go-ethereum/p2p/simulations/network.go
Martin Holst Swende ee301c750b
all: fix docstrings
2022-10-04 09:18:02 +02:00

1091 lines
29 KiB
Go

// Copyright 2017 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package simulations
import (
"bytes"
"context"
"encoding/json"
"errors"
"fmt"
"math/rand"
"sync"
"time"
"github.com/ethereum/go-ethereum/event"
"github.com/ethereum/go-ethereum/log"
"github.com/ethereum/go-ethereum/p2p"
"github.com/ethereum/go-ethereum/p2p/enode"
"github.com/ethereum/go-ethereum/p2p/simulations/adapters"
)
var DialBanTimeout = 200 * time.Millisecond
// NetworkConfig defines configuration options for starting a Network
type NetworkConfig struct {
ID string `json:"id"`
DefaultService string `json:"default_service,omitempty"`
}
// Network models a p2p simulation network which consists of a collection of
// simulated nodes and the connections which exist between them.
//
// The Network has a single NodeAdapter which is responsible for actually
// starting nodes and connecting them together.
//
// The Network emits events when nodes are started and stopped, when they are
// connected and disconnected, and also when messages are sent between nodes.
type Network struct {
NetworkConfig
Nodes []*Node `json:"nodes"`
nodeMap map[enode.ID]int
// Maps a node property string to node indexes of all nodes that hold this property
propertyMap map[string][]int
Conns []*Conn `json:"conns"`
connMap map[string]int
nodeAdapter adapters.NodeAdapter
events event.Feed
lock sync.RWMutex
quitc chan struct{}
}
// NewNetwork returns a Network which uses the given NodeAdapter and NetworkConfig
func NewNetwork(nodeAdapter adapters.NodeAdapter, conf *NetworkConfig) *Network {
return &Network{
NetworkConfig: *conf,
nodeAdapter: nodeAdapter,
nodeMap: make(map[enode.ID]int),
propertyMap: make(map[string][]int),
connMap: make(map[string]int),
quitc: make(chan struct{}),
}
}
// Events returns the output event feed of the Network.
func (net *Network) Events() *event.Feed {
return &net.events
}
// NewNodeWithConfig adds a new node to the network with the given config,
// returning an error if a node with the same ID or name already exists
func (net *Network) NewNodeWithConfig(conf *adapters.NodeConfig) (*Node, error) {
net.lock.Lock()
defer net.lock.Unlock()
if conf.Reachable == nil {
conf.Reachable = func(otherID enode.ID) bool {
_, err := net.InitConn(conf.ID, otherID)
if err != nil && bytes.Compare(conf.ID.Bytes(), otherID.Bytes()) < 0 {
return false
}
return true
}
}
// check the node doesn't already exist
if node := net.getNode(conf.ID); node != nil {
return nil, fmt.Errorf("node with ID %q already exists", conf.ID)
}
if node := net.getNodeByName(conf.Name); node != nil {
return nil, fmt.Errorf("node with name %q already exists", conf.Name)
}
// if no services are configured, use the default service
if len(conf.Lifecycles) == 0 {
conf.Lifecycles = []string{net.DefaultService}
}
// use the NodeAdapter to create the node
adapterNode, err := net.nodeAdapter.NewNode(conf)
if err != nil {
return nil, err
}
node := newNode(adapterNode, conf, false)
log.Trace("Node created", "id", conf.ID)
nodeIndex := len(net.Nodes)
net.nodeMap[conf.ID] = nodeIndex
net.Nodes = append(net.Nodes, node)
// Register any node properties with the network-level propertyMap
for _, property := range conf.Properties {
net.propertyMap[property] = append(net.propertyMap[property], nodeIndex)
}
// emit a "control" event
net.events.Send(ControlEvent(node))
return node, nil
}
// Config returns the network configuration
func (net *Network) Config() *NetworkConfig {
return &net.NetworkConfig
}
// StartAll starts all nodes in the network
func (net *Network) StartAll() error {
for _, node := range net.Nodes {
if node.Up() {
continue
}
if err := net.Start(node.ID()); err != nil {
return err
}
}
return nil
}
// StopAll stops all nodes in the network
func (net *Network) StopAll() error {
for _, node := range net.Nodes {
if !node.Up() {
continue
}
if err := net.Stop(node.ID()); err != nil {
return err
}
}
return nil
}
// Start starts the node with the given ID
func (net *Network) Start(id enode.ID) error {
return net.startWithSnapshots(id, nil)
}
// startWithSnapshots starts the node with the given ID using the give
// snapshots
func (net *Network) startWithSnapshots(id enode.ID, snapshots map[string][]byte) error {
net.lock.Lock()
defer net.lock.Unlock()
node := net.getNode(id)
if node == nil {
return fmt.Errorf("node %v does not exist", id)
}
if node.Up() {
return fmt.Errorf("node %v already up", id)
}
log.Trace("Starting node", "id", id, "adapter", net.nodeAdapter.Name())
if err := node.Start(snapshots); err != nil {
log.Warn("Node startup failed", "id", id, "err", err)
return err
}
node.SetUp(true)
log.Info("Started node", "id", id)
ev := NewEvent(node)
net.events.Send(ev)
// subscribe to peer events
client, err := node.Client()
if err != nil {
return fmt.Errorf("error getting rpc client for node %v: %s", id, err)
}
events := make(chan *p2p.PeerEvent)
sub, err := client.Subscribe(context.Background(), "admin", events, "peerEvents")
if err != nil {
return fmt.Errorf("error getting peer events for node %v: %s", id, err)
}
go net.watchPeerEvents(id, events, sub)
return nil
}
// watchPeerEvents reads peer events from the given channel and emits
// corresponding network events
func (net *Network) watchPeerEvents(id enode.ID, events chan *p2p.PeerEvent, sub event.Subscription) {
defer func() {
sub.Unsubscribe()
// assume the node is now down
net.lock.Lock()
defer net.lock.Unlock()
node := net.getNode(id)
if node == nil {
return
}
node.SetUp(false)
ev := NewEvent(node)
net.events.Send(ev)
}()
for {
select {
case event, ok := <-events:
if !ok {
return
}
peer := event.Peer
switch event.Type {
case p2p.PeerEventTypeAdd:
net.DidConnect(id, peer)
case p2p.PeerEventTypeDrop:
net.DidDisconnect(id, peer)
case p2p.PeerEventTypeMsgSend:
net.DidSend(id, peer, event.Protocol, *event.MsgCode)
case p2p.PeerEventTypeMsgRecv:
net.DidReceive(peer, id, event.Protocol, *event.MsgCode)
}
case err := <-sub.Err():
if err != nil {
log.Error("Error in peer event subscription", "id", id, "err", err)
}
return
}
}
}
// Stop stops the node with the given ID
func (net *Network) Stop(id enode.ID) error {
// IMPORTANT: node.Stop() must NOT be called under net.lock as
// node.Reachable() closure has a reference to the network and
// calls net.InitConn() what also locks the network. => DEADLOCK
// That holds until the following ticket is not resolved:
var err error
node, err := func() (*Node, error) {
net.lock.Lock()
defer net.lock.Unlock()
node := net.getNode(id)
if node == nil {
return nil, fmt.Errorf("node %v does not exist", id)
}
if !node.Up() {
return nil, fmt.Errorf("node %v already down", id)
}
node.SetUp(false)
return node, nil
}()
if err != nil {
return err
}
err = node.Stop() // must be called without net.lock
net.lock.Lock()
defer net.lock.Unlock()
if err != nil {
node.SetUp(true)
return err
}
log.Info("Stopped node", "id", id, "err", err)
ev := ControlEvent(node)
net.events.Send(ev)
return nil
}
// Connect connects two nodes together by calling the "admin_addPeer" RPC
// method on the "one" node so that it connects to the "other" node
func (net *Network) Connect(oneID, otherID enode.ID) error {
net.lock.Lock()
defer net.lock.Unlock()
return net.connect(oneID, otherID)
}
func (net *Network) connect(oneID, otherID enode.ID) error {
log.Debug("Connecting nodes with addPeer", "id", oneID, "other", otherID)
conn, err := net.initConn(oneID, otherID)
if err != nil {
return err
}
client, err := conn.one.Client()
if err != nil {
return err
}
net.events.Send(ControlEvent(conn))
return client.Call(nil, "admin_addPeer", string(conn.other.Addr()))
}
// Disconnect disconnects two nodes by calling the "admin_removePeer" RPC
// method on the "one" node so that it disconnects from the "other" node
func (net *Network) Disconnect(oneID, otherID enode.ID) error {
conn := net.GetConn(oneID, otherID)
if conn == nil {
return fmt.Errorf("connection between %v and %v does not exist", oneID, otherID)
}
if !conn.Up {
return fmt.Errorf("%v and %v already disconnected", oneID, otherID)
}
client, err := conn.one.Client()
if err != nil {
return err
}
net.events.Send(ControlEvent(conn))
return client.Call(nil, "admin_removePeer", string(conn.other.Addr()))
}
// DidConnect tracks the fact that the "one" node connected to the "other" node
func (net *Network) DidConnect(one, other enode.ID) error {
net.lock.Lock()
defer net.lock.Unlock()
conn, err := net.getOrCreateConn(one, other)
if err != nil {
return fmt.Errorf("connection between %v and %v does not exist", one, other)
}
if conn.Up {
return fmt.Errorf("%v and %v already connected", one, other)
}
conn.Up = true
net.events.Send(NewEvent(conn))
return nil
}
// DidDisconnect tracks the fact that the "one" node disconnected from the
// "other" node
func (net *Network) DidDisconnect(one, other enode.ID) error {
net.lock.Lock()
defer net.lock.Unlock()
conn := net.getConn(one, other)
if conn == nil {
return fmt.Errorf("connection between %v and %v does not exist", one, other)
}
if !conn.Up {
return fmt.Errorf("%v and %v already disconnected", one, other)
}
conn.Up = false
conn.initiated = time.Now().Add(-DialBanTimeout)
net.events.Send(NewEvent(conn))
return nil
}
// DidSend tracks the fact that "sender" sent a message to "receiver"
func (net *Network) DidSend(sender, receiver enode.ID, proto string, code uint64) error {
msg := &Msg{
One: sender,
Other: receiver,
Protocol: proto,
Code: code,
Received: false,
}
net.events.Send(NewEvent(msg))
return nil
}
// DidReceive tracks the fact that "receiver" received a message from "sender"
func (net *Network) DidReceive(sender, receiver enode.ID, proto string, code uint64) error {
msg := &Msg{
One: sender,
Other: receiver,
Protocol: proto,
Code: code,
Received: true,
}
net.events.Send(NewEvent(msg))
return nil
}
// GetNode gets the node with the given ID, returning nil if the node does not
// exist
func (net *Network) GetNode(id enode.ID) *Node {
net.lock.RLock()
defer net.lock.RUnlock()
return net.getNode(id)
}
func (net *Network) getNode(id enode.ID) *Node {
i, found := net.nodeMap[id]
if !found {
return nil
}
return net.Nodes[i]
}
// GetNodeByName gets the node with the given name, returning nil if the node does
// not exist
func (net *Network) GetNodeByName(name string) *Node {
net.lock.RLock()
defer net.lock.RUnlock()
return net.getNodeByName(name)
}
func (net *Network) getNodeByName(name string) *Node {
for _, node := range net.Nodes {
if node.Config.Name == name {
return node
}
}
return nil
}
// GetNodeIDs returns the IDs of all existing nodes
// Nodes can optionally be excluded by specifying their enode.ID.
func (net *Network) GetNodeIDs(excludeIDs ...enode.ID) []enode.ID {
net.lock.RLock()
defer net.lock.RUnlock()
return net.getNodeIDs(excludeIDs)
}
func (net *Network) getNodeIDs(excludeIDs []enode.ID) []enode.ID {
// Get all current nodeIDs
nodeIDs := make([]enode.ID, 0, len(net.nodeMap))
for id := range net.nodeMap {
nodeIDs = append(nodeIDs, id)
}
if len(excludeIDs) > 0 {
// Return the difference of nodeIDs and excludeIDs
return filterIDs(nodeIDs, excludeIDs)
}
return nodeIDs
}
// GetNodes returns the existing nodes.
// Nodes can optionally be excluded by specifying their enode.ID.
func (net *Network) GetNodes(excludeIDs ...enode.ID) []*Node {
net.lock.RLock()
defer net.lock.RUnlock()
return net.getNodes(excludeIDs)
}
func (net *Network) getNodes(excludeIDs []enode.ID) []*Node {
if len(excludeIDs) > 0 {
nodeIDs := net.getNodeIDs(excludeIDs)
return net.getNodesByID(nodeIDs)
}
return net.Nodes
}
// GetNodesByID returns existing nodes with the given enode.IDs.
// If a node doesn't exist with a given enode.ID, it is ignored.
func (net *Network) GetNodesByID(nodeIDs []enode.ID) []*Node {
net.lock.RLock()
defer net.lock.RUnlock()
return net.getNodesByID(nodeIDs)
}
func (net *Network) getNodesByID(nodeIDs []enode.ID) []*Node {
nodes := make([]*Node, 0, len(nodeIDs))
for _, id := range nodeIDs {
node := net.getNode(id)
if node != nil {
nodes = append(nodes, node)
}
}
return nodes
}
// GetNodesByProperty returns existing nodes that have the given property string registered in their NodeConfig
func (net *Network) GetNodesByProperty(property string) []*Node {
net.lock.RLock()
defer net.lock.RUnlock()
return net.getNodesByProperty(property)
}
func (net *Network) getNodesByProperty(property string) []*Node {
nodes := make([]*Node, 0, len(net.propertyMap[property]))
for _, nodeIndex := range net.propertyMap[property] {
nodes = append(nodes, net.Nodes[nodeIndex])
}
return nodes
}
// GetNodeIDsByProperty returns existing node's enode IDs that have the given property string registered in the NodeConfig
func (net *Network) GetNodeIDsByProperty(property string) []enode.ID {
net.lock.RLock()
defer net.lock.RUnlock()
return net.getNodeIDsByProperty(property)
}
func (net *Network) getNodeIDsByProperty(property string) []enode.ID {
nodeIDs := make([]enode.ID, 0, len(net.propertyMap[property]))
for _, nodeIndex := range net.propertyMap[property] {
node := net.Nodes[nodeIndex]
nodeIDs = append(nodeIDs, node.ID())
}
return nodeIDs
}
// GetRandomUpNode returns a random node on the network, which is running.
func (net *Network) GetRandomUpNode(excludeIDs ...enode.ID) *Node {
net.lock.RLock()
defer net.lock.RUnlock()
return net.getRandomUpNode(excludeIDs...)
}
// GetRandomUpNode returns a random node on the network, which is running.
func (net *Network) getRandomUpNode(excludeIDs ...enode.ID) *Node {
return net.getRandomNode(net.getUpNodeIDs(), excludeIDs)
}
func (net *Network) getUpNodeIDs() (ids []enode.ID) {
for _, node := range net.Nodes {
if node.Up() {
ids = append(ids, node.ID())
}
}
return ids
}
// GetRandomDownNode returns a random node on the network, which is stopped.
func (net *Network) GetRandomDownNode(excludeIDs ...enode.ID) *Node {
net.lock.RLock()
defer net.lock.RUnlock()
return net.getRandomNode(net.getDownNodeIDs(), excludeIDs)
}
func (net *Network) getDownNodeIDs() (ids []enode.ID) {
for _, node := range net.Nodes {
if !node.Up() {
ids = append(ids, node.ID())
}
}
return ids
}
// GetRandomNode returns a random node on the network, regardless of whether it is running or not
func (net *Network) GetRandomNode(excludeIDs ...enode.ID) *Node {
net.lock.RLock()
defer net.lock.RUnlock()
return net.getRandomNode(net.getNodeIDs(nil), excludeIDs) // no need to exclude twice
}
func (net *Network) getRandomNode(ids []enode.ID, excludeIDs []enode.ID) *Node {
filtered := filterIDs(ids, excludeIDs)
l := len(filtered)
if l == 0 {
return nil
}
return net.getNode(filtered[rand.Intn(l)])
}
func filterIDs(ids []enode.ID, excludeIDs []enode.ID) []enode.ID {
exclude := make(map[enode.ID]bool)
for _, id := range excludeIDs {
exclude[id] = true
}
var filtered []enode.ID
for _, id := range ids {
if _, found := exclude[id]; !found {
filtered = append(filtered, id)
}
}
return filtered
}
// GetConn returns the connection which exists between "one" and "other"
// regardless of which node initiated the connection
func (net *Network) GetConn(oneID, otherID enode.ID) *Conn {
net.lock.RLock()
defer net.lock.RUnlock()
return net.getConn(oneID, otherID)
}
// GetOrCreateConn is like GetConn but creates the connection if it doesn't
// already exist
func (net *Network) GetOrCreateConn(oneID, otherID enode.ID) (*Conn, error) {
net.lock.Lock()
defer net.lock.Unlock()
return net.getOrCreateConn(oneID, otherID)
}
func (net *Network) getOrCreateConn(oneID, otherID enode.ID) (*Conn, error) {
if conn := net.getConn(oneID, otherID); conn != nil {
return conn, nil
}
one := net.getNode(oneID)
if one == nil {
return nil, fmt.Errorf("node %v does not exist", oneID)
}
other := net.getNode(otherID)
if other == nil {
return nil, fmt.Errorf("node %v does not exist", otherID)
}
conn := &Conn{
One: oneID,
Other: otherID,
one: one,
other: other,
}
label := ConnLabel(oneID, otherID)
net.connMap[label] = len(net.Conns)
net.Conns = append(net.Conns, conn)
return conn, nil
}
func (net *Network) getConn(oneID, otherID enode.ID) *Conn {
label := ConnLabel(oneID, otherID)
i, found := net.connMap[label]
if !found {
return nil
}
return net.Conns[i]
}
// InitConn retrieves the connection model for the connection between
// peers 'oneID' and 'otherID', or creates a new one if it does not exist
// the order of nodes does not matter, i.e., Conn(i,j) == Conn(j, i)
// it checks if the connection is already up, and if the nodes are running
// NOTE:
// it also checks whether there has been recent attempt to connect the peers
// this is cheating as the simulation is used as an oracle and know about
// remote peers attempt to connect to a node which will then not initiate the connection
func (net *Network) InitConn(oneID, otherID enode.ID) (*Conn, error) {
net.lock.Lock()
defer net.lock.Unlock()
return net.initConn(oneID, otherID)
}
func (net *Network) initConn(oneID, otherID enode.ID) (*Conn, error) {
if oneID == otherID {
return nil, fmt.Errorf("refusing to connect to self %v", oneID)
}
conn, err := net.getOrCreateConn(oneID, otherID)
if err != nil {
return nil, err
}
if conn.Up {
return nil, fmt.Errorf("%v and %v already connected", oneID, otherID)
}
if time.Since(conn.initiated) < DialBanTimeout {
return nil, fmt.Errorf("connection between %v and %v recently attempted", oneID, otherID)
}
err = conn.nodesUp()
if err != nil {
log.Trace("Nodes not up", "err", err)
return nil, fmt.Errorf("nodes not up: %v", err)
}
log.Debug("Connection initiated", "id", oneID, "other", otherID)
conn.initiated = time.Now()
return conn, nil
}
// Shutdown stops all nodes in the network and closes the quit channel
func (net *Network) Shutdown() {
for _, node := range net.Nodes {
log.Debug("Stopping node", "id", node.ID())
if err := node.Stop(); err != nil {
log.Warn("Can't stop node", "id", node.ID(), "err", err)
}
}
close(net.quitc)
}
// Reset resets all network properties:
// empties the nodes and the connection list
func (net *Network) Reset() {
net.lock.Lock()
defer net.lock.Unlock()
//re-initialize the maps
net.connMap = make(map[string]int)
net.nodeMap = make(map[enode.ID]int)
net.propertyMap = make(map[string][]int)
net.Nodes = nil
net.Conns = nil
}
// Node is a wrapper around adapters.Node which is used to track the status
// of a node in the network
type Node struct {
adapters.Node `json:"-"`
// Config if the config used to created the node
Config *adapters.NodeConfig `json:"config"`
// up tracks whether or not the node is running
up bool
upMu *sync.RWMutex
}
func newNode(an adapters.Node, ac *adapters.NodeConfig, up bool) *Node {
return &Node{Node: an, Config: ac, up: up, upMu: new(sync.RWMutex)}
}
func (n *Node) copy() *Node {
configCpy := *n.Config
return newNode(n.Node, &configCpy, n.Up())
}
// Up returns whether the node is currently up (online)
func (n *Node) Up() bool {
n.upMu.RLock()
defer n.upMu.RUnlock()
return n.up
}
// SetUp sets the up (online) status of the nodes with the given value
func (n *Node) SetUp(up bool) {
n.upMu.Lock()
defer n.upMu.Unlock()
n.up = up
}
// ID returns the ID of the node
func (n *Node) ID() enode.ID {
return n.Config.ID
}
// String returns a log-friendly string
func (n *Node) String() string {
return fmt.Sprintf("Node %v", n.ID().TerminalString())
}
// NodeInfo returns information about the node
func (n *Node) NodeInfo() *p2p.NodeInfo {
// avoid a panic if the node is not started yet
if n.Node == nil {
return nil
}
info := n.Node.NodeInfo()
info.Name = n.Config.Name
return info
}
// MarshalJSON implements the json.Marshaler interface so that the encoded
// JSON includes the NodeInfo
func (n *Node) MarshalJSON() ([]byte, error) {
return json.Marshal(struct {
Info *p2p.NodeInfo `json:"info,omitempty"`
Config *adapters.NodeConfig `json:"config,omitempty"`
Up bool `json:"up"`
}{
Info: n.NodeInfo(),
Config: n.Config,
Up: n.Up(),
})
}
// UnmarshalJSON implements json.Unmarshaler interface so that we don't lose Node.up
// status. IMPORTANT: The implementation is incomplete; we lose p2p.NodeInfo.
func (n *Node) UnmarshalJSON(raw []byte) error {
// TODO: How should we turn back NodeInfo into n.Node?
// Ticket: https://github.com/ethersphere/go-ethereum/issues/1177
var node struct {
Config *adapters.NodeConfig `json:"config,omitempty"`
Up bool `json:"up"`
}
if err := json.Unmarshal(raw, &node); err != nil {
return err
}
*n = *newNode(nil, node.Config, node.Up)
return nil
}
// Conn represents a connection between two nodes in the network
type Conn struct {
// One is the node which initiated the connection
One enode.ID `json:"one"`
// Other is the node which the connection was made to
Other enode.ID `json:"other"`
// Up tracks whether or not the connection is active
Up bool `json:"up"`
// Registers when the connection was grabbed to dial
initiated time.Time
one *Node
other *Node
}
// nodesUp returns whether both nodes are currently up
func (c *Conn) nodesUp() error {
if !c.one.Up() {
return fmt.Errorf("one %v is not up", c.One)
}
if !c.other.Up() {
return fmt.Errorf("other %v is not up", c.Other)
}
return nil
}
// String returns a log-friendly string
func (c *Conn) String() string {
return fmt.Sprintf("Conn %v->%v", c.One.TerminalString(), c.Other.TerminalString())
}
// Msg represents a p2p message sent between two nodes in the network
type Msg struct {
One enode.ID `json:"one"`
Other enode.ID `json:"other"`
Protocol string `json:"protocol"`
Code uint64 `json:"code"`
Received bool `json:"received"`
}
// String returns a log-friendly string
func (m *Msg) String() string {
return fmt.Sprintf("Msg(%d) %v->%v", m.Code, m.One.TerminalString(), m.Other.TerminalString())
}
// ConnLabel generates a deterministic string which represents a connection
// between two nodes, used to compare if two connections are between the same
// nodes
func ConnLabel(source, target enode.ID) string {
var first, second enode.ID
if bytes.Compare(source.Bytes(), target.Bytes()) > 0 {
first = target
second = source
} else {
first = source
second = target
}
return fmt.Sprintf("%v-%v", first, second)
}
// Snapshot represents the state of a network at a single point in time and can
// be used to restore the state of a network
type Snapshot struct {
Nodes []NodeSnapshot `json:"nodes,omitempty"`
Conns []Conn `json:"conns,omitempty"`
}
// NodeSnapshot represents the state of a node in the network
type NodeSnapshot struct {
Node Node `json:"node,omitempty"`
// Snapshots is arbitrary data gathered from calling node.Snapshots()
Snapshots map[string][]byte `json:"snapshots,omitempty"`
}
// Snapshot creates a network snapshot
func (net *Network) Snapshot() (*Snapshot, error) {
return net.snapshot(nil, nil)
}
func (net *Network) SnapshotWithServices(addServices []string, removeServices []string) (*Snapshot, error) {
return net.snapshot(addServices, removeServices)
}
func (net *Network) snapshot(addServices []string, removeServices []string) (*Snapshot, error) {
net.lock.Lock()
defer net.lock.Unlock()
snap := &Snapshot{
Nodes: make([]NodeSnapshot, len(net.Nodes)),
}
for i, node := range net.Nodes {
snap.Nodes[i] = NodeSnapshot{Node: *node.copy()}
if !node.Up() {
continue
}
snapshots, err := node.Snapshots()
if err != nil {
return nil, err
}
snap.Nodes[i].Snapshots = snapshots
for _, addSvc := range addServices {
haveSvc := false
for _, svc := range snap.Nodes[i].Node.Config.Lifecycles {
if svc == addSvc {
haveSvc = true
break
}
}
if !haveSvc {
snap.Nodes[i].Node.Config.Lifecycles = append(snap.Nodes[i].Node.Config.Lifecycles, addSvc)
}
}
if len(removeServices) > 0 {
var cleanedServices []string
for _, svc := range snap.Nodes[i].Node.Config.Lifecycles {
haveSvc := false
for _, rmSvc := range removeServices {
if rmSvc == svc {
haveSvc = true
break
}
}
if !haveSvc {
cleanedServices = append(cleanedServices, svc)
}
}
snap.Nodes[i].Node.Config.Lifecycles = cleanedServices
}
}
for _, conn := range net.Conns {
if conn.Up {
snap.Conns = append(snap.Conns, *conn)
}
}
return snap, nil
}
// longrunning tests may need a longer timeout
var snapshotLoadTimeout = 900 * time.Second
// Load loads a network snapshot
func (net *Network) Load(snap *Snapshot) error {
// Start nodes.
for _, n := range snap.Nodes {
if _, err := net.NewNodeWithConfig(n.Node.Config); err != nil {
return err
}
if !n.Node.Up() {
continue
}
if err := net.startWithSnapshots(n.Node.Config.ID, n.Snapshots); err != nil {
return err
}
}
// Prepare connection events counter.
allConnected := make(chan struct{}) // closed when all connections are established
done := make(chan struct{}) // ensures that the event loop goroutine is terminated
defer close(done)
// Subscribe to event channel.
// It needs to be done outside of the event loop goroutine (created below)
// to ensure that the event channel is blocking before connect calls are made.
events := make(chan *Event)
sub := net.Events().Subscribe(events)
defer sub.Unsubscribe()
go func() {
// Expected number of connections.
total := len(snap.Conns)
// Set of all established connections from the snapshot, not other connections.
// Key array element 0 is the connection One field value, and element 1 connection Other field.
connections := make(map[[2]enode.ID]struct{}, total)
for {
select {
case e := <-events:
// Ignore control events as they do not represent
// connect or disconnect (Up) state change.
if e.Control {
continue
}
// Detect only connection events.
if e.Type != EventTypeConn {
continue
}
connection := [2]enode.ID{e.Conn.One, e.Conn.Other}
// Nodes are still not connected or have been disconnected.
if !e.Conn.Up {
// Delete the connection from the set of established connections.
// This will prevent false positive in case disconnections happen.
delete(connections, connection)
log.Warn("load snapshot: unexpected disconnection", "one", e.Conn.One, "other", e.Conn.Other)
continue
}
// Check that the connection is from the snapshot.
for _, conn := range snap.Conns {
if conn.One == e.Conn.One && conn.Other == e.Conn.Other {
// Add the connection to the set of established connections.
connections[connection] = struct{}{}
if len(connections) == total {
// Signal that all nodes are connected.
close(allConnected)
return
}
break
}
}
case <-done:
// Load function returned, terminate this goroutine.
return
}
}
}()
// Start connecting.
for _, conn := range snap.Conns {
if !net.GetNode(conn.One).Up() || !net.GetNode(conn.Other).Up() {
//in this case, at least one of the nodes of a connection is not up,
//so it would result in the snapshot `Load` to fail
continue
}
if err := net.Connect(conn.One, conn.Other); err != nil {
return err
}
}
select {
// Wait until all connections from the snapshot are established.
case <-allConnected:
// Make sure that we do not wait forever.
case <-time.After(snapshotLoadTimeout):
return errors.New("snapshot connections not established")
}
return nil
}
// Subscribe reads control events from a channel and executes them
func (net *Network) Subscribe(events chan *Event) {
for {
select {
case event, ok := <-events:
if !ok {
return
}
if event.Control {
net.executeControlEvent(event)
}
case <-net.quitc:
return
}
}
}
func (net *Network) executeControlEvent(event *Event) {
log.Trace("Executing control event", "type", event.Type, "event", event)
switch event.Type {
case EventTypeNode:
if err := net.executeNodeEvent(event); err != nil {
log.Error("Error executing node event", "event", event, "err", err)
}
case EventTypeConn:
if err := net.executeConnEvent(event); err != nil {
log.Error("Error executing conn event", "event", event, "err", err)
}
case EventTypeMsg:
log.Warn("Ignoring control msg event")
}
}
func (net *Network) executeNodeEvent(e *Event) error {
if !e.Node.Up() {
return net.Stop(e.Node.ID())
}
if _, err := net.NewNodeWithConfig(e.Node.Config); err != nil {
return err
}
return net.Start(e.Node.ID())
}
func (net *Network) executeConnEvent(e *Event) error {
if e.Conn.Up {
return net.Connect(e.Conn.One, e.Conn.Other)
}
return net.Disconnect(e.Conn.One, e.Conn.Other)
}