769 lines
27 KiB
Go
769 lines
27 KiB
Go
// Copyright 2015 The go-ethereum Authors
|
|
// This file is part of the go-ethereum library.
|
|
//
|
|
// The go-ethereum library is free software: you can redistribute it and/or modify
|
|
// it under the terms of the GNU Lesser General Public License as published by
|
|
// the Free Software Foundation, either version 3 of the License, or
|
|
// (at your option) any later version.
|
|
//
|
|
// The go-ethereum library is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
// GNU Lesser General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public License
|
|
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
package trie
|
|
|
|
import (
|
|
"errors"
|
|
"fmt"
|
|
"sync"
|
|
|
|
"github.com/ethereum/go-ethereum/common"
|
|
"github.com/ethereum/go-ethereum/common/hexutil"
|
|
"github.com/ethereum/go-ethereum/common/prque"
|
|
"github.com/ethereum/go-ethereum/core/rawdb"
|
|
"github.com/ethereum/go-ethereum/core/types"
|
|
"github.com/ethereum/go-ethereum/crypto"
|
|
"github.com/ethereum/go-ethereum/ethdb"
|
|
"github.com/ethereum/go-ethereum/log"
|
|
"github.com/ethereum/go-ethereum/metrics"
|
|
)
|
|
|
|
// ErrNotRequested is returned by the trie sync when it's requested to process a
|
|
// node it did not request.
|
|
var ErrNotRequested = errors.New("not requested")
|
|
|
|
// ErrAlreadyProcessed is returned by the trie sync when it's requested to process a
|
|
// node it already processed previously.
|
|
var ErrAlreadyProcessed = errors.New("already processed")
|
|
|
|
// maxFetchesPerDepth is the maximum number of pending trie nodes per depth. The
|
|
// role of this value is to limit the number of trie nodes that get expanded in
|
|
// memory if the node was configured with a significant number of peers.
|
|
const maxFetchesPerDepth = 16384
|
|
|
|
var (
|
|
// deletionGauge is the metric to track how many trie node deletions
|
|
// are performed in total during the sync process.
|
|
deletionGauge = metrics.NewRegisteredGauge("trie/sync/delete", nil)
|
|
|
|
// lookupGauge is the metric to track how many trie node lookups are
|
|
// performed to determine if node needs to be deleted.
|
|
lookupGauge = metrics.NewRegisteredGauge("trie/sync/lookup", nil)
|
|
|
|
// accountNodeSyncedGauge is the metric to track how many account trie
|
|
// node are written during the sync.
|
|
accountNodeSyncedGauge = metrics.NewRegisteredGauge("trie/sync/nodes/account", nil)
|
|
|
|
// storageNodeSyncedGauge is the metric to track how many account trie
|
|
// node are written during the sync.
|
|
storageNodeSyncedGauge = metrics.NewRegisteredGauge("trie/sync/nodes/storage", nil)
|
|
|
|
// codeSyncedGauge is the metric to track how many contract codes are
|
|
// written during the sync.
|
|
codeSyncedGauge = metrics.NewRegisteredGauge("trie/sync/codes", nil)
|
|
)
|
|
|
|
// SyncPath is a path tuple identifying a particular trie node either in a single
|
|
// trie (account) or a layered trie (account -> storage).
|
|
//
|
|
// Content wise the tuple either has 1 element if it addresses a node in a single
|
|
// trie or 2 elements if it addresses a node in a stacked trie.
|
|
//
|
|
// To support aiming arbitrary trie nodes, the path needs to support odd nibble
|
|
// lengths. To avoid transferring expanded hex form over the network, the last
|
|
// part of the tuple (which needs to index into the middle of a trie) is compact
|
|
// encoded. In case of a 2-tuple, the first item is always 32 bytes so that is
|
|
// simple binary encoded.
|
|
//
|
|
// Examples:
|
|
// - Path 0x9 -> {0x19}
|
|
// - Path 0x99 -> {0x0099}
|
|
// - Path 0x01234567890123456789012345678901012345678901234567890123456789019 -> {0x0123456789012345678901234567890101234567890123456789012345678901, 0x19}
|
|
// - Path 0x012345678901234567890123456789010123456789012345678901234567890199 -> {0x0123456789012345678901234567890101234567890123456789012345678901, 0x0099}
|
|
type SyncPath [][]byte
|
|
|
|
// NewSyncPath converts an expanded trie path from nibble form into a compact
|
|
// version that can be sent over the network.
|
|
func NewSyncPath(path []byte) SyncPath {
|
|
// If the hash is from the account trie, append a single item, if it
|
|
// is from a storage trie, append a tuple. Note, the length 64 is
|
|
// clashing between account leaf and storage root. It's fine though
|
|
// because having a trie node at 64 depth means a hash collision was
|
|
// found and we're long dead.
|
|
if len(path) < 64 {
|
|
return SyncPath{hexToCompact(path)}
|
|
}
|
|
return SyncPath{hexToKeybytes(path[:64]), hexToCompact(path[64:])}
|
|
}
|
|
|
|
// LeafCallback is a callback type invoked when a trie operation reaches a leaf
|
|
// node.
|
|
//
|
|
// The keys is a path tuple identifying a particular trie node either in a single
|
|
// trie (account) or a layered trie (account -> storage). Each key in the tuple
|
|
// is in the raw format(32 bytes).
|
|
//
|
|
// The path is a composite hexary path identifying the trie node. All the key
|
|
// bytes are converted to the hexary nibbles and composited with the parent path
|
|
// if the trie node is in a layered trie.
|
|
//
|
|
// It's used by state sync and commit to allow handling external references
|
|
// between account and storage tries. And also it's used in the state healing
|
|
// for extracting the raw states(leaf nodes) with corresponding paths.
|
|
type LeafCallback func(keys [][]byte, path []byte, leaf []byte, parent common.Hash, parentPath []byte) error
|
|
|
|
// nodeRequest represents a scheduled or already in-flight trie node retrieval request.
|
|
type nodeRequest struct {
|
|
hash common.Hash // Hash of the trie node to retrieve
|
|
path []byte // Merkle path leading to this node for prioritization
|
|
data []byte // Data content of the node, cached until all subtrees complete
|
|
|
|
parent *nodeRequest // Parent state node referencing this entry
|
|
deps int // Number of dependencies before allowed to commit this node
|
|
callback LeafCallback // Callback to invoke if a leaf node it reached on this branch
|
|
}
|
|
|
|
// codeRequest represents a scheduled or already in-flight bytecode retrieval request.
|
|
type codeRequest struct {
|
|
hash common.Hash // Hash of the contract bytecode to retrieve
|
|
path []byte // Merkle path leading to this node for prioritization
|
|
data []byte // Data content of the node, cached until all subtrees complete
|
|
parents []*nodeRequest // Parent state nodes referencing this entry (notify all upon completion)
|
|
}
|
|
|
|
// NodeSyncResult is a response with requested trie node along with its node path.
|
|
type NodeSyncResult struct {
|
|
Path string // Path of the originally unknown trie node
|
|
Data []byte // Data content of the retrieved trie node
|
|
}
|
|
|
|
// CodeSyncResult is a response with requested bytecode along with its hash.
|
|
type CodeSyncResult struct {
|
|
Hash common.Hash // Hash the originally unknown bytecode
|
|
Data []byte // Data content of the retrieved bytecode
|
|
}
|
|
|
|
// nodeOp represents an operation upon the trie node. It can either represent a
|
|
// deletion to the specific node or a node write for persisting retrieved node.
|
|
type nodeOp struct {
|
|
del bool // flag if op stands for a delete operation
|
|
owner common.Hash // identifier of the trie (empty for account trie)
|
|
path []byte // path from the root to the specified node.
|
|
blob []byte // the content of the node (nil for deletion)
|
|
hash common.Hash // hash of the node content (empty for node deletion)
|
|
}
|
|
|
|
// valid checks whether the node operation is valid.
|
|
func (op *nodeOp) valid() bool {
|
|
if op.del && len(op.blob) != 0 {
|
|
return false
|
|
}
|
|
if !op.del && len(op.blob) == 0 {
|
|
return false
|
|
}
|
|
return true
|
|
}
|
|
|
|
// string returns the node operation in string representation.
|
|
func (op *nodeOp) string() string {
|
|
var node string
|
|
if op.owner == (common.Hash{}) {
|
|
node = fmt.Sprintf("node: (%v)", op.path)
|
|
} else {
|
|
node = fmt.Sprintf("node: (%x-%v)", op.owner, op.path)
|
|
}
|
|
var blobHex string
|
|
if len(op.blob) == 0 {
|
|
blobHex = "nil"
|
|
} else {
|
|
blobHex = hexutil.Encode(op.blob)
|
|
}
|
|
if op.del {
|
|
return fmt.Sprintf("del %s %s %s", node, blobHex, op.hash.Hex())
|
|
}
|
|
return fmt.Sprintf("write %s %s %s", node, blobHex, op.hash.Hex())
|
|
}
|
|
|
|
// syncMemBatch is an in-memory buffer of successfully downloaded but not yet
|
|
// persisted data items.
|
|
type syncMemBatch struct {
|
|
scheme string // State scheme identifier
|
|
codes map[common.Hash][]byte // In-memory batch of recently completed codes
|
|
nodes []nodeOp // In-memory batch of recently completed/deleted nodes
|
|
size uint64 // Estimated batch-size of in-memory data.
|
|
}
|
|
|
|
// newSyncMemBatch allocates a new memory-buffer for not-yet persisted trie nodes.
|
|
func newSyncMemBatch(scheme string) *syncMemBatch {
|
|
return &syncMemBatch{
|
|
scheme: scheme,
|
|
codes: make(map[common.Hash][]byte),
|
|
}
|
|
}
|
|
|
|
// hasCode reports the contract code with specific hash is already cached.
|
|
func (batch *syncMemBatch) hasCode(hash common.Hash) bool {
|
|
_, ok := batch.codes[hash]
|
|
return ok
|
|
}
|
|
|
|
// addCode caches a contract code database write operation.
|
|
func (batch *syncMemBatch) addCode(hash common.Hash, code []byte) {
|
|
batch.codes[hash] = code
|
|
batch.size += common.HashLength + uint64(len(code))
|
|
}
|
|
|
|
// addNode caches a node database write operation.
|
|
func (batch *syncMemBatch) addNode(owner common.Hash, path []byte, blob []byte, hash common.Hash) {
|
|
if batch.scheme == rawdb.PathScheme {
|
|
if owner == (common.Hash{}) {
|
|
batch.size += uint64(len(path) + len(blob))
|
|
} else {
|
|
batch.size += common.HashLength + uint64(len(path)+len(blob))
|
|
}
|
|
} else {
|
|
batch.size += common.HashLength + uint64(len(blob))
|
|
}
|
|
batch.nodes = append(batch.nodes, nodeOp{
|
|
owner: owner,
|
|
path: path,
|
|
blob: blob,
|
|
hash: hash,
|
|
})
|
|
}
|
|
|
|
// delNode caches a node database delete operation.
|
|
func (batch *syncMemBatch) delNode(owner common.Hash, path []byte) {
|
|
if batch.scheme != rawdb.PathScheme {
|
|
log.Error("Unexpected node deletion", "owner", owner, "path", path, "scheme", batch.scheme)
|
|
return // deletion is not supported in hash mode.
|
|
}
|
|
if owner == (common.Hash{}) {
|
|
batch.size += uint64(len(path))
|
|
} else {
|
|
batch.size += common.HashLength + uint64(len(path))
|
|
}
|
|
batch.nodes = append(batch.nodes, nodeOp{
|
|
del: true,
|
|
owner: owner,
|
|
path: path,
|
|
})
|
|
}
|
|
|
|
// Sync is the main state trie synchronisation scheduler, which provides yet
|
|
// unknown trie hashes to retrieve, accepts node data associated with said hashes
|
|
// and reconstructs the trie step by step until all is done.
|
|
type Sync struct {
|
|
scheme string // Node scheme descriptor used in database.
|
|
database ethdb.KeyValueReader // Persistent database to check for existing entries
|
|
membatch *syncMemBatch // Memory buffer to avoid frequent database writes
|
|
nodeReqs map[string]*nodeRequest // Pending requests pertaining to a trie node path
|
|
codeReqs map[common.Hash]*codeRequest // Pending requests pertaining to a code hash
|
|
queue *prque.Prque[int64, any] // Priority queue with the pending requests
|
|
fetches map[int]int // Number of active fetches per trie node depth
|
|
}
|
|
|
|
// NewSync creates a new trie data download scheduler.
|
|
func NewSync(root common.Hash, database ethdb.KeyValueReader, callback LeafCallback, scheme string) *Sync {
|
|
ts := &Sync{
|
|
scheme: scheme,
|
|
database: database,
|
|
membatch: newSyncMemBatch(scheme),
|
|
nodeReqs: make(map[string]*nodeRequest),
|
|
codeReqs: make(map[common.Hash]*codeRequest),
|
|
queue: prque.New[int64, any](nil), // Ugh, can contain both string and hash, whyyy
|
|
fetches: make(map[int]int),
|
|
}
|
|
ts.AddSubTrie(root, nil, common.Hash{}, nil, callback)
|
|
return ts
|
|
}
|
|
|
|
// AddSubTrie registers a new trie to the sync code, rooted at the designated
|
|
// parent for completion tracking. The given path is a unique node path in
|
|
// hex format and contain all the parent path if it's layered trie node.
|
|
func (s *Sync) AddSubTrie(root common.Hash, path []byte, parent common.Hash, parentPath []byte, callback LeafCallback) {
|
|
if root == types.EmptyRootHash {
|
|
return
|
|
}
|
|
owner, inner := ResolvePath(path)
|
|
exist, inconsistent := s.hasNode(owner, inner, root)
|
|
if exist {
|
|
// The entire subtrie is already present in the database.
|
|
return
|
|
} else if inconsistent {
|
|
// There is a pre-existing node with the wrong hash in DB, remove it.
|
|
s.membatch.delNode(owner, inner)
|
|
}
|
|
// Assemble the new sub-trie sync request
|
|
req := &nodeRequest{
|
|
hash: root,
|
|
path: path,
|
|
callback: callback,
|
|
}
|
|
// If this sub-trie has a designated parent, link them together
|
|
if parent != (common.Hash{}) {
|
|
ancestor := s.nodeReqs[string(parentPath)]
|
|
if ancestor == nil {
|
|
panic(fmt.Sprintf("sub-trie ancestor not found: %x", parent))
|
|
}
|
|
ancestor.deps++
|
|
req.parent = ancestor
|
|
}
|
|
s.scheduleNodeRequest(req)
|
|
}
|
|
|
|
// AddCodeEntry schedules the direct retrieval of a contract code that should not
|
|
// be interpreted as a trie node, but rather accepted and stored into the database
|
|
// as is.
|
|
func (s *Sync) AddCodeEntry(hash common.Hash, path []byte, parent common.Hash, parentPath []byte) {
|
|
// Short circuit if the entry is empty or already known
|
|
if hash == types.EmptyCodeHash {
|
|
return
|
|
}
|
|
if s.membatch.hasCode(hash) {
|
|
return
|
|
}
|
|
// If database says duplicate, the blob is present for sure.
|
|
// Note we only check the existence with new code scheme, snap
|
|
// sync is expected to run with a fresh new node. Even there
|
|
// exists the code with legacy format, fetch and store with
|
|
// new scheme anyway.
|
|
if rawdb.HasCodeWithPrefix(s.database, hash) {
|
|
return
|
|
}
|
|
// Assemble the new sub-trie sync request
|
|
req := &codeRequest{
|
|
path: path,
|
|
hash: hash,
|
|
}
|
|
// If this sub-trie has a designated parent, link them together
|
|
if parent != (common.Hash{}) {
|
|
ancestor := s.nodeReqs[string(parentPath)] // the parent of codereq can ONLY be nodereq
|
|
if ancestor == nil {
|
|
panic(fmt.Sprintf("raw-entry ancestor not found: %x", parent))
|
|
}
|
|
ancestor.deps++
|
|
req.parents = append(req.parents, ancestor)
|
|
}
|
|
s.scheduleCodeRequest(req)
|
|
}
|
|
|
|
// Missing retrieves the known missing nodes from the trie for retrieval. To aid
|
|
// both eth/6x style fast sync and snap/1x style state sync, the paths of trie
|
|
// nodes are returned too, as well as separate hash list for codes.
|
|
func (s *Sync) Missing(max int) ([]string, []common.Hash, []common.Hash) {
|
|
var (
|
|
nodePaths []string
|
|
nodeHashes []common.Hash
|
|
codeHashes []common.Hash
|
|
)
|
|
for !s.queue.Empty() && (max == 0 || len(nodeHashes)+len(codeHashes) < max) {
|
|
// Retrieve the next item in line
|
|
item, prio := s.queue.Peek()
|
|
|
|
// If we have too many already-pending tasks for this depth, throttle
|
|
depth := int(prio >> 56)
|
|
if s.fetches[depth] > maxFetchesPerDepth {
|
|
break
|
|
}
|
|
// Item is allowed to be scheduled, add it to the task list
|
|
s.queue.Pop()
|
|
s.fetches[depth]++
|
|
|
|
switch item := item.(type) {
|
|
case common.Hash:
|
|
codeHashes = append(codeHashes, item)
|
|
case string:
|
|
req, ok := s.nodeReqs[item]
|
|
if !ok {
|
|
log.Error("Missing node request", "path", item)
|
|
continue // System very wrong, shouldn't happen
|
|
}
|
|
nodePaths = append(nodePaths, item)
|
|
nodeHashes = append(nodeHashes, req.hash)
|
|
}
|
|
}
|
|
return nodePaths, nodeHashes, codeHashes
|
|
}
|
|
|
|
// ProcessCode injects the received data for requested item. Note it can
|
|
// happen that the single response commits two pending requests(e.g.
|
|
// there are two requests one for code and one for node but the hash
|
|
// is same). In this case the second response for the same hash will
|
|
// be treated as "non-requested" item or "already-processed" item but
|
|
// there is no downside.
|
|
func (s *Sync) ProcessCode(result CodeSyncResult) error {
|
|
// If the code was not requested or it's already processed, bail out
|
|
req := s.codeReqs[result.Hash]
|
|
if req == nil {
|
|
return ErrNotRequested
|
|
}
|
|
if req.data != nil {
|
|
return ErrAlreadyProcessed
|
|
}
|
|
req.data = result.Data
|
|
return s.commitCodeRequest(req)
|
|
}
|
|
|
|
// ProcessNode injects the received data for requested item. Note it can
|
|
// happen that the single response commits two pending requests(e.g.
|
|
// there are two requests one for code and one for node but the hash
|
|
// is same). In this case the second response for the same hash will
|
|
// be treated as "non-requested" item or "already-processed" item but
|
|
// there is no downside.
|
|
func (s *Sync) ProcessNode(result NodeSyncResult) error {
|
|
// If the trie node was not requested or it's already processed, bail out
|
|
req := s.nodeReqs[result.Path]
|
|
if req == nil {
|
|
return ErrNotRequested
|
|
}
|
|
if req.data != nil {
|
|
return ErrAlreadyProcessed
|
|
}
|
|
// Decode the node data content and update the request
|
|
node, err := decodeNode(req.hash.Bytes(), result.Data)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
req.data = result.Data
|
|
|
|
// Create and schedule a request for all the children nodes
|
|
requests, err := s.children(req, node)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
if len(requests) == 0 && req.deps == 0 {
|
|
s.commitNodeRequest(req)
|
|
} else {
|
|
req.deps += len(requests)
|
|
for _, child := range requests {
|
|
s.scheduleNodeRequest(child)
|
|
}
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// Commit flushes the data stored in the internal membatch out to persistent
|
|
// storage, returning any occurred error. The whole data set will be flushed
|
|
// in an atomic database batch.
|
|
func (s *Sync) Commit(dbw ethdb.Batch) error {
|
|
// Flush the pending node writes into database batch.
|
|
var (
|
|
account int
|
|
storage int
|
|
)
|
|
for _, op := range s.membatch.nodes {
|
|
if !op.valid() {
|
|
return fmt.Errorf("invalid op, %s", op.string())
|
|
}
|
|
if op.del {
|
|
// node deletion is only supported in path mode.
|
|
if op.owner == (common.Hash{}) {
|
|
rawdb.DeleteAccountTrieNode(dbw, op.path)
|
|
} else {
|
|
rawdb.DeleteStorageTrieNode(dbw, op.owner, op.path)
|
|
}
|
|
deletionGauge.Inc(1)
|
|
} else {
|
|
if op.owner == (common.Hash{}) {
|
|
account += 1
|
|
} else {
|
|
storage += 1
|
|
}
|
|
rawdb.WriteTrieNode(dbw, op.owner, op.path, op.hash, op.blob, s.scheme)
|
|
}
|
|
}
|
|
accountNodeSyncedGauge.Inc(int64(account))
|
|
storageNodeSyncedGauge.Inc(int64(storage))
|
|
|
|
// Flush the pending code writes into database batch.
|
|
for hash, value := range s.membatch.codes {
|
|
rawdb.WriteCode(dbw, hash, value)
|
|
}
|
|
codeSyncedGauge.Inc(int64(len(s.membatch.codes)))
|
|
|
|
s.membatch = newSyncMemBatch(s.scheme) // reset the batch
|
|
return nil
|
|
}
|
|
|
|
// MemSize returns an estimated size (in bytes) of the data held in the membatch.
|
|
func (s *Sync) MemSize() uint64 {
|
|
return s.membatch.size
|
|
}
|
|
|
|
// Pending returns the number of state entries currently pending for download.
|
|
func (s *Sync) Pending() int {
|
|
return len(s.nodeReqs) + len(s.codeReqs)
|
|
}
|
|
|
|
// scheduleNodeRequest inserts a new state retrieval request into the fetch queue. If there
|
|
// is already a pending request for this node, the new request will be discarded
|
|
// and only a parent reference added to the old one.
|
|
func (s *Sync) scheduleNodeRequest(req *nodeRequest) {
|
|
s.nodeReqs[string(req.path)] = req
|
|
|
|
// Schedule the request for future retrieval. This queue is shared
|
|
// by both node requests and code requests.
|
|
prio := int64(len(req.path)) << 56 // depth >= 128 will never happen, storage leaves will be included in their parents
|
|
for i := 0; i < 14 && i < len(req.path); i++ {
|
|
prio |= int64(15-req.path[i]) << (52 - i*4) // 15-nibble => lexicographic order
|
|
}
|
|
s.queue.Push(string(req.path), prio)
|
|
}
|
|
|
|
// scheduleCodeRequest inserts a new state retrieval request into the fetch queue. If there
|
|
// is already a pending request for this node, the new request will be discarded
|
|
// and only a parent reference added to the old one.
|
|
func (s *Sync) scheduleCodeRequest(req *codeRequest) {
|
|
// If we're already requesting this node, add a new reference and stop
|
|
if old, ok := s.codeReqs[req.hash]; ok {
|
|
old.parents = append(old.parents, req.parents...)
|
|
return
|
|
}
|
|
s.codeReqs[req.hash] = req
|
|
|
|
// Schedule the request for future retrieval. This queue is shared
|
|
// by both node requests and code requests.
|
|
prio := int64(len(req.path)) << 56 // depth >= 128 will never happen, storage leaves will be included in their parents
|
|
for i := 0; i < 14 && i < len(req.path); i++ {
|
|
prio |= int64(15-req.path[i]) << (52 - i*4) // 15-nibble => lexicographic order
|
|
}
|
|
s.queue.Push(req.hash, prio)
|
|
}
|
|
|
|
// children retrieves all the missing children of a state trie entry for future
|
|
// retrieval scheduling.
|
|
func (s *Sync) children(req *nodeRequest, object node) ([]*nodeRequest, error) {
|
|
// Gather all the children of the node, irrelevant whether known or not
|
|
type childNode struct {
|
|
path []byte
|
|
node node
|
|
}
|
|
var children []childNode
|
|
|
|
switch node := (object).(type) {
|
|
case *shortNode:
|
|
key := node.Key
|
|
if hasTerm(key) {
|
|
key = key[:len(key)-1]
|
|
}
|
|
children = []childNode{{
|
|
node: node.Val,
|
|
path: append(append([]byte(nil), req.path...), key...),
|
|
}}
|
|
// Mark all internal nodes between shortNode and its **in disk**
|
|
// child as invalid. This is essential in the case of path mode
|
|
// scheme; otherwise, state healing might overwrite existing child
|
|
// nodes silently while leaving a dangling parent node within the
|
|
// range of this internal path on disk and the persistent state
|
|
// ends up with a very weird situation that nodes on the same path
|
|
// are not inconsistent while they all present in disk. This property
|
|
// would break the guarantee for state healing.
|
|
//
|
|
// While it's possible for this shortNode to overwrite a previously
|
|
// existing full node, the other branches of the fullNode can be
|
|
// retained as they are not accessible with the new shortNode, and
|
|
// also the whole sub-trie is still untouched and complete.
|
|
//
|
|
// This step is only necessary for path mode, as there is no deletion
|
|
// in hash mode at all.
|
|
if _, ok := node.Val.(hashNode); ok && s.scheme == rawdb.PathScheme {
|
|
owner, inner := ResolvePath(req.path)
|
|
for i := 1; i < len(key); i++ {
|
|
// While checking for a non-existent item in Pebble can be less efficient
|
|
// without a bloom filter, the relatively low frequency of lookups makes
|
|
// the performance impact negligible.
|
|
var exists bool
|
|
if owner == (common.Hash{}) {
|
|
exists = rawdb.HasAccountTrieNode(s.database, append(inner, key[:i]...))
|
|
} else {
|
|
exists = rawdb.HasStorageTrieNode(s.database, owner, append(inner, key[:i]...))
|
|
}
|
|
if exists {
|
|
s.membatch.delNode(owner, append(inner, key[:i]...))
|
|
log.Debug("Detected dangling node", "owner", owner, "path", append(inner, key[:i]...))
|
|
}
|
|
}
|
|
lookupGauge.Inc(int64(len(key) - 1))
|
|
}
|
|
case *fullNode:
|
|
for i := 0; i < 17; i++ {
|
|
if node.Children[i] != nil {
|
|
children = append(children, childNode{
|
|
node: node.Children[i],
|
|
path: append(append([]byte(nil), req.path...), byte(i)),
|
|
})
|
|
}
|
|
}
|
|
default:
|
|
panic(fmt.Sprintf("unknown node: %+v", node))
|
|
}
|
|
// Iterate over the children, and request all unknown ones
|
|
var (
|
|
missing = make(chan *nodeRequest, len(children))
|
|
pending sync.WaitGroup
|
|
batchMu sync.Mutex
|
|
)
|
|
for _, child := range children {
|
|
// Notify any external watcher of a new key/value node
|
|
if req.callback != nil {
|
|
if node, ok := (child.node).(valueNode); ok {
|
|
var paths [][]byte
|
|
if len(child.path) == 2*common.HashLength {
|
|
paths = append(paths, hexToKeybytes(child.path))
|
|
} else if len(child.path) == 4*common.HashLength {
|
|
paths = append(paths, hexToKeybytes(child.path[:2*common.HashLength]))
|
|
paths = append(paths, hexToKeybytes(child.path[2*common.HashLength:]))
|
|
}
|
|
if err := req.callback(paths, child.path, node, req.hash, req.path); err != nil {
|
|
return nil, err
|
|
}
|
|
}
|
|
}
|
|
// If the child references another node, resolve or schedule.
|
|
// We check all children concurrently.
|
|
if node, ok := (child.node).(hashNode); ok {
|
|
path := child.path
|
|
hash := common.BytesToHash(node)
|
|
pending.Add(1)
|
|
go func() {
|
|
defer pending.Done()
|
|
owner, inner := ResolvePath(path)
|
|
exist, inconsistent := s.hasNode(owner, inner, hash)
|
|
if exist {
|
|
return
|
|
} else if inconsistent {
|
|
// There is a pre-existing node with the wrong hash in DB, remove it.
|
|
batchMu.Lock()
|
|
s.membatch.delNode(owner, inner)
|
|
batchMu.Unlock()
|
|
}
|
|
// Locally unknown node, schedule for retrieval
|
|
missing <- &nodeRequest{
|
|
path: path,
|
|
hash: hash,
|
|
parent: req,
|
|
callback: req.callback,
|
|
}
|
|
}()
|
|
}
|
|
}
|
|
pending.Wait()
|
|
|
|
requests := make([]*nodeRequest, 0, len(children))
|
|
for done := false; !done; {
|
|
select {
|
|
case miss := <-missing:
|
|
requests = append(requests, miss)
|
|
default:
|
|
done = true
|
|
}
|
|
}
|
|
return requests, nil
|
|
}
|
|
|
|
// commitNodeRequest finalizes a retrieval request and stores it into the membatch. If any
|
|
// of the referencing parent requests complete due to this commit, they are also
|
|
// committed themselves.
|
|
func (s *Sync) commitNodeRequest(req *nodeRequest) error {
|
|
// Write the node content to the membatch
|
|
owner, path := ResolvePath(req.path)
|
|
s.membatch.addNode(owner, path, req.data, req.hash)
|
|
|
|
// Removed the completed node request
|
|
delete(s.nodeReqs, string(req.path))
|
|
s.fetches[len(req.path)]--
|
|
|
|
// Check parent for completion
|
|
if req.parent != nil {
|
|
req.parent.deps--
|
|
if req.parent.deps == 0 {
|
|
if err := s.commitNodeRequest(req.parent); err != nil {
|
|
return err
|
|
}
|
|
}
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// commitCodeRequest finalizes a retrieval request and stores it into the membatch. If any
|
|
// of the referencing parent requests complete due to this commit, they are also
|
|
// committed themselves.
|
|
func (s *Sync) commitCodeRequest(req *codeRequest) error {
|
|
// Write the node content to the membatch
|
|
s.membatch.addCode(req.hash, req.data)
|
|
|
|
// Removed the completed code request
|
|
delete(s.codeReqs, req.hash)
|
|
s.fetches[len(req.path)]--
|
|
|
|
// Check all parents for completion
|
|
for _, parent := range req.parents {
|
|
parent.deps--
|
|
if parent.deps == 0 {
|
|
if err := s.commitNodeRequest(parent); err != nil {
|
|
return err
|
|
}
|
|
}
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// hasNode reports whether the specified trie node is present in the database.
|
|
// 'exists' is true when the node exists in the database and matches the given root
|
|
// hash. The 'inconsistent' return value is true when the node exists but does not
|
|
// match the expected hash.
|
|
func (s *Sync) hasNode(owner common.Hash, path []byte, hash common.Hash) (exists bool, inconsistent bool) {
|
|
// If node is running with hash scheme, check the presence with node hash.
|
|
if s.scheme == rawdb.HashScheme {
|
|
return rawdb.HasLegacyTrieNode(s.database, hash), false
|
|
}
|
|
// If node is running with path scheme, check the presence with node path.
|
|
var blob []byte
|
|
if owner == (common.Hash{}) {
|
|
blob = rawdb.ReadAccountTrieNode(s.database, path)
|
|
} else {
|
|
blob = rawdb.ReadStorageTrieNode(s.database, owner, path)
|
|
}
|
|
h := newBlobHasher()
|
|
defer h.release()
|
|
exists = hash == h.hash(blob)
|
|
inconsistent = !exists && len(blob) != 0
|
|
return exists, inconsistent
|
|
}
|
|
|
|
// ResolvePath resolves the provided composite node path by separating the
|
|
// path in account trie if it's existent.
|
|
func ResolvePath(path []byte) (common.Hash, []byte) {
|
|
var owner common.Hash
|
|
if len(path) >= 2*common.HashLength {
|
|
owner = common.BytesToHash(hexToKeybytes(path[:2*common.HashLength]))
|
|
path = path[2*common.HashLength:]
|
|
}
|
|
return owner, path
|
|
}
|
|
|
|
// blobHasher is used to compute the sha256 hash of the provided data.
|
|
type blobHasher struct{ state crypto.KeccakState }
|
|
|
|
// blobHasherPool is the pool for reusing pre-allocated hash state.
|
|
var blobHasherPool = sync.Pool{
|
|
New: func() interface{} { return &blobHasher{state: crypto.NewKeccakState()} },
|
|
}
|
|
|
|
func newBlobHasher() *blobHasher {
|
|
return blobHasherPool.Get().(*blobHasher)
|
|
}
|
|
|
|
func (h *blobHasher) hash(data []byte) common.Hash {
|
|
return crypto.HashData(h.state, data)
|
|
}
|
|
|
|
func (h *blobHasher) release() {
|
|
blobHasherPool.Put(h)
|
|
}
|