go-ethereum/p2p/crypto.go
2015-02-06 00:00:34 +01:00

175 lines
5.7 KiB
Go

package p2p
import (
"bytes"
"crypto/ecdsa"
"crypto/rand"
"fmt"
"io"
"github.com/ethereum/go-ethereum/crypto"
"github.com/obscuren/ecies"
"github.com/obscuren/secp256k1-go"
)
var (
skLen int = 32 // ecies.MaxSharedKeyLength(pubKey) / 2
sigLen int = 32 // elliptic S256
pubKeyLen int = 32 // ECDSA
msgLen int = sigLen + 1 + pubKeyLen + skLen // 97
)
//, aesSecret, macSecret, egressMac, ingress
type secretRW struct {
aesSecret, macSecret, egressMac, ingressMac []byte
}
type cryptoId struct {
prvKey *ecdsa.PrivateKey
pubKey *ecdsa.PublicKey
pubKeyR io.ReaderAt
}
func newCryptoId(id ClientIdentity) (self *cryptoId, err error) {
// will be at server init
var prvKeyDER []byte = id.PrivKey()
if prvKeyDER == nil {
err = fmt.Errorf("no private key for client")
return
}
// initialise ecies private key via importing DER encoded keys (known via our own clientIdentity)
var prvKey = crypto.ToECDSA(prvKeyDER)
if prvKey == nil {
err = fmt.Errorf("invalid private key for client")
return
}
self = &cryptoId{
prvKey: prvKey,
// initialise public key from the imported private key
pubKey: &prvKey.PublicKey,
// to be created at server init shared between peers and sessions
// for reuse, call wth ReadAt, no reset seek needed
}
self.pubKeyR = bytes.NewReader(id.Pubkey())
return
}
//
func (self *cryptoId) setupAuth(remotePubKeyDER, sessionToken []byte) (auth []byte, nonce []byte, sharedKnowledge []byte, err error) {
// session init, common to both parties
var remotePubKey = crypto.ToECDSAPub(remotePubKeyDER)
if remotePubKey == nil {
err = fmt.Errorf("invalid remote public key")
return
}
var sharedSecret []byte
// generate shared key from prv and remote pubkey
sharedSecret, err = ecies.ImportECDSA(self.prvKey).GenerateShared(ecies.ImportECDSAPublic(remotePubKey), skLen, skLen)
if err != nil {
return
}
// check previous session token
if sessionToken == nil {
err = fmt.Errorf("no session token for peer")
return
}
// allocate msgLen long message
var msg []byte = make([]byte, msgLen)
// generate skLen long nonce at the end
nonce = msg[msgLen-skLen:]
if _, err = rand.Read(nonce); err != nil {
return
}
// create known message
// should use
// cipher.xorBytes from crypto/cipher/xor.go for fast xor
sharedKnowledge = Xor(sharedSecret, sessionToken)
var signedMsg = Xor(sharedKnowledge, nonce)
// generate random keypair to use for signing
var ecdsaRandomPrvKey *ecdsa.PrivateKey
if ecdsaRandomPrvKey, err = crypto.GenerateKey(); err != nil {
return
}
// var ecdsaRandomPubKey *ecdsa.PublicKey
// ecdsaRandomPubKey= &ecdsaRandomPrvKey.PublicKey
// message known to both parties ecdh-shared-secret^nonce^token
var signature []byte
// signature = sign(ecdhe-random, ecdh-shared-secret^nonce^token)
// uses secp256k1.Sign
if signature, err = crypto.Sign(signedMsg, ecdsaRandomPrvKey); err != nil {
return
}
// msg = signature || 0x80 || pubk || nonce
copy(msg, signature)
msg[sigLen] = 0x80
self.pubKeyR.ReadAt(msg[sigLen+1:], int64(pubKeyLen)) // gives pubKeyLen, io.EOF (since we dont read onto the nonce)
// auth = eciesEncrypt(remote-pubk, msg)
if auth, err = crypto.Encrypt(remotePubKey, msg); err != nil {
return
}
return
}
func (self *cryptoId) verifyAuth(auth, nonce, sharedKnowledge []byte) (sessionToken []byte, rw *secretRW, err error) {
var msg []byte
// they prove that msg is meant for me,
// I prove I possess private key if i can read it
if msg, err = crypto.Decrypt(self.prvKey, auth); err != nil {
return
}
var remoteNonce []byte = msg[msgLen-skLen:]
// I prove that i possess prv key (to derive shared secret, and read nonce off encrypted msg) and that I posessed the earlier one , our shared history
// they prove they possess their private key to derive the same shared secret, plus the same shared history (previous session token)
var signedMsg = Xor(sharedKnowledge, remoteNonce)
var remoteRandomPubKeyDER []byte
if remoteRandomPubKeyDER, err = secp256k1.RecoverPubkey(signedMsg, msg[:32]); err != nil {
return
}
var remoteRandomPubKey = crypto.ToECDSAPub(remoteRandomPubKeyDER)
if remoteRandomPubKey == nil {
err = fmt.Errorf("invalid remote public key")
return
}
// 3) Now we can trust ecdhe-random-pubk to derive keys
//ecdhe-shared-secret = ecdh.agree(ecdhe-random, remote-ecdhe-random-pubk)
var dhSharedSecret []byte
dhSharedSecret, err = ecies.ImportECDSA(self.prvKey).GenerateShared(ecies.ImportECDSAPublic(remoteRandomPubKey), skLen, skLen)
if err != nil {
return
}
// shared-secret = crypto.Sha3(ecdhe-shared-secret || crypto.Sha3(nonce || initiator-nonce))
var sharedSecret []byte = crypto.Sha3(append(dhSharedSecret, crypto.Sha3(append(nonce, remoteNonce...))...))
// token = crypto.Sha3(shared-secret)
sessionToken = crypto.Sha3(sharedSecret)
// aes-secret = crypto.Sha3(ecdhe-shared-secret || shared-secret)
var aesSecret = crypto.Sha3(append(dhSharedSecret, sharedSecret...))
// # destroy shared-secret
// mac-secret = crypto.Sha3(ecdhe-shared-secret || aes-secret)
var macSecret = crypto.Sha3(append(dhSharedSecret, aesSecret...))
// # destroy ecdhe-shared-secret
// egress-mac = crypto.Sha3(mac-secret^nonce || auth)
var egressMac = crypto.Sha3(append(Xor(macSecret, nonce), auth...))
// # destroy nonce
// ingress-mac = crypto.Sha3(mac-secret^initiator-nonce || auth),
var ingressMac = crypto.Sha3(append(Xor(macSecret, remoteNonce), auth...))
// # destroy remote-nonce
rw = &secretRW{
aesSecret: aesSecret,
macSecret: macSecret,
egressMac: egressMac,
ingressMac: ingressMac,
}
return
}
func Xor(one, other []byte) (xor []byte) {
for i := 0; i < len(one); i++ {
xor[i] = one[i] ^ other[i]
}
return
}