go-ethereum/core/rawdb/accessors_chain.go
gary rong 5a1b384352
core: persist bad blocks (#21827)
* core: persist bad blocks

* core, eth, internal: address comments

* core/rawdb: add badblocks to inspector

* core, eth: update

* internal: revert

* core, eth: only save 10 bad blocks

* core/rawdb: address comments

* core/rawdb: fix

* core: address comments
2021-01-10 12:54:15 +01:00

828 lines
28 KiB
Go

// Copyright 2018 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package rawdb
import (
"bytes"
"encoding/binary"
"math/big"
"sort"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/core/types"
"github.com/ethereum/go-ethereum/crypto"
"github.com/ethereum/go-ethereum/ethdb"
"github.com/ethereum/go-ethereum/log"
"github.com/ethereum/go-ethereum/params"
"github.com/ethereum/go-ethereum/rlp"
)
// ReadCanonicalHash retrieves the hash assigned to a canonical block number.
func ReadCanonicalHash(db ethdb.Reader, number uint64) common.Hash {
data, _ := db.Ancient(freezerHashTable, number)
if len(data) == 0 {
data, _ = db.Get(headerHashKey(number))
// In the background freezer is moving data from leveldb to flatten files.
// So during the first check for ancient db, the data is not yet in there,
// but when we reach into leveldb, the data was already moved. That would
// result in a not found error.
if len(data) == 0 {
data, _ = db.Ancient(freezerHashTable, number)
}
}
if len(data) == 0 {
return common.Hash{}
}
return common.BytesToHash(data)
}
// WriteCanonicalHash stores the hash assigned to a canonical block number.
func WriteCanonicalHash(db ethdb.KeyValueWriter, hash common.Hash, number uint64) {
if err := db.Put(headerHashKey(number), hash.Bytes()); err != nil {
log.Crit("Failed to store number to hash mapping", "err", err)
}
}
// DeleteCanonicalHash removes the number to hash canonical mapping.
func DeleteCanonicalHash(db ethdb.KeyValueWriter, number uint64) {
if err := db.Delete(headerHashKey(number)); err != nil {
log.Crit("Failed to delete number to hash mapping", "err", err)
}
}
// ReadAllHashes retrieves all the hashes assigned to blocks at a certain heights,
// both canonical and reorged forks included.
func ReadAllHashes(db ethdb.Iteratee, number uint64) []common.Hash {
prefix := headerKeyPrefix(number)
hashes := make([]common.Hash, 0, 1)
it := db.NewIterator(prefix, nil)
defer it.Release()
for it.Next() {
if key := it.Key(); len(key) == len(prefix)+32 {
hashes = append(hashes, common.BytesToHash(key[len(key)-32:]))
}
}
return hashes
}
// ReadAllCanonicalHashes retrieves all canonical number and hash mappings at the
// certain chain range. If the accumulated entries reaches the given threshold,
// abort the iteration and return the semi-finish result.
func ReadAllCanonicalHashes(db ethdb.Iteratee, from uint64, to uint64, limit int) ([]uint64, []common.Hash) {
// Short circuit if the limit is 0.
if limit == 0 {
return nil, nil
}
var (
numbers []uint64
hashes []common.Hash
)
// Construct the key prefix of start point.
start, end := headerHashKey(from), headerHashKey(to)
it := db.NewIterator(nil, start)
defer it.Release()
for it.Next() {
if bytes.Compare(it.Key(), end) >= 0 {
break
}
if key := it.Key(); len(key) == len(headerPrefix)+8+1 && bytes.Equal(key[len(key)-1:], headerHashSuffix) {
numbers = append(numbers, binary.BigEndian.Uint64(key[len(headerPrefix):len(headerPrefix)+8]))
hashes = append(hashes, common.BytesToHash(it.Value()))
// If the accumulated entries reaches the limit threshold, return.
if len(numbers) >= limit {
break
}
}
}
return numbers, hashes
}
// ReadHeaderNumber returns the header number assigned to a hash.
func ReadHeaderNumber(db ethdb.KeyValueReader, hash common.Hash) *uint64 {
data, _ := db.Get(headerNumberKey(hash))
if len(data) != 8 {
return nil
}
number := binary.BigEndian.Uint64(data)
return &number
}
// WriteHeaderNumber stores the hash->number mapping.
func WriteHeaderNumber(db ethdb.KeyValueWriter, hash common.Hash, number uint64) {
key := headerNumberKey(hash)
enc := encodeBlockNumber(number)
if err := db.Put(key, enc); err != nil {
log.Crit("Failed to store hash to number mapping", "err", err)
}
}
// DeleteHeaderNumber removes hash->number mapping.
func DeleteHeaderNumber(db ethdb.KeyValueWriter, hash common.Hash) {
if err := db.Delete(headerNumberKey(hash)); err != nil {
log.Crit("Failed to delete hash to number mapping", "err", err)
}
}
// ReadHeadHeaderHash retrieves the hash of the current canonical head header.
func ReadHeadHeaderHash(db ethdb.KeyValueReader) common.Hash {
data, _ := db.Get(headHeaderKey)
if len(data) == 0 {
return common.Hash{}
}
return common.BytesToHash(data)
}
// WriteHeadHeaderHash stores the hash of the current canonical head header.
func WriteHeadHeaderHash(db ethdb.KeyValueWriter, hash common.Hash) {
if err := db.Put(headHeaderKey, hash.Bytes()); err != nil {
log.Crit("Failed to store last header's hash", "err", err)
}
}
// ReadHeadBlockHash retrieves the hash of the current canonical head block.
func ReadHeadBlockHash(db ethdb.KeyValueReader) common.Hash {
data, _ := db.Get(headBlockKey)
if len(data) == 0 {
return common.Hash{}
}
return common.BytesToHash(data)
}
// WriteHeadBlockHash stores the head block's hash.
func WriteHeadBlockHash(db ethdb.KeyValueWriter, hash common.Hash) {
if err := db.Put(headBlockKey, hash.Bytes()); err != nil {
log.Crit("Failed to store last block's hash", "err", err)
}
}
// ReadHeadFastBlockHash retrieves the hash of the current fast-sync head block.
func ReadHeadFastBlockHash(db ethdb.KeyValueReader) common.Hash {
data, _ := db.Get(headFastBlockKey)
if len(data) == 0 {
return common.Hash{}
}
return common.BytesToHash(data)
}
// WriteHeadFastBlockHash stores the hash of the current fast-sync head block.
func WriteHeadFastBlockHash(db ethdb.KeyValueWriter, hash common.Hash) {
if err := db.Put(headFastBlockKey, hash.Bytes()); err != nil {
log.Crit("Failed to store last fast block's hash", "err", err)
}
}
// ReadLastPivotNumber retrieves the number of the last pivot block. If the node
// full synced, the last pivot will always be nil.
func ReadLastPivotNumber(db ethdb.KeyValueReader) *uint64 {
data, _ := db.Get(lastPivotKey)
if len(data) == 0 {
return nil
}
var pivot uint64
if err := rlp.DecodeBytes(data, &pivot); err != nil {
log.Error("Invalid pivot block number in database", "err", err)
return nil
}
return &pivot
}
// WriteLastPivotNumber stores the number of the last pivot block.
func WriteLastPivotNumber(db ethdb.KeyValueWriter, pivot uint64) {
enc, err := rlp.EncodeToBytes(pivot)
if err != nil {
log.Crit("Failed to encode pivot block number", "err", err)
}
if err := db.Put(lastPivotKey, enc); err != nil {
log.Crit("Failed to store pivot block number", "err", err)
}
}
// ReadFastTrieProgress retrieves the number of tries nodes fast synced to allow
// reporting correct numbers across restarts.
func ReadFastTrieProgress(db ethdb.KeyValueReader) uint64 {
data, _ := db.Get(fastTrieProgressKey)
if len(data) == 0 {
return 0
}
return new(big.Int).SetBytes(data).Uint64()
}
// WriteFastTrieProgress stores the fast sync trie process counter to support
// retrieving it across restarts.
func WriteFastTrieProgress(db ethdb.KeyValueWriter, count uint64) {
if err := db.Put(fastTrieProgressKey, new(big.Int).SetUint64(count).Bytes()); err != nil {
log.Crit("Failed to store fast sync trie progress", "err", err)
}
}
// ReadTxIndexTail retrieves the number of oldest indexed block
// whose transaction indices has been indexed. If the corresponding entry
// is non-existent in database it means the indexing has been finished.
func ReadTxIndexTail(db ethdb.KeyValueReader) *uint64 {
data, _ := db.Get(txIndexTailKey)
if len(data) != 8 {
return nil
}
number := binary.BigEndian.Uint64(data)
return &number
}
// WriteTxIndexTail stores the number of oldest indexed block
// into database.
func WriteTxIndexTail(db ethdb.KeyValueWriter, number uint64) {
if err := db.Put(txIndexTailKey, encodeBlockNumber(number)); err != nil {
log.Crit("Failed to store the transaction index tail", "err", err)
}
}
// ReadFastTxLookupLimit retrieves the tx lookup limit used in fast sync.
func ReadFastTxLookupLimit(db ethdb.KeyValueReader) *uint64 {
data, _ := db.Get(fastTxLookupLimitKey)
if len(data) != 8 {
return nil
}
number := binary.BigEndian.Uint64(data)
return &number
}
// WriteFastTxLookupLimit stores the txlookup limit used in fast sync into database.
func WriteFastTxLookupLimit(db ethdb.KeyValueWriter, number uint64) {
if err := db.Put(fastTxLookupLimitKey, encodeBlockNumber(number)); err != nil {
log.Crit("Failed to store transaction lookup limit for fast sync", "err", err)
}
}
// ReadHeaderRLP retrieves a block header in its raw RLP database encoding.
func ReadHeaderRLP(db ethdb.Reader, hash common.Hash, number uint64) rlp.RawValue {
// First try to look up the data in ancient database. Extra hash
// comparison is necessary since ancient database only maintains
// the canonical data.
data, _ := db.Ancient(freezerHeaderTable, number)
if len(data) > 0 && crypto.Keccak256Hash(data) == hash {
return data
}
// Then try to look up the data in leveldb.
data, _ = db.Get(headerKey(number, hash))
if len(data) > 0 {
return data
}
// In the background freezer is moving data from leveldb to flatten files.
// So during the first check for ancient db, the data is not yet in there,
// but when we reach into leveldb, the data was already moved. That would
// result in a not found error.
data, _ = db.Ancient(freezerHeaderTable, number)
if len(data) > 0 && crypto.Keccak256Hash(data) == hash {
return data
}
return nil // Can't find the data anywhere.
}
// HasHeader verifies the existence of a block header corresponding to the hash.
func HasHeader(db ethdb.Reader, hash common.Hash, number uint64) bool {
if has, err := db.Ancient(freezerHashTable, number); err == nil && common.BytesToHash(has) == hash {
return true
}
if has, err := db.Has(headerKey(number, hash)); !has || err != nil {
return false
}
return true
}
// ReadHeader retrieves the block header corresponding to the hash.
func ReadHeader(db ethdb.Reader, hash common.Hash, number uint64) *types.Header {
data := ReadHeaderRLP(db, hash, number)
if len(data) == 0 {
return nil
}
header := new(types.Header)
if err := rlp.Decode(bytes.NewReader(data), header); err != nil {
log.Error("Invalid block header RLP", "hash", hash, "err", err)
return nil
}
return header
}
// WriteHeader stores a block header into the database and also stores the hash-
// to-number mapping.
func WriteHeader(db ethdb.KeyValueWriter, header *types.Header) {
var (
hash = header.Hash()
number = header.Number.Uint64()
)
// Write the hash -> number mapping
WriteHeaderNumber(db, hash, number)
// Write the encoded header
data, err := rlp.EncodeToBytes(header)
if err != nil {
log.Crit("Failed to RLP encode header", "err", err)
}
key := headerKey(number, hash)
if err := db.Put(key, data); err != nil {
log.Crit("Failed to store header", "err", err)
}
}
// DeleteHeader removes all block header data associated with a hash.
func DeleteHeader(db ethdb.KeyValueWriter, hash common.Hash, number uint64) {
deleteHeaderWithoutNumber(db, hash, number)
if err := db.Delete(headerNumberKey(hash)); err != nil {
log.Crit("Failed to delete hash to number mapping", "err", err)
}
}
// deleteHeaderWithoutNumber removes only the block header but does not remove
// the hash to number mapping.
func deleteHeaderWithoutNumber(db ethdb.KeyValueWriter, hash common.Hash, number uint64) {
if err := db.Delete(headerKey(number, hash)); err != nil {
log.Crit("Failed to delete header", "err", err)
}
}
// ReadBodyRLP retrieves the block body (transactions and uncles) in RLP encoding.
func ReadBodyRLP(db ethdb.Reader, hash common.Hash, number uint64) rlp.RawValue {
// First try to look up the data in ancient database. Extra hash
// comparison is necessary since ancient database only maintains
// the canonical data.
data, _ := db.Ancient(freezerBodiesTable, number)
if len(data) > 0 {
h, _ := db.Ancient(freezerHashTable, number)
if common.BytesToHash(h) == hash {
return data
}
}
// Then try to look up the data in leveldb.
data, _ = db.Get(blockBodyKey(number, hash))
if len(data) > 0 {
return data
}
// In the background freezer is moving data from leveldb to flatten files.
// So during the first check for ancient db, the data is not yet in there,
// but when we reach into leveldb, the data was already moved. That would
// result in a not found error.
data, _ = db.Ancient(freezerBodiesTable, number)
if len(data) > 0 {
h, _ := db.Ancient(freezerHashTable, number)
if common.BytesToHash(h) == hash {
return data
}
}
return nil // Can't find the data anywhere.
}
// ReadCanonicalBodyRLP retrieves the block body (transactions and uncles) for the canonical
// block at number, in RLP encoding.
func ReadCanonicalBodyRLP(db ethdb.Reader, number uint64) rlp.RawValue {
// If it's an ancient one, we don't need the canonical hash
data, _ := db.Ancient(freezerBodiesTable, number)
if len(data) == 0 {
// Need to get the hash
data, _ = db.Get(blockBodyKey(number, ReadCanonicalHash(db, number)))
// In the background freezer is moving data from leveldb to flatten files.
// So during the first check for ancient db, the data is not yet in there,
// but when we reach into leveldb, the data was already moved. That would
// result in a not found error.
if len(data) == 0 {
data, _ = db.Ancient(freezerBodiesTable, number)
}
}
return data
}
// WriteBodyRLP stores an RLP encoded block body into the database.
func WriteBodyRLP(db ethdb.KeyValueWriter, hash common.Hash, number uint64, rlp rlp.RawValue) {
if err := db.Put(blockBodyKey(number, hash), rlp); err != nil {
log.Crit("Failed to store block body", "err", err)
}
}
// HasBody verifies the existence of a block body corresponding to the hash.
func HasBody(db ethdb.Reader, hash common.Hash, number uint64) bool {
if has, err := db.Ancient(freezerHashTable, number); err == nil && common.BytesToHash(has) == hash {
return true
}
if has, err := db.Has(blockBodyKey(number, hash)); !has || err != nil {
return false
}
return true
}
// ReadBody retrieves the block body corresponding to the hash.
func ReadBody(db ethdb.Reader, hash common.Hash, number uint64) *types.Body {
data := ReadBodyRLP(db, hash, number)
if len(data) == 0 {
return nil
}
body := new(types.Body)
if err := rlp.Decode(bytes.NewReader(data), body); err != nil {
log.Error("Invalid block body RLP", "hash", hash, "err", err)
return nil
}
return body
}
// WriteBody stores a block body into the database.
func WriteBody(db ethdb.KeyValueWriter, hash common.Hash, number uint64, body *types.Body) {
data, err := rlp.EncodeToBytes(body)
if err != nil {
log.Crit("Failed to RLP encode body", "err", err)
}
WriteBodyRLP(db, hash, number, data)
}
// DeleteBody removes all block body data associated with a hash.
func DeleteBody(db ethdb.KeyValueWriter, hash common.Hash, number uint64) {
if err := db.Delete(blockBodyKey(number, hash)); err != nil {
log.Crit("Failed to delete block body", "err", err)
}
}
// ReadTdRLP retrieves a block's total difficulty corresponding to the hash in RLP encoding.
func ReadTdRLP(db ethdb.Reader, hash common.Hash, number uint64) rlp.RawValue {
// First try to look up the data in ancient database. Extra hash
// comparison is necessary since ancient database only maintains
// the canonical data.
data, _ := db.Ancient(freezerDifficultyTable, number)
if len(data) > 0 {
h, _ := db.Ancient(freezerHashTable, number)
if common.BytesToHash(h) == hash {
return data
}
}
// Then try to look up the data in leveldb.
data, _ = db.Get(headerTDKey(number, hash))
if len(data) > 0 {
return data
}
// In the background freezer is moving data from leveldb to flatten files.
// So during the first check for ancient db, the data is not yet in there,
// but when we reach into leveldb, the data was already moved. That would
// result in a not found error.
data, _ = db.Ancient(freezerDifficultyTable, number)
if len(data) > 0 {
h, _ := db.Ancient(freezerHashTable, number)
if common.BytesToHash(h) == hash {
return data
}
}
return nil // Can't find the data anywhere.
}
// ReadTd retrieves a block's total difficulty corresponding to the hash.
func ReadTd(db ethdb.Reader, hash common.Hash, number uint64) *big.Int {
data := ReadTdRLP(db, hash, number)
if len(data) == 0 {
return nil
}
td := new(big.Int)
if err := rlp.Decode(bytes.NewReader(data), td); err != nil {
log.Error("Invalid block total difficulty RLP", "hash", hash, "err", err)
return nil
}
return td
}
// WriteTd stores the total difficulty of a block into the database.
func WriteTd(db ethdb.KeyValueWriter, hash common.Hash, number uint64, td *big.Int) {
data, err := rlp.EncodeToBytes(td)
if err != nil {
log.Crit("Failed to RLP encode block total difficulty", "err", err)
}
if err := db.Put(headerTDKey(number, hash), data); err != nil {
log.Crit("Failed to store block total difficulty", "err", err)
}
}
// DeleteTd removes all block total difficulty data associated with a hash.
func DeleteTd(db ethdb.KeyValueWriter, hash common.Hash, number uint64) {
if err := db.Delete(headerTDKey(number, hash)); err != nil {
log.Crit("Failed to delete block total difficulty", "err", err)
}
}
// HasReceipts verifies the existence of all the transaction receipts belonging
// to a block.
func HasReceipts(db ethdb.Reader, hash common.Hash, number uint64) bool {
if has, err := db.Ancient(freezerHashTable, number); err == nil && common.BytesToHash(has) == hash {
return true
}
if has, err := db.Has(blockReceiptsKey(number, hash)); !has || err != nil {
return false
}
return true
}
// ReadReceiptsRLP retrieves all the transaction receipts belonging to a block in RLP encoding.
func ReadReceiptsRLP(db ethdb.Reader, hash common.Hash, number uint64) rlp.RawValue {
// First try to look up the data in ancient database. Extra hash
// comparison is necessary since ancient database only maintains
// the canonical data.
data, _ := db.Ancient(freezerReceiptTable, number)
if len(data) > 0 {
h, _ := db.Ancient(freezerHashTable, number)
if common.BytesToHash(h) == hash {
return data
}
}
// Then try to look up the data in leveldb.
data, _ = db.Get(blockReceiptsKey(number, hash))
if len(data) > 0 {
return data
}
// In the background freezer is moving data from leveldb to flatten files.
// So during the first check for ancient db, the data is not yet in there,
// but when we reach into leveldb, the data was already moved. That would
// result in a not found error.
data, _ = db.Ancient(freezerReceiptTable, number)
if len(data) > 0 {
h, _ := db.Ancient(freezerHashTable, number)
if common.BytesToHash(h) == hash {
return data
}
}
return nil // Can't find the data anywhere.
}
// ReadRawReceipts retrieves all the transaction receipts belonging to a block.
// The receipt metadata fields are not guaranteed to be populated, so they
// should not be used. Use ReadReceipts instead if the metadata is needed.
func ReadRawReceipts(db ethdb.Reader, hash common.Hash, number uint64) types.Receipts {
// Retrieve the flattened receipt slice
data := ReadReceiptsRLP(db, hash, number)
if len(data) == 0 {
return nil
}
// Convert the receipts from their storage form to their internal representation
storageReceipts := []*types.ReceiptForStorage{}
if err := rlp.DecodeBytes(data, &storageReceipts); err != nil {
log.Error("Invalid receipt array RLP", "hash", hash, "err", err)
return nil
}
receipts := make(types.Receipts, len(storageReceipts))
for i, storageReceipt := range storageReceipts {
receipts[i] = (*types.Receipt)(storageReceipt)
}
return receipts
}
// ReadReceipts retrieves all the transaction receipts belonging to a block, including
// its correspoinding metadata fields. If it is unable to populate these metadata
// fields then nil is returned.
//
// The current implementation populates these metadata fields by reading the receipts'
// corresponding block body, so if the block body is not found it will return nil even
// if the receipt itself is stored.
func ReadReceipts(db ethdb.Reader, hash common.Hash, number uint64, config *params.ChainConfig) types.Receipts {
// We're deriving many fields from the block body, retrieve beside the receipt
receipts := ReadRawReceipts(db, hash, number)
if receipts == nil {
return nil
}
body := ReadBody(db, hash, number)
if body == nil {
log.Error("Missing body but have receipt", "hash", hash, "number", number)
return nil
}
if err := receipts.DeriveFields(config, hash, number, body.Transactions); err != nil {
log.Error("Failed to derive block receipts fields", "hash", hash, "number", number, "err", err)
return nil
}
return receipts
}
// WriteReceipts stores all the transaction receipts belonging to a block.
func WriteReceipts(db ethdb.KeyValueWriter, hash common.Hash, number uint64, receipts types.Receipts) {
// Convert the receipts into their storage form and serialize them
storageReceipts := make([]*types.ReceiptForStorage, len(receipts))
for i, receipt := range receipts {
storageReceipts[i] = (*types.ReceiptForStorage)(receipt)
}
bytes, err := rlp.EncodeToBytes(storageReceipts)
if err != nil {
log.Crit("Failed to encode block receipts", "err", err)
}
// Store the flattened receipt slice
if err := db.Put(blockReceiptsKey(number, hash), bytes); err != nil {
log.Crit("Failed to store block receipts", "err", err)
}
}
// DeleteReceipts removes all receipt data associated with a block hash.
func DeleteReceipts(db ethdb.KeyValueWriter, hash common.Hash, number uint64) {
if err := db.Delete(blockReceiptsKey(number, hash)); err != nil {
log.Crit("Failed to delete block receipts", "err", err)
}
}
// ReadBlock retrieves an entire block corresponding to the hash, assembling it
// back from the stored header and body. If either the header or body could not
// be retrieved nil is returned.
//
// Note, due to concurrent download of header and block body the header and thus
// canonical hash can be stored in the database but the body data not (yet).
func ReadBlock(db ethdb.Reader, hash common.Hash, number uint64) *types.Block {
header := ReadHeader(db, hash, number)
if header == nil {
return nil
}
body := ReadBody(db, hash, number)
if body == nil {
return nil
}
return types.NewBlockWithHeader(header).WithBody(body.Transactions, body.Uncles)
}
// WriteBlock serializes a block into the database, header and body separately.
func WriteBlock(db ethdb.KeyValueWriter, block *types.Block) {
WriteBody(db, block.Hash(), block.NumberU64(), block.Body())
WriteHeader(db, block.Header())
}
// WriteAncientBlock writes entire block data into ancient store and returns the total written size.
func WriteAncientBlock(db ethdb.AncientWriter, block *types.Block, receipts types.Receipts, td *big.Int) int {
// Encode all block components to RLP format.
headerBlob, err := rlp.EncodeToBytes(block.Header())
if err != nil {
log.Crit("Failed to RLP encode block header", "err", err)
}
bodyBlob, err := rlp.EncodeToBytes(block.Body())
if err != nil {
log.Crit("Failed to RLP encode body", "err", err)
}
storageReceipts := make([]*types.ReceiptForStorage, len(receipts))
for i, receipt := range receipts {
storageReceipts[i] = (*types.ReceiptForStorage)(receipt)
}
receiptBlob, err := rlp.EncodeToBytes(storageReceipts)
if err != nil {
log.Crit("Failed to RLP encode block receipts", "err", err)
}
tdBlob, err := rlp.EncodeToBytes(td)
if err != nil {
log.Crit("Failed to RLP encode block total difficulty", "err", err)
}
// Write all blob to flatten files.
err = db.AppendAncient(block.NumberU64(), block.Hash().Bytes(), headerBlob, bodyBlob, receiptBlob, tdBlob)
if err != nil {
log.Crit("Failed to write block data to ancient store", "err", err)
}
return len(headerBlob) + len(bodyBlob) + len(receiptBlob) + len(tdBlob) + common.HashLength
}
// DeleteBlock removes all block data associated with a hash.
func DeleteBlock(db ethdb.KeyValueWriter, hash common.Hash, number uint64) {
DeleteReceipts(db, hash, number)
DeleteHeader(db, hash, number)
DeleteBody(db, hash, number)
DeleteTd(db, hash, number)
}
// DeleteBlockWithoutNumber removes all block data associated with a hash, except
// the hash to number mapping.
func DeleteBlockWithoutNumber(db ethdb.KeyValueWriter, hash common.Hash, number uint64) {
DeleteReceipts(db, hash, number)
deleteHeaderWithoutNumber(db, hash, number)
DeleteBody(db, hash, number)
DeleteTd(db, hash, number)
}
const badBlockToKeep = 10
type badBlock struct {
Header *types.Header
Body *types.Body
}
// badBlockList implements the sort interface to allow sorting a list of
// bad blocks by their number in the reverse order.
type badBlockList []*badBlock
func (s badBlockList) Len() int { return len(s) }
func (s badBlockList) Less(i, j int) bool {
return s[i].Header.Number.Uint64() < s[j].Header.Number.Uint64()
}
func (s badBlockList) Swap(i, j int) { s[i], s[j] = s[j], s[i] }
// ReadBadBlock retrieves the bad block with the corresponding block hash.
func ReadBadBlock(db ethdb.Reader, hash common.Hash) *types.Block {
blob, err := db.Get(badBlockKey)
if err != nil {
return nil
}
var badBlocks badBlockList
if err := rlp.DecodeBytes(blob, &badBlocks); err != nil {
return nil
}
for _, bad := range badBlocks {
if bad.Header.Hash() == hash {
return types.NewBlockWithHeader(bad.Header).WithBody(bad.Body.Transactions, bad.Body.Uncles)
}
}
return nil
}
// ReadAllBadBlocks retrieves all the bad blocks in the database.
// All returned blocks are sorted in reverse order by number.
func ReadAllBadBlocks(db ethdb.Reader) []*types.Block {
blob, err := db.Get(badBlockKey)
if err != nil {
return nil
}
var badBlocks badBlockList
if err := rlp.DecodeBytes(blob, &badBlocks); err != nil {
return nil
}
var blocks []*types.Block
for _, bad := range badBlocks {
blocks = append(blocks, types.NewBlockWithHeader(bad.Header).WithBody(bad.Body.Transactions, bad.Body.Uncles))
}
return blocks
}
// WriteBadBlock serializes the bad block into the database. If the cumulated
// bad blocks exceeds the limitation, the oldest will be dropped.
func WriteBadBlock(db ethdb.KeyValueStore, block *types.Block) {
blob, err := db.Get(badBlockKey)
if err != nil {
log.Warn("Failed to load old bad blocks", "error", err)
}
var badBlocks badBlockList
if len(blob) > 0 {
if err := rlp.DecodeBytes(blob, &badBlocks); err != nil {
log.Crit("Failed to decode old bad blocks", "error", err)
}
}
for _, b := range badBlocks {
if b.Header.Number.Uint64() == block.NumberU64() && b.Header.Hash() == block.Hash() {
log.Info("Skip duplicated bad block", "number", block.NumberU64(), "hash", block.Hash())
return
}
}
badBlocks = append(badBlocks, &badBlock{
Header: block.Header(),
Body: block.Body(),
})
sort.Sort(sort.Reverse(badBlocks))
if len(badBlocks) > badBlockToKeep {
badBlocks = badBlocks[:badBlockToKeep]
}
data, err := rlp.EncodeToBytes(badBlocks)
if err != nil {
log.Crit("Failed to encode bad blocks", "err", err)
}
if err := db.Put(badBlockKey, data); err != nil {
log.Crit("Failed to write bad blocks", "err", err)
}
}
// DeleteBadBlocks deletes all the bad blocks from the database
func DeleteBadBlocks(db ethdb.KeyValueWriter) {
if err := db.Delete(badBlockKey); err != nil {
log.Crit("Failed to delete bad blocks", "err", err)
}
}
// FindCommonAncestor returns the last common ancestor of two block headers
func FindCommonAncestor(db ethdb.Reader, a, b *types.Header) *types.Header {
for bn := b.Number.Uint64(); a.Number.Uint64() > bn; {
a = ReadHeader(db, a.ParentHash, a.Number.Uint64()-1)
if a == nil {
return nil
}
}
for an := a.Number.Uint64(); an < b.Number.Uint64(); {
b = ReadHeader(db, b.ParentHash, b.Number.Uint64()-1)
if b == nil {
return nil
}
}
for a.Hash() != b.Hash() {
a = ReadHeader(db, a.ParentHash, a.Number.Uint64()-1)
if a == nil {
return nil
}
b = ReadHeader(db, b.ParentHash, b.Number.Uint64()-1)
if b == nil {
return nil
}
}
return a
}