go-ethereum/swarm/network/simulation/simulation_test.go
Ferenc Szabo 50b872bf05 p2p, swarm: fix node up races by granular locking (#18976)
* swarm/network: DRY out repeated giga comment

I not necessarily agree with the way we wait for event propagation.
But I truly disagree with having duplicated giga comments.

* p2p/simulations: encapsulate Node.Up field so we avoid data races

The Node.Up field was accessed concurrently without "proper" locking.
There was a lock on Network and that was used sometimes to access
the  field. Other times the locking was missed and we had
a data race.

For example: https://github.com/ethereum/go-ethereum/pull/18464
The case above was solved, but there were still intermittent/hard to
reproduce races. So let's solve the issue permanently.

resolves: ethersphere/go-ethereum#1146

* p2p/simulations: fix unmarshal of simulations.Node

Making Node.Up field private in 13292ee897e345045fbfab3bda23a77589a271c1
broke TestHTTPNetwork and TestHTTPSnapshot. Because the default
UnmarshalJSON does not handle unexported fields.

Important: The fix is partial and not proper to my taste. But I cut
scope as I think the fix may require a change to the current
serialization format. New ticket:
https://github.com/ethersphere/go-ethereum/issues/1177

* p2p/simulations: Add a sanity test case for Node.Config UnmarshalJSON

* p2p/simulations: revert back to defer Unlock() pattern for Network

It's a good patten to call `defer Unlock()` right after `Lock()` so
(new) error cases won't miss to unlock. Let's get back to that pattern.

The patten was abandoned in 85a79b3ad3c5863f8612d25c246bcfad339f36b7,
while fixing a data race. That data race does not exist anymore,
since the Node.Up field got hidden behind its own lock.

* p2p/simulations: consistent naming for test providers Node.UnmarshalJSON

* p2p/simulations: remove JSON annotation from private fields of Node

As unexported fields are not serialized.

* p2p/simulations: fix deadlock in Network.GetRandomDownNode()

Problem: GetRandomDownNode() locks -> getDownNodeIDs() ->
GetNodes() tries to lock -> deadlock

On Network type, unexported functions must assume that `net.lock`
is already acquired and should not call exported functions which
might try to lock again.

* p2p/simulations: ensure method conformity for Network

Connect* methods were moved to p2p/simulations.Network from
swarm/network/simulation. However these new methods did not follow
the pattern of Network methods, i.e., all exported method locks
the whole Network either for read or write.

* p2p/simulations: fix deadlock during network shutdown

`TestDiscoveryPersistenceSimulationSimAdapter` often got into deadlock.
The execution was stuck on two locks, i.e, `Kademlia.lock` and
`p2p/simulations.Network.lock`. Usually the test got stuck once in each
20 executions with high confidence.

`Kademlia` was stuck in `Kademlia.EachAddr()` and `Network` in
`Network.Stop()`.

Solution: in `Network.Stop()` `net.lock` must be released before
calling `node.Stop()` as stopping a node (somehow - I did not find
the exact code path) causes `Network.InitConn()` to be called from
`Kademlia.SuggestPeer()` and that blocks on `net.lock`.

Related ticket: https://github.com/ethersphere/go-ethereum/issues/1223

* swarm/state: simplify if statement in DBStore.Put()

* p2p/simulations: remove faulty godoc from private function

The comment started with the wrong method name.

The method is simple and self explanatory. Also, it's private.
=> Let's just remove the comment.
2019-02-18 07:38:14 +01:00

204 lines
5.1 KiB
Go

// Copyright 2018 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package simulation
import (
"context"
"errors"
"flag"
"sync"
"testing"
"time"
"github.com/ethereum/go-ethereum/log"
"github.com/ethereum/go-ethereum/node"
"github.com/ethereum/go-ethereum/p2p/simulations"
"github.com/ethereum/go-ethereum/p2p/simulations/adapters"
"github.com/mattn/go-colorable"
)
var (
loglevel = flag.Int("loglevel", 2, "verbosity of logs")
)
func init() {
flag.Parse()
log.PrintOrigins(true)
log.Root().SetHandler(log.LvlFilterHandler(log.Lvl(*loglevel), log.StreamHandler(colorable.NewColorableStderr(), log.TerminalFormat(true))))
}
// TestRun tests if Run method calls RunFunc and if it handles context properly.
func TestRun(t *testing.T) {
sim := New(noopServiceFuncMap)
defer sim.Close()
t.Run("call", func(t *testing.T) {
expect := "something"
var got string
r := sim.Run(context.Background(), func(ctx context.Context, sim *Simulation) error {
got = expect
return nil
})
if r.Error != nil {
t.Errorf("unexpected error: %v", r.Error)
}
if got != expect {
t.Errorf("expected %q, got %q", expect, got)
}
})
t.Run("cancellation", func(t *testing.T) {
ctx, cancel := context.WithTimeout(context.Background(), 50*time.Millisecond)
defer cancel()
r := sim.Run(ctx, func(ctx context.Context, sim *Simulation) error {
time.Sleep(time.Second)
return nil
})
if r.Error != context.DeadlineExceeded {
t.Errorf("unexpected error: %v", r.Error)
}
})
t.Run("context value and duration", func(t *testing.T) {
ctx := context.WithValue(context.Background(), "hey", "there")
sleep := 50 * time.Millisecond
r := sim.Run(ctx, func(ctx context.Context, sim *Simulation) error {
if ctx.Value("hey") != "there" {
return errors.New("expected context value not passed")
}
time.Sleep(sleep)
return nil
})
if r.Error != nil {
t.Errorf("unexpected error: %v", r.Error)
}
if r.Duration < sleep {
t.Errorf("reported run duration less then expected: %s", r.Duration)
}
})
}
// TestClose tests are Close method triggers all close functions and are all nodes not up anymore.
func TestClose(t *testing.T) {
var mu sync.Mutex
var cleanupCount int
sleep := 50 * time.Millisecond
sim := New(map[string]ServiceFunc{
"noop": func(ctx *adapters.ServiceContext, b *sync.Map) (node.Service, func(), error) {
return newNoopService(), func() {
time.Sleep(sleep)
mu.Lock()
defer mu.Unlock()
cleanupCount++
}, nil
},
})
nodeCount := 30
_, err := sim.AddNodes(nodeCount)
if err != nil {
t.Fatal(err)
}
var upNodeCount int
for _, n := range sim.Net.GetNodes() {
if n.Up() {
upNodeCount++
}
}
if upNodeCount != nodeCount {
t.Errorf("all nodes should be up, insted only %v are up", upNodeCount)
}
sim.Close()
if cleanupCount != nodeCount {
t.Errorf("number of cleanups expected %v, got %v", nodeCount, cleanupCount)
}
upNodeCount = 0
for _, n := range sim.Net.GetNodes() {
if n.Up() {
upNodeCount++
}
}
if upNodeCount != 0 {
t.Errorf("all nodes should be down, insted %v are up", upNodeCount)
}
}
// TestDone checks if Close method triggers the closing of done channel.
func TestDone(t *testing.T) {
sim := New(noopServiceFuncMap)
sleep := 50 * time.Millisecond
timeout := 2 * time.Second
start := time.Now()
go func() {
time.Sleep(sleep)
sim.Close()
}()
select {
case <-time.After(timeout):
t.Error("done channel closing timed out")
case <-sim.Done():
if d := time.Since(start); d < sleep {
t.Errorf("done channel closed sooner then expected: %s", d)
}
}
}
// a helper map for usual services that do not do anything
var noopServiceFuncMap = map[string]ServiceFunc{
"noop": noopServiceFunc,
}
// a helper function for most basic noop service
func noopServiceFunc(_ *adapters.ServiceContext, _ *sync.Map) (node.Service, func(), error) {
return newNoopService(), nil, nil
}
func newNoopService() node.Service {
return &noopService{}
}
// a helper function for most basic Noop service
// of a different type then NoopService to test
// multiple services on one node.
func noopService2Func(_ *adapters.ServiceContext, _ *sync.Map) (node.Service, func(), error) {
return new(noopService2), nil, nil
}
// NoopService2 is the service that does not do anything
// but implements node.Service interface.
type noopService2 struct {
simulations.NoopService
}
type noopService struct {
simulations.NoopService
}