4bd55a064c
common/math: does not change base parameter
272 lines
7.0 KiB
Go
272 lines
7.0 KiB
Go
// Copyright 2017 The go-ethereum Authors
|
|
// This file is part of the go-ethereum library.
|
|
//
|
|
// The go-ethereum library is free software: you can redistribute it and/or modify
|
|
// it under the terms of the GNU Lesser General Public License as published by
|
|
// the Free Software Foundation, either version 3 of the License, or
|
|
// (at your option) any later version.
|
|
//
|
|
// The go-ethereum library is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
// GNU Lesser General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public License
|
|
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
// Package math provides integer math utilities.
|
|
package math
|
|
|
|
import (
|
|
"fmt"
|
|
"math/big"
|
|
)
|
|
|
|
// Various big integer limit values.
|
|
var (
|
|
tt255 = BigPow(2, 255)
|
|
tt256 = BigPow(2, 256)
|
|
tt256m1 = new(big.Int).Sub(tt256, big.NewInt(1))
|
|
tt63 = BigPow(2, 63)
|
|
MaxBig256 = new(big.Int).Set(tt256m1)
|
|
MaxBig63 = new(big.Int).Sub(tt63, big.NewInt(1))
|
|
)
|
|
|
|
const (
|
|
// number of bits in a big.Word
|
|
wordBits = 32 << (uint64(^big.Word(0)) >> 63)
|
|
// number of bytes in a big.Word
|
|
wordBytes = wordBits / 8
|
|
)
|
|
|
|
// HexOrDecimal256 marshals big.Int as hex or decimal.
|
|
type HexOrDecimal256 big.Int
|
|
|
|
// NewHexOrDecimal256 creates a new HexOrDecimal256
|
|
func NewHexOrDecimal256(x int64) *HexOrDecimal256 {
|
|
b := big.NewInt(x)
|
|
h := HexOrDecimal256(*b)
|
|
return &h
|
|
}
|
|
|
|
// UnmarshalJSON implements json.Unmarshaler.
|
|
//
|
|
// It is similar to UnmarshalText, but allows parsing real decimals too, not just
|
|
// quoted decimal strings.
|
|
func (i *HexOrDecimal256) UnmarshalJSON(input []byte) error {
|
|
if len(input) > 0 && input[0] == '"' {
|
|
input = input[1 : len(input)-1]
|
|
}
|
|
return i.UnmarshalText(input)
|
|
}
|
|
|
|
// UnmarshalText implements encoding.TextUnmarshaler.
|
|
func (i *HexOrDecimal256) UnmarshalText(input []byte) error {
|
|
bigint, ok := ParseBig256(string(input))
|
|
if !ok {
|
|
return fmt.Errorf("invalid hex or decimal integer %q", input)
|
|
}
|
|
*i = HexOrDecimal256(*bigint)
|
|
return nil
|
|
}
|
|
|
|
// MarshalText implements encoding.TextMarshaler.
|
|
func (i *HexOrDecimal256) MarshalText() ([]byte, error) {
|
|
if i == nil {
|
|
return []byte("0x0"), nil
|
|
}
|
|
return []byte(fmt.Sprintf("%#x", (*big.Int)(i))), nil
|
|
}
|
|
|
|
// Decimal256 unmarshals big.Int as a decimal string. When unmarshalling,
|
|
// it however accepts either "0x"-prefixed (hex encoded) or non-prefixed (decimal)
|
|
type Decimal256 big.Int
|
|
|
|
// NewDecimal256 creates a new Decimal256
|
|
func NewDecimal256(x int64) *Decimal256 {
|
|
b := big.NewInt(x)
|
|
d := Decimal256(*b)
|
|
return &d
|
|
}
|
|
|
|
// UnmarshalText implements encoding.TextUnmarshaler.
|
|
func (i *Decimal256) UnmarshalText(input []byte) error {
|
|
bigint, ok := ParseBig256(string(input))
|
|
if !ok {
|
|
return fmt.Errorf("invalid hex or decimal integer %q", input)
|
|
}
|
|
*i = Decimal256(*bigint)
|
|
return nil
|
|
}
|
|
|
|
// MarshalText implements encoding.TextMarshaler.
|
|
func (i *Decimal256) MarshalText() ([]byte, error) {
|
|
return []byte(i.String()), nil
|
|
}
|
|
|
|
// String implements Stringer.
|
|
func (i *Decimal256) String() string {
|
|
if i == nil {
|
|
return "0"
|
|
}
|
|
return fmt.Sprintf("%#d", (*big.Int)(i))
|
|
}
|
|
|
|
// ParseBig256 parses s as a 256 bit integer in decimal or hexadecimal syntax.
|
|
// Leading zeros are accepted. The empty string parses as zero.
|
|
func ParseBig256(s string) (*big.Int, bool) {
|
|
if s == "" {
|
|
return new(big.Int), true
|
|
}
|
|
var bigint *big.Int
|
|
var ok bool
|
|
if len(s) >= 2 && (s[:2] == "0x" || s[:2] == "0X") {
|
|
bigint, ok = new(big.Int).SetString(s[2:], 16)
|
|
} else {
|
|
bigint, ok = new(big.Int).SetString(s, 10)
|
|
}
|
|
if ok && bigint.BitLen() > 256 {
|
|
bigint, ok = nil, false
|
|
}
|
|
return bigint, ok
|
|
}
|
|
|
|
// MustParseBig256 parses s as a 256 bit big integer and panics if the string is invalid.
|
|
func MustParseBig256(s string) *big.Int {
|
|
v, ok := ParseBig256(s)
|
|
if !ok {
|
|
panic("invalid 256 bit integer: " + s)
|
|
}
|
|
return v
|
|
}
|
|
|
|
// BigPow returns a ** b as a big integer.
|
|
func BigPow(a, b int64) *big.Int {
|
|
r := big.NewInt(a)
|
|
return r.Exp(r, big.NewInt(b), nil)
|
|
}
|
|
|
|
// BigMax returns the larger of x or y.
|
|
func BigMax(x, y *big.Int) *big.Int {
|
|
if x.Cmp(y) < 0 {
|
|
return y
|
|
}
|
|
return x
|
|
}
|
|
|
|
// BigMin returns the smaller of x or y.
|
|
func BigMin(x, y *big.Int) *big.Int {
|
|
if x.Cmp(y) > 0 {
|
|
return y
|
|
}
|
|
return x
|
|
}
|
|
|
|
// FirstBitSet returns the index of the first 1 bit in v, counting from LSB.
|
|
func FirstBitSet(v *big.Int) int {
|
|
for i := 0; i < v.BitLen(); i++ {
|
|
if v.Bit(i) > 0 {
|
|
return i
|
|
}
|
|
}
|
|
return v.BitLen()
|
|
}
|
|
|
|
// PaddedBigBytes encodes a big integer as a big-endian byte slice. The length
|
|
// of the slice is at least n bytes.
|
|
func PaddedBigBytes(bigint *big.Int, n int) []byte {
|
|
if bigint.BitLen()/8 >= n {
|
|
return bigint.Bytes()
|
|
}
|
|
ret := make([]byte, n)
|
|
ReadBits(bigint, ret)
|
|
return ret
|
|
}
|
|
|
|
// bigEndianByteAt returns the byte at position n,
|
|
// in Big-Endian encoding
|
|
// So n==0 returns the least significant byte
|
|
func bigEndianByteAt(bigint *big.Int, n int) byte {
|
|
words := bigint.Bits()
|
|
// Check word-bucket the byte will reside in
|
|
i := n / wordBytes
|
|
if i >= len(words) {
|
|
return byte(0)
|
|
}
|
|
word := words[i]
|
|
// Offset of the byte
|
|
shift := 8 * uint(n%wordBytes)
|
|
|
|
return byte(word >> shift)
|
|
}
|
|
|
|
// Byte returns the byte at position n,
|
|
// with the supplied padlength in Little-Endian encoding.
|
|
// n==0 returns the MSB
|
|
// Example: bigint '5', padlength 32, n=31 => 5
|
|
func Byte(bigint *big.Int, padlength, n int) byte {
|
|
if n >= padlength {
|
|
return byte(0)
|
|
}
|
|
return bigEndianByteAt(bigint, padlength-1-n)
|
|
}
|
|
|
|
// ReadBits encodes the absolute value of bigint as big-endian bytes. Callers must ensure
|
|
// that buf has enough space. If buf is too short the result will be incomplete.
|
|
func ReadBits(bigint *big.Int, buf []byte) {
|
|
i := len(buf)
|
|
for _, d := range bigint.Bits() {
|
|
for j := 0; j < wordBytes && i > 0; j++ {
|
|
i--
|
|
buf[i] = byte(d)
|
|
d >>= 8
|
|
}
|
|
}
|
|
}
|
|
|
|
// U256 encodes x as a 256 bit two's complement number. This operation is destructive.
|
|
func U256(x *big.Int) *big.Int {
|
|
return x.And(x, tt256m1)
|
|
}
|
|
|
|
// U256Bytes converts a big Int into a 256bit EVM number.
|
|
// This operation is destructive.
|
|
func U256Bytes(n *big.Int) []byte {
|
|
return PaddedBigBytes(U256(n), 32)
|
|
}
|
|
|
|
// S256 interprets x as a two's complement number.
|
|
// x must not exceed 256 bits (the result is undefined if it does) and is not modified.
|
|
//
|
|
// S256(0) = 0
|
|
// S256(1) = 1
|
|
// S256(2**255) = -2**255
|
|
// S256(2**256-1) = -1
|
|
func S256(x *big.Int) *big.Int {
|
|
if x.Cmp(tt255) < 0 {
|
|
return x
|
|
}
|
|
return new(big.Int).Sub(x, tt256)
|
|
}
|
|
|
|
// Exp implements exponentiation by squaring.
|
|
// Exp returns a newly-allocated big integer and does not change
|
|
// base or exponent. The result is truncated to 256 bits.
|
|
//
|
|
// Courtesy @karalabe and @chfast
|
|
func Exp(base, exponent *big.Int) *big.Int {
|
|
copyBase := new(big.Int).Set(base)
|
|
result := big.NewInt(1)
|
|
|
|
for _, word := range exponent.Bits() {
|
|
for i := 0; i < wordBits; i++ {
|
|
if word&1 == 1 {
|
|
U256(result.Mul(result, copyBase))
|
|
}
|
|
U256(copyBase.Mul(copyBase, copyBase))
|
|
word >>= 1
|
|
}
|
|
}
|
|
return result
|
|
}
|