go-ethereum/core/rawdb/chain_iterator.go

355 lines
12 KiB
Go

// Copyright 2020 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package rawdb
import (
"runtime"
"sync/atomic"
"time"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/common/prque"
"github.com/ethereum/go-ethereum/core/types"
"github.com/ethereum/go-ethereum/ethdb"
"github.com/ethereum/go-ethereum/log"
"github.com/ethereum/go-ethereum/rlp"
)
// InitDatabaseFromFreezer reinitializes an empty database from a previous batch
// of frozen ancient blocks. The method iterates over all the frozen blocks and
// injects into the database the block hash->number mappings.
func InitDatabaseFromFreezer(db ethdb.Database) {
// If we can't access the freezer or it's empty, abort
frozen, err := db.Ancients()
if err != nil || frozen == 0 {
return
}
var (
batch = db.NewBatch()
start = time.Now()
logged = start.Add(-7 * time.Second) // Unindex during import is fast, don't double log
hash common.Hash
)
for i := uint64(0); i < frozen; {
// We read 100K hashes at a time, for a total of 3.2M
count := uint64(100_000)
if i+count > frozen {
count = frozen - i
}
data, err := db.AncientRange(freezerHashTable, i, count, 32*count)
if err != nil {
log.Crit("Failed to init database from freezer", "err", err)
}
for j, h := range data {
number := i + uint64(j)
hash = common.BytesToHash(h)
WriteHeaderNumber(batch, hash, number)
// If enough data was accumulated in memory or we're at the last block, dump to disk
if batch.ValueSize() > ethdb.IdealBatchSize {
if err := batch.Write(); err != nil {
log.Crit("Failed to write data to db", "err", err)
}
batch.Reset()
}
}
i += uint64(len(data))
// If we've spent too much time already, notify the user of what we're doing
if time.Since(logged) > 8*time.Second {
log.Info("Initializing database from freezer", "total", frozen, "number", i, "hash", hash, "elapsed", common.PrettyDuration(time.Since(start)))
logged = time.Now()
}
}
if err := batch.Write(); err != nil {
log.Crit("Failed to write data to db", "err", err)
}
batch.Reset()
WriteHeadHeaderHash(db, hash)
WriteHeadFastBlockHash(db, hash)
log.Info("Initialized database from freezer", "blocks", frozen, "elapsed", common.PrettyDuration(time.Since(start)))
}
type blockTxHashes struct {
number uint64
hashes []common.Hash
}
// iterateTransactions iterates over all transactions in the (canon) block
// number(s) given, and yields the hashes on a channel. If there is a signal
// received from interrupt channel, the iteration will be aborted and result
// channel will be closed.
func iterateTransactions(db ethdb.Database, from uint64, to uint64, reverse bool, interrupt chan struct{}) chan *blockTxHashes {
// One thread sequentially reads data from db
type numberRlp struct {
number uint64
rlp rlp.RawValue
}
if to == from {
return nil
}
threads := to - from
if cpus := runtime.NumCPU(); threads > uint64(cpus) {
threads = uint64(cpus)
}
var (
rlpCh = make(chan *numberRlp, threads*2) // we send raw rlp over this channel
hashesCh = make(chan *blockTxHashes, threads*2) // send hashes over hashesCh
)
// lookup runs in one instance
lookup := func() {
n, end := from, to
if reverse {
n, end = to-1, from-1
}
defer close(rlpCh)
for n != end {
data := ReadCanonicalBodyRLP(db, n)
// Feed the block to the aggregator, or abort on interrupt
select {
case rlpCh <- &numberRlp{n, data}:
case <-interrupt:
return
}
if reverse {
n--
} else {
n++
}
}
}
// process runs in parallel
nThreadsAlive := int32(threads)
process := func() {
defer func() {
// Last processor closes the result channel
if atomic.AddInt32(&nThreadsAlive, -1) == 0 {
close(hashesCh)
}
}()
for data := range rlpCh {
var body types.Body
if err := rlp.DecodeBytes(data.rlp, &body); err != nil {
log.Warn("Failed to decode block body", "block", data.number, "error", err)
return
}
var hashes []common.Hash
for _, tx := range body.Transactions {
hashes = append(hashes, tx.Hash())
}
result := &blockTxHashes{
hashes: hashes,
number: data.number,
}
// Feed the block to the aggregator, or abort on interrupt
select {
case hashesCh <- result:
case <-interrupt:
return
}
}
}
go lookup() // start the sequential db accessor
for i := 0; i < int(threads); i++ {
go process()
}
return hashesCh
}
// indexTransactions creates txlookup indices of the specified block range.
//
// This function iterates canonical chain in reverse order, it has one main advantage:
// We can write tx index tail flag periodically even without the whole indexing
// procedure is finished. So that we can resume indexing procedure next time quickly.
//
// There is a passed channel, the whole procedure will be interrupted if any
// signal received.
func indexTransactions(db ethdb.Database, from uint64, to uint64, interrupt chan struct{}, hook func(uint64) bool) {
// short circuit for invalid range
if from >= to {
return
}
var (
hashesCh = iterateTransactions(db, from, to, true, interrupt)
batch = db.NewBatch()
start = time.Now()
logged = start.Add(-7 * time.Second)
// Since we iterate in reverse, we expect the first number to come
// in to be [to-1]. Therefore, setting lastNum to means that the
// prqueue gap-evaluation will work correctly
lastNum = to
queue = prque.New(nil)
// for stats reporting
blocks, txs = 0, 0
)
for chanDelivery := range hashesCh {
// Push the delivery into the queue and process contiguous ranges.
// Since we iterate in reverse, so lower numbers have lower prio, and
// we can use the number directly as prio marker
queue.Push(chanDelivery, int64(chanDelivery.number))
for !queue.Empty() {
// If the next available item is gapped, return
if _, priority := queue.Peek(); priority != int64(lastNum-1) {
break
}
// For testing
if hook != nil && !hook(lastNum-1) {
break
}
// Next block available, pop it off and index it
delivery := queue.PopItem().(*blockTxHashes)
lastNum = delivery.number
WriteTxLookupEntries(batch, delivery.number, delivery.hashes)
blocks++
txs += len(delivery.hashes)
// If enough data was accumulated in memory or we're at the last block, dump to disk
if batch.ValueSize() > ethdb.IdealBatchSize {
WriteTxIndexTail(batch, lastNum) // Also write the tail here
if err := batch.Write(); err != nil {
log.Crit("Failed writing batch to db", "error", err)
return
}
batch.Reset()
}
// If we've spent too much time already, notify the user of what we're doing
if time.Since(logged) > 8*time.Second {
log.Info("Indexing transactions", "blocks", blocks, "txs", txs, "tail", lastNum, "total", to-from, "elapsed", common.PrettyDuration(time.Since(start)))
logged = time.Now()
}
}
}
// Flush the new indexing tail and the last committed data. It can also happen
// that the last batch is empty because nothing to index, but the tail has to
// be flushed anyway.
WriteTxIndexTail(batch, lastNum)
if err := batch.Write(); err != nil {
log.Crit("Failed writing batch to db", "error", err)
return
}
select {
case <-interrupt:
log.Debug("Transaction indexing interrupted", "blocks", blocks, "txs", txs, "tail", lastNum, "elapsed", common.PrettyDuration(time.Since(start)))
default:
log.Info("Indexed transactions", "blocks", blocks, "txs", txs, "tail", lastNum, "elapsed", common.PrettyDuration(time.Since(start)))
}
}
// IndexTransactions creates txlookup indices of the specified block range. The from
// is included while to is excluded.
//
// This function iterates canonical chain in reverse order, it has one main advantage:
// We can write tx index tail flag periodically even without the whole indexing
// procedure is finished. So that we can resume indexing procedure next time quickly.
//
// There is a passed channel, the whole procedure will be interrupted if any
// signal received.
func IndexTransactions(db ethdb.Database, from uint64, to uint64, interrupt chan struct{}) {
indexTransactions(db, from, to, interrupt, nil)
}
// indexTransactionsForTesting is the internal debug version with an additional hook.
func indexTransactionsForTesting(db ethdb.Database, from uint64, to uint64, interrupt chan struct{}, hook func(uint64) bool) {
indexTransactions(db, from, to, interrupt, hook)
}
// unindexTransactions removes txlookup indices of the specified block range.
//
// There is a passed channel, the whole procedure will be interrupted if any
// signal received.
func unindexTransactions(db ethdb.Database, from uint64, to uint64, interrupt chan struct{}, hook func(uint64) bool) {
// short circuit for invalid range
if from >= to {
return
}
var (
hashesCh = iterateTransactions(db, from, to, false, interrupt)
batch = db.NewBatch()
start = time.Now()
logged = start.Add(-7 * time.Second)
// we expect the first number to come in to be [from]. Therefore, setting
// nextNum to from means that the prqueue gap-evaluation will work correctly
nextNum = from
queue = prque.New(nil)
// for stats reporting
blocks, txs = 0, 0
)
// Otherwise spin up the concurrent iterator and unindexer
for delivery := range hashesCh {
// Push the delivery into the queue and process contiguous ranges.
queue.Push(delivery, -int64(delivery.number))
for !queue.Empty() {
// If the next available item is gapped, return
if _, priority := queue.Peek(); -priority != int64(nextNum) {
break
}
// For testing
if hook != nil && !hook(nextNum) {
break
}
delivery := queue.PopItem().(*blockTxHashes)
nextNum = delivery.number + 1
DeleteTxLookupEntries(batch, delivery.hashes)
txs += len(delivery.hashes)
blocks++
// If enough data was accumulated in memory or we're at the last block, dump to disk
// A batch counts the size of deletion as '1', so we need to flush more
// often than that.
if blocks%1000 == 0 {
WriteTxIndexTail(batch, nextNum)
if err := batch.Write(); err != nil {
log.Crit("Failed writing batch to db", "error", err)
return
}
batch.Reset()
}
// If we've spent too much time already, notify the user of what we're doing
if time.Since(logged) > 8*time.Second {
log.Info("Unindexing transactions", "blocks", blocks, "txs", txs, "total", to-from, "elapsed", common.PrettyDuration(time.Since(start)))
logged = time.Now()
}
}
}
// Flush the new indexing tail and the last committed data. It can also happen
// that the last batch is empty because nothing to unindex, but the tail has to
// be flushed anyway.
WriteTxIndexTail(batch, nextNum)
if err := batch.Write(); err != nil {
log.Crit("Failed writing batch to db", "error", err)
return
}
select {
case <-interrupt:
log.Debug("Transaction unindexing interrupted", "blocks", blocks, "txs", txs, "tail", to, "elapsed", common.PrettyDuration(time.Since(start)))
default:
log.Info("Unindexed transactions", "blocks", blocks, "txs", txs, "tail", to, "elapsed", common.PrettyDuration(time.Since(start)))
}
}
// UnindexTransactions removes txlookup indices of the specified block range.
// The from is included while to is excluded.
//
// There is a passed channel, the whole procedure will be interrupted if any
// signal received.
func UnindexTransactions(db ethdb.Database, from uint64, to uint64, interrupt chan struct{}) {
unindexTransactions(db, from, to, interrupt, nil)
}
// unindexTransactionsForTesting is the internal debug version with an additional hook.
func unindexTransactionsForTesting(db ethdb.Database, from uint64, to uint64, interrupt chan struct{}, hook func(uint64) bool) {
unindexTransactions(db, from, to, interrupt, hook)
}