64, err error) {
rm := t.sendPing(n.ID(), &net.UDPAddr{IP: n.IP(), Port: n.UDP()}, nil)
if err = <-rm.errc; err == nil {
seq = seqFromTail(rm.reply.(*pongV4).Rest)
}
return seq, err
}
// sendPing sends a ping message to the given node and invokes the callback
// when the reply arrives.
func (t *UDPv4) sendPing(toid enode.ID, toaddr *net.UDPAddr, callback func()) *replyMatcher {
req := t.makePing(toaddr)
packet, hash, err := t.encode(t.priv, req)
if err != nil {
errc := make(chan error, 1)
errc <- err
return &replyMatcher{errc: errc}
}
// Add a matcher for the reply to the pending reply queue. Pongs are matched if they
// reference the ping we're about to send.
rm := t.pending(toid, toaddr.IP, p_pongV4, func(p interface{}) (matched bool, requestDone bool) {
matched = bytes.Equal(p.(*pongV4).ReplyTok, hash)
if matched && callback != nil {
callback()
}
return matched, matched
})
// Send the packet.
t.localNode.UDPContact(toaddr)
t.write(toaddr, toid, req.name(), packet)
return rm
}
func (t *UDPv4) makePing(toaddr *net.UDPAddr) *pingV4 {
seq, _ := rlp.EncodeToBytes(t.localNode.Node().Seq())
return &pingV4{
Version: 4,
From: t.ourEndpoint(),
To: makeEndpoint(toaddr, 0),
Expiration: uint64(time.Now().Add(expiration).Unix()),
Rest: []rlp.RawValue{seq},
}
}
// findnode sends a findnode request to the given node and waits until
// the node has sent up to k neighbors.
func (t *UDPv4) findnode(toid enode.ID, toaddr *net.UDPAddr, target encPubkey) ([]*node, error) {
t.ensureBond(toid, toaddr)
// Add a matcher for 'neighbours' replies to the pending reply queue. The matcher is
// active until enough nodes have been received.
nodes := make([]*node, 0, bucketSize)
nreceived := 0
rm := t.pending(toid, toaddr.IP, p_neighborsV4, func(r interface{}) (matched bool, requestDone bool) {
reply := r.(*neighborsV4)
for _, rn := range reply.Nodes {
nreceived++
n, err := t.nodeFromRPC(toaddr, rn)
if err != nil {
t.log.Trace("Invalid neighbor node received", "ip", rn.IP, "addr", toaddr, "err", err)
continue
}
nodes = append(nodes, n)
}
return true, nreceived >= bucketSize
})
t.send(toaddr, toid, &findnodeV4{
Target: target,
Expiration: uint64(time.Now().Add(expiration).Unix()),
})
return nodes, <-rm.errc
}
// requestENR sends enrRequest to the given node and waits for a response.
func (t *UDPv4) requestENR(n *enode.Node) (*enode.Node, error) {
addr := &net.UDPAddr{IP: n.IP(), Port: n.UDP()}
t.ensureBond(n.ID(), addr)
req := &enrRequestV4{
Expiration: uint64(time.Now().Add(expiration).Unix()),
}
packet, hash, err := t.encode(t.priv, req)
if err != nil {
return nil, err
}
// Add a matcher for the reply to the pending reply queue. Responses are matched if
// they reference the request we're about to send.
rm := t.pending(n.ID(), addr.IP, p_enrResponseV4, func(r interface{}) (matched bool, requestDone bool) {
matched = bytes.Equal(r.(*enrResponseV4).ReplyTok, hash)
return matched, matched
})
// Send the packet and wait for the reply.
t.write(addr, n.ID(), req.name(), packet)
if err := <-rm.errc; err != nil {
return nil, err
}
// Verify the response record.
respN, err := enode.New(enode.ValidSchemes, &rm.reply.(*enrResponseV4).Record)
if err != nil {
return nil, err
}
if respN.ID() != n.ID() {
return nil, fmt.Errorf("invalid ID in response record")
}
if respN.Seq() < n.Seq() {
return n, nil // response record is older
}
if err := netutil.CheckRelayIP(addr.IP, respN.IP()); err != nil {
return nil, fmt.Errorf("invalid IP in response record: %v", err)
}
return respN, nil
}
// pending adds a reply matcher to the pending reply queue.
// see the documentation of type replyMatcher for a detailed explanation.
func (t *UDPv4) pending(id enode.ID, ip net.IP, ptype byte, callback replyMatchFunc) *replyMatcher {
ch := make(chan error, 1)
p := &replyMatcher{from: id, ip: ip, ptype: ptype, callback: callback, errc: ch}
select {
case t.addReplyMatcher <- p:
// loop will handle it
case <-t.closing:
ch <- errClosed
}
return p
}
// handleReply dispatches a reply packet, invoking reply matchers. It returns
// whether any matcher considered the packet acceptable.
func (t *UDPv4) handleReply(from enode.ID, fromIP net.IP, req packetV4) bool {
matched := make(chan bool, 1)
select {
case t.gotreply <- reply{from, fromIP, req, matched}:
// loop will handle it
return <-matched
case <-t.closing:
return false
}
}
// loop runs in its own goroutine. it keeps track of
// the refresh timer and the pending reply queue.
func (t *UDPv4) loop() {
defer t.wg.Done()
var (
plist = list.New()
timeout = time.NewTimer(0)
nextTimeout *replyMatcher // head of plist when timeout was last reset
contTimeouts = 0 // number of continuous timeouts to do NTP checks
ntpWarnTime = time.Unix(0, 0)
)
<-timeout.C // ignore first timeout
defer timeout.Stop()
resetTimeout := func() {
if plist.Front() == nil || nextTimeout == plist.Front().Value {
return
}
// Start the timer so it fires when the next pending reply has expired.
now := time.Now()
for el := plist.Front(); el != nil; el = el.Next() {
nextTimeout = el.Value.(*replyMatcher)
if dist := nextTimeout.deadline.Sub(now); dist < 2*respTimeout {
timeout.Reset(dist)
return
}
// Remove pending replies whose deadline is too far in the
// future. These can occur if the system clock jumped
// backwards after the deadline was assigned.
nextTimeout.errc <- errClockWarp
plist.Remove(el)
}
nextTimeout = nil
timeout.Stop()
}
for {
resetTimeout()
select {
case <-t.closing:
for el := plist.Front(); el != nil; el = el.Next() {
el.Value.(*replyMatcher).errc <- errClosed
}
return
case p := <-t.addReplyMatcher:
p.deadline = time.Now().Add(respTimeout)
plist.PushBack(p)
case r := <-t.gotreply:
var matched bool // whether any replyMatcher considered the reply acceptable.
for el := plist.Front(); el != nil; el = el.Next() {
p := el.Value.(*replyMatcher)
if p.from == r.from && p.ptype == r.data.kind() && p.ip.Equal(r.ip) {
ok, requestDone := p.callback(r.data)
matched = matched || ok
// Remove the matcher if callback indicates that all replies have been received.
if requestDone {
p.reply = r.data
p.errc <- nil
plist.Remove(el)
}
// Reset the continuous timeout counter (time drift detection)
contTimeouts = 0
}
}
r.matched <- matched
case now := <-timeout.C:
nextTimeout = nil
// Notify and remove callbacks whose deadline is in the past.
for el := plist.Front(); el != nil; el = el.Next() {
p := el.Value.(*replyMatcher)
if now.After(p.deadline) || now.Equal(p.deadline) {
p.errc <- errTimeout
plist.Remove(el)
contTimeouts++
}
}
// If we've accumulated too many timeouts, do an NTP time sync check
if contTimeouts > ntpFailureThreshold {
if time.Since(ntpWarnTime) >= ntpWarningCooldown {
ntpWarnTime = time.Now()
go checkClockDrift()
}
contTimeouts = 0
}
}
}
}
const (
macSize = 256 / 8
sigSize = 520 / 8
headSize = macSize + sigSize // space of packet frame data
)
var (
headSpace = make([]byte, headSize)
// Neighbors replies are sent across multiple packets to
// stay below the packet size limit. We compute the maximum number
// of entries by stuffing a packet until it grows too large.
maxNeighbors int
)
func init() {
p := neighborsV4{Expiration: ^uint64(0)}
maxSizeNode := rpcNode{IP: make(net.IP, 16), UDP: ^uint16(0), TCP: ^uint16(0)}
for n := 0; ; n++ {
p.Nodes = append(p.Nodes, maxSizeNode)
size, _, err := rlp.EncodeToReader(p)
if err != nil {
// If this ever happens, it will be caught by the unit tests.
panic("cannot encode: " + err.Error())
}
if headSize+size+1 >= maxPacketSize {
maxNeighbors = n
break
}
}
}
func (t *UDPv4) send(toaddr *net.UDPAddr, toid enode.ID, req packetV4) ([]byte, error) {
packet, hash, err := t.encode(t.priv, req)
if err != nil {
return hash, err
}
return hash, t.write(toaddr, toid, req.name(), packet)
}
func (t *UDPv4) write(toaddr *net.UDPAddr, toid enode.ID, what string, packet []byte) error {
_, err := t.conn.WriteToUDP(packet, toaddr)
t.log.Trace(">> "+what, "id", toid, "addr", toaddr, "err", err)
return err
}
func (t *UDPv4) encode(priv *ecdsa.PrivateKey, req packetV4) (packet, hash []byte, err error) {
name := req.name()
b := new(bytes.Buffer)
b.Write(headSpace)
b.WriteByte(req.kind())
if err := rlp.Encode(b, req); err != nil {
t.log.Error(fmt.Sprintf("Can't encode %s packet", name), "err", err)
return nil, nil, err
}
packet = b.Bytes()
sig, err := crypto.Sign(crypto.Keccak256(packet[headSize:]), priv)
if err != nil {
t.log.Error(fmt.Sprintf("Can't sign %s packet", name), "err", err)
return nil, nil, err
}
copy(packet[macSize:], sig)
// add the hash to the front. Note: this doesn't protect the
// packet in any way. Our public key will be part of this hash in
// The future.
hash = crypto.Keccak256(packet[macSize:])
copy(packet, hash)
return packet, hash, nil
}
// readLoop runs in its own goroutine. it handles incoming UDP packets.
func (t *UDPv4) readLoop(unhandled chan<- ReadPacket) {
defer t.wg.Done()
if unhandled != nil {
defer close(unhandled)
}
buf := make([]byte, maxPacketSize)
for {
nbytes, from, err := t.conn.ReadFromUDP(buf)
if netutil.IsTemporaryError(err) {
// Ignore temporary read errors.
t.log.Debug("Temporary UDP read error", "err", err)
continue
} else if err != nil {
// Shut down the loop for permament errors.
if err != io.EOF {
t.log.Debug("UDP read error", "err", err)
}
return
}
if t.handlePacket(from, buf[:nbytes]) != nil && unhandled != nil {
select {
case unhandled <- ReadPacket{buf[:nbytes], from}:
default:
}
}
}
}
func (t *UDPv4) handlePacket(from *net.UDPAddr, buf []byte) error {
packet, fromKey, hash, err := decodeV4(buf)
if err != nil {
t.log.Debug("Bad discv4 packet", "addr", from, "err", err)
return err
}
fromID := fromKey.id()
if err == nil {
err = packet.preverify(t, from, fromID, fromKey)
}
t.log.Trace("<< "+packet.name(), "id", fromID, "addr", from, "err", err)
if err == nil {
packet.handle(t, from, fromID, hash)
}
return err
}
func decodeV4(buf []byte) (packetV4, encPubkey, []byte, error) {
if len(buf) < headSize+1 {
return nil, encPubkey{}, nil, errPacketTooSmall
}
hash, sig, sigdata := buf[:macSize], buf[macSize:headSize], buf[headSize:]
shouldhash := crypto.Keccak256(buf[macSize:])
if !bytes.Equal(hash, shouldhash) {
return nil, encPubkey{}, nil, errBadHash
}
fromKey, err := recoverNodeKey(crypto.Keccak256(buf[headSize:]), sig)
if err != nil {
return nil, fromKey, hash, err
}
var req packetV4
switch ptype := sigdata[0]; ptype {
case p_pingV4:
req = new(pingV4)
case p_pongV4:
req = new(pongV4)
case p_findnodeV4:
req = new(findnodeV4)
case p_neighborsV4:
req = new(neighborsV4)
case p_enrRequestV4:
req = new(enrRequestV4)
case p_enrResponseV4:
req = new(enrResponseV4)
default:
return nil, fromKey, hash, fmt.Errorf("unknown type: %d", ptype)
}
s := rlp.NewStream(bytes.NewReader(sigdata[1:]), 0)
err = s.Decode(req)
return req, fromKey, hash, err
}
// checkBond checks if the given node has a recent enough endpoint proof.
func (t *UDPv4) checkBond(id enode.ID, ip net.IP) bool {
return time.Since(t.db.LastPongReceived(id, ip)) < bondExpiration
}
// ensureBond solicits a ping from a node if we haven't seen a ping from it for a while.
// This ensures there is a valid endpoint proof on the remote end.
func (t *UDPv4) ensureBond(toid enode.ID, toaddr *net.UDPAddr) {
tooOld := time.Since(t.db.LastPingReceived(toid, toaddr.IP)) > bondExpiration
if tooOld || t.db.FindFails(toid, toaddr.IP) > maxFindnodeFailures {
rm := t.sendPing(toid, toaddr, nil)
<-rm.errc
// Wait for them to ping back and process our pong.
time.Sleep(respTimeout)
}
}
// expired checks whether the given UNIX time stamp is in the past.
func expired(ts uint64) bool {
return time.Unix(int64(ts), 0).Before(time.Now())
}
func seqFromTail(tail []rlp.RawValue) uint64 {
if len(tail) == 0 {
return 0
}
var seq uint64
rlp.DecodeBytes(tail[0], &seq)
return seq
}
// PING/v4
func (req *pingV4) name() string { return "PING/v4" }
func (req *pingV4) kind() byte { return p_pingV4 }
func (req *pingV4) preverify(t *UDPv4, from *net.UDPAddr, fromID enode.ID, fromKey encPubkey) error {
if expired(req.Expiration) {
return errExpired
}
key, err := decodePubkey(fromKey)
if err != nil {
return errors.New("invalid public key")
}
req.senderKey = key
return nil
}
func (req *pingV4) handle(t *UDPv4, from *net.UDPAddr, fromID enode.ID, mac []byte) {
// Reply.
seq, _ := rlp.EncodeToBytes(t.localNode.Node().Seq())
t.send(from, fromID, &pongV4{
To: makeEndpoint(from, req.From.TCP),
ReplyTok: mac,
Expiration: uint64(time.Now().Add(expiration).Unix()),
Rest: []rlp.RawValue{seq},
})
// Ping back if our last pong on file is too far in the past.
n := wrapNode(enode.NewV4(req.senderKey, from.IP, int(req.From.TCP), from.Port))
if time.Since(t.db.LastPongReceived(n.ID(), from.IP)) > bondExpiration {
t.sendPing(fromID, from, func() {
t.tab.addVerifiedNode(n)
})
} else {
t.tab.addVerifiedNode(n)
}
// Update node database and endpoint predictor.
t.db.UpdateLastPingReceived(n.ID(), from.IP, time.Now())
t.localNode.UDPEndpointStatement(from, &net.UDPAddr{IP: req.To.IP, Port: int(req.To.UDP)})
}
// PONG/v4
func (req *pongV4) name() string { return "PONG/v4" }
func (req *pongV4) kind() byte { return p_pongV4 }
func (req *pongV4) preverify(t *UDPv4, from *net.UDPAddr, fromID enode.ID, fromKey encPubkey) error {
if expired(req.Expiration) {
return errExpired
}
if !t.handleReply(fromID, from.IP, req) {
return errUnsolicitedReply
}
return nil
}
func (req *pongV4) handle(t *UDPv4, from *net.UDPAddr, fromID enode.ID, mac []byte) {
t.localNode.UDPEndpointStatement(from, &net.UDPAddr{IP: req.To.IP, Port: int(req.To.UDP)})
t.db.UpdateLastPongReceived(fromID, from.IP, time.Now())
}
// FINDNODE/v4
func (req *findnodeV4) name() string { return "FINDNODE/v4" }
func (req *findnodeV4) kind() byte { return p_findnodeV4 }
func (req *findnodeV4) preverify(t *UDPv4, from *net.UDPAddr, fromID enode.ID, fromKey encPubkey) error {
if expired(req.Expiration) {
return errExpired
}
if !t.checkBond(fromID, from.IP) {
// No endpoint proof pong exists, we don't process the packet. This prevents an
// attack vector where the discovery protocol could be used to amplify traffic in a
// DDOS attack. A malicious actor would send a findnode request with the IP address
// and UDP port of the target as the source address. The recipient of the findnode
// packet would then send a neighbors packet (which is a much bigger packet than
// findnode) to the victim.
return errUnknownNode
}
return nil
}
func (req *findnodeV4) handle(t *UDPv4, from *net.UDPAddr, fromID enode.ID, mac []byte) {
// Determine closest nodes.
target := enode.ID(crypto.Keccak256Hash(req.Target[:]))
t.tab.mutex.Lock()
closest := t.tab.closest(target, bucketSize, true).entries
t.tab.mutex.Unlock()
// Send neighbors in chunks with at most maxNeighbors per packet
// to stay below the packet size limit.
p := neighborsV4{Expiration: uint64(time.Now().Add(expiration).Unix())}
var sent bool
for _, n := range closest {
if netutil.CheckRelayIP(from.IP, n.IP()) == nil {
p.Nodes = append(p.Nodes, nodeToRPC(n))
}
if len(p.Nodes) == maxNeighbors {
t.send(from, fromID, &p)
p.Nodes = p.Nodes[:0]
sent = true
}
}
if len(p.Nodes) > 0 || !sent {
t.send(from, fromID, &p)
}
}
// NEIGHBORS/v4
func (req *neighborsV4) name() string { return "NEIGHBORS/v4" }
func (req *neighborsV4) kind() byte { return p_neighborsV4 }
func (req *neighborsV4) preverify(t *UDPv4, from *net.UDPAddr, fromID enode.ID, fromKey encPubkey) error {
if expired(req.Expiration) {
return errExpired
}
if !t.handleReply(fromID, from.IP, req) {
return errUnsolicitedReply
}
return nil
}
func (req *neighborsV4) handle(t *UDPv4, from *net.UDPAddr, fromID enode.ID, mac []byte) {
}
// ENRREQUEST/v4
func (req *enrRequestV4) name() string { return "ENRREQUEST/v4" }
func (req *enrRequestV4) kind() byte { return p_enrRequestV4 }
func (req *enrRequestV4) preverify(t *UDPv4, from *net.UDPAddr, fromID enode.ID, fromKey encPubkey) error {
if expired(req.Expiration) {
return errExpired
}
if !t.checkBond(fromID, from.IP) {
return errUnknownNode
}
return nil
}
func (req *enrRequestV4) handle(t *UDPv4, from *net.UDPAddr, fromID enode.ID, mac []byte) {
t.send(from, fromID, &enrResponseV4{
ReplyTok: mac,
Record: *t.localNode.Node().Record(),
})
}
// ENRRESPONSE/v4
func (req *enrResponseV4) name() string { return "ENRRESPONSE/v4" }
func (req *enrResponseV4) kind() byte { return p_enrResponseV4 }
func (req *enrResponseV4) preverify(t *UDPv4, from *net.UDPAddr, fromID enode.ID, fromKey encPubkey) error {
if !t.handleReply(fromID, from.IP, req) {
return errUnsolicitedReply
}
return nil
}
func (req *enrResponseV4) handle(t *UDPv4, from *net.UDPAddr, fromID enode.ID, mac []byte) {
}