e0ceeab0d1
- Use defined constants instead of hard-coding their integer value. - Allocate secp256k1 structs on the C stack instead of converting []byte - Remove dead code
452 lines
14 KiB
C
452 lines
14 KiB
C
/**********************************************************************
|
|
* Copyright (c) 2013, 2014 Pieter Wuille *
|
|
* Distributed under the MIT software license, see the accompanying *
|
|
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
|
|
**********************************************************************/
|
|
|
|
#ifndef _SECP256K1_FIELD_REPR_IMPL_H_
|
|
#define _SECP256K1_FIELD_REPR_IMPL_H_
|
|
|
|
#if defined HAVE_CONFIG_H
|
|
#include "libsecp256k1-config.h"
|
|
#endif
|
|
|
|
#include "util.h"
|
|
#include "num.h"
|
|
#include "field.h"
|
|
|
|
#if defined(USE_ASM_X86_64)
|
|
#include "field_5x52_asm_impl.h"
|
|
#else
|
|
#include "field_5x52_int128_impl.h"
|
|
#endif
|
|
|
|
/** Implements arithmetic modulo FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFE FFFFFC2F,
|
|
* represented as 5 uint64_t's in base 2^52. The values are allowed to contain >52 each. In particular,
|
|
* each FieldElem has a 'magnitude' associated with it. Internally, a magnitude M means each element
|
|
* is at most M*(2^53-1), except the most significant one, which is limited to M*(2^49-1). All operations
|
|
* accept any input with magnitude at most M, and have different rules for propagating magnitude to their
|
|
* output.
|
|
*/
|
|
|
|
#ifdef VERIFY
|
|
static void secp256k1_fe_verify(const secp256k1_fe *a) {
|
|
const uint64_t *d = a->n;
|
|
int m = a->normalized ? 1 : 2 * a->magnitude, r = 1;
|
|
/* secp256k1 'p' value defined in "Standards for Efficient Cryptography" (SEC2) 2.7.1. */
|
|
r &= (d[0] <= 0xFFFFFFFFFFFFFULL * m);
|
|
r &= (d[1] <= 0xFFFFFFFFFFFFFULL * m);
|
|
r &= (d[2] <= 0xFFFFFFFFFFFFFULL * m);
|
|
r &= (d[3] <= 0xFFFFFFFFFFFFFULL * m);
|
|
r &= (d[4] <= 0x0FFFFFFFFFFFFULL * m);
|
|
r &= (a->magnitude >= 0);
|
|
r &= (a->magnitude <= 2048);
|
|
if (a->normalized) {
|
|
r &= (a->magnitude <= 1);
|
|
if (r && (d[4] == 0x0FFFFFFFFFFFFULL) && ((d[3] & d[2] & d[1]) == 0xFFFFFFFFFFFFFULL)) {
|
|
r &= (d[0] < 0xFFFFEFFFFFC2FULL);
|
|
}
|
|
}
|
|
VERIFY_CHECK(r == 1);
|
|
}
|
|
#endif
|
|
|
|
static void secp256k1_fe_normalize(secp256k1_fe *r) {
|
|
uint64_t t0 = r->n[0], t1 = r->n[1], t2 = r->n[2], t3 = r->n[3], t4 = r->n[4];
|
|
|
|
/* Reduce t4 at the start so there will be at most a single carry from the first pass */
|
|
uint64_t m;
|
|
uint64_t x = t4 >> 48; t4 &= 0x0FFFFFFFFFFFFULL;
|
|
|
|
/* The first pass ensures the magnitude is 1, ... */
|
|
t0 += x * 0x1000003D1ULL;
|
|
t1 += (t0 >> 52); t0 &= 0xFFFFFFFFFFFFFULL;
|
|
t2 += (t1 >> 52); t1 &= 0xFFFFFFFFFFFFFULL; m = t1;
|
|
t3 += (t2 >> 52); t2 &= 0xFFFFFFFFFFFFFULL; m &= t2;
|
|
t4 += (t3 >> 52); t3 &= 0xFFFFFFFFFFFFFULL; m &= t3;
|
|
|
|
/* ... except for a possible carry at bit 48 of t4 (i.e. bit 256 of the field element) */
|
|
VERIFY_CHECK(t4 >> 49 == 0);
|
|
|
|
/* At most a single final reduction is needed; check if the value is >= the field characteristic */
|
|
x = (t4 >> 48) | ((t4 == 0x0FFFFFFFFFFFFULL) & (m == 0xFFFFFFFFFFFFFULL)
|
|
& (t0 >= 0xFFFFEFFFFFC2FULL));
|
|
|
|
/* Apply the final reduction (for constant-time behaviour, we do it always) */
|
|
t0 += x * 0x1000003D1ULL;
|
|
t1 += (t0 >> 52); t0 &= 0xFFFFFFFFFFFFFULL;
|
|
t2 += (t1 >> 52); t1 &= 0xFFFFFFFFFFFFFULL;
|
|
t3 += (t2 >> 52); t2 &= 0xFFFFFFFFFFFFFULL;
|
|
t4 += (t3 >> 52); t3 &= 0xFFFFFFFFFFFFFULL;
|
|
|
|
/* If t4 didn't carry to bit 48 already, then it should have after any final reduction */
|
|
VERIFY_CHECK(t4 >> 48 == x);
|
|
|
|
/* Mask off the possible multiple of 2^256 from the final reduction */
|
|
t4 &= 0x0FFFFFFFFFFFFULL;
|
|
|
|
r->n[0] = t0; r->n[1] = t1; r->n[2] = t2; r->n[3] = t3; r->n[4] = t4;
|
|
|
|
#ifdef VERIFY
|
|
r->magnitude = 1;
|
|
r->normalized = 1;
|
|
secp256k1_fe_verify(r);
|
|
#endif
|
|
}
|
|
|
|
static void secp256k1_fe_normalize_weak(secp256k1_fe *r) {
|
|
uint64_t t0 = r->n[0], t1 = r->n[1], t2 = r->n[2], t3 = r->n[3], t4 = r->n[4];
|
|
|
|
/* Reduce t4 at the start so there will be at most a single carry from the first pass */
|
|
uint64_t x = t4 >> 48; t4 &= 0x0FFFFFFFFFFFFULL;
|
|
|
|
/* The first pass ensures the magnitude is 1, ... */
|
|
t0 += x * 0x1000003D1ULL;
|
|
t1 += (t0 >> 52); t0 &= 0xFFFFFFFFFFFFFULL;
|
|
t2 += (t1 >> 52); t1 &= 0xFFFFFFFFFFFFFULL;
|
|
t3 += (t2 >> 52); t2 &= 0xFFFFFFFFFFFFFULL;
|
|
t4 += (t3 >> 52); t3 &= 0xFFFFFFFFFFFFFULL;
|
|
|
|
/* ... except for a possible carry at bit 48 of t4 (i.e. bit 256 of the field element) */
|
|
VERIFY_CHECK(t4 >> 49 == 0);
|
|
|
|
r->n[0] = t0; r->n[1] = t1; r->n[2] = t2; r->n[3] = t3; r->n[4] = t4;
|
|
|
|
#ifdef VERIFY
|
|
r->magnitude = 1;
|
|
secp256k1_fe_verify(r);
|
|
#endif
|
|
}
|
|
|
|
static void secp256k1_fe_normalize_var(secp256k1_fe *r) {
|
|
uint64_t t0 = r->n[0], t1 = r->n[1], t2 = r->n[2], t3 = r->n[3], t4 = r->n[4];
|
|
|
|
/* Reduce t4 at the start so there will be at most a single carry from the first pass */
|
|
uint64_t m;
|
|
uint64_t x = t4 >> 48; t4 &= 0x0FFFFFFFFFFFFULL;
|
|
|
|
/* The first pass ensures the magnitude is 1, ... */
|
|
t0 += x * 0x1000003D1ULL;
|
|
t1 += (t0 >> 52); t0 &= 0xFFFFFFFFFFFFFULL;
|
|
t2 += (t1 >> 52); t1 &= 0xFFFFFFFFFFFFFULL; m = t1;
|
|
t3 += (t2 >> 52); t2 &= 0xFFFFFFFFFFFFFULL; m &= t2;
|
|
t4 += (t3 >> 52); t3 &= 0xFFFFFFFFFFFFFULL; m &= t3;
|
|
|
|
/* ... except for a possible carry at bit 48 of t4 (i.e. bit 256 of the field element) */
|
|
VERIFY_CHECK(t4 >> 49 == 0);
|
|
|
|
/* At most a single final reduction is needed; check if the value is >= the field characteristic */
|
|
x = (t4 >> 48) | ((t4 == 0x0FFFFFFFFFFFFULL) & (m == 0xFFFFFFFFFFFFFULL)
|
|
& (t0 >= 0xFFFFEFFFFFC2FULL));
|
|
|
|
if (x) {
|
|
t0 += 0x1000003D1ULL;
|
|
t1 += (t0 >> 52); t0 &= 0xFFFFFFFFFFFFFULL;
|
|
t2 += (t1 >> 52); t1 &= 0xFFFFFFFFFFFFFULL;
|
|
t3 += (t2 >> 52); t2 &= 0xFFFFFFFFFFFFFULL;
|
|
t4 += (t3 >> 52); t3 &= 0xFFFFFFFFFFFFFULL;
|
|
|
|
/* If t4 didn't carry to bit 48 already, then it should have after any final reduction */
|
|
VERIFY_CHECK(t4 >> 48 == x);
|
|
|
|
/* Mask off the possible multiple of 2^256 from the final reduction */
|
|
t4 &= 0x0FFFFFFFFFFFFULL;
|
|
}
|
|
|
|
r->n[0] = t0; r->n[1] = t1; r->n[2] = t2; r->n[3] = t3; r->n[4] = t4;
|
|
|
|
#ifdef VERIFY
|
|
r->magnitude = 1;
|
|
r->normalized = 1;
|
|
secp256k1_fe_verify(r);
|
|
#endif
|
|
}
|
|
|
|
static int secp256k1_fe_normalizes_to_zero(secp256k1_fe *r) {
|
|
uint64_t t0 = r->n[0], t1 = r->n[1], t2 = r->n[2], t3 = r->n[3], t4 = r->n[4];
|
|
|
|
/* z0 tracks a possible raw value of 0, z1 tracks a possible raw value of P */
|
|
uint64_t z0, z1;
|
|
|
|
/* Reduce t4 at the start so there will be at most a single carry from the first pass */
|
|
uint64_t x = t4 >> 48; t4 &= 0x0FFFFFFFFFFFFULL;
|
|
|
|
/* The first pass ensures the magnitude is 1, ... */
|
|
t0 += x * 0x1000003D1ULL;
|
|
t1 += (t0 >> 52); t0 &= 0xFFFFFFFFFFFFFULL; z0 = t0; z1 = t0 ^ 0x1000003D0ULL;
|
|
t2 += (t1 >> 52); t1 &= 0xFFFFFFFFFFFFFULL; z0 |= t1; z1 &= t1;
|
|
t3 += (t2 >> 52); t2 &= 0xFFFFFFFFFFFFFULL; z0 |= t2; z1 &= t2;
|
|
t4 += (t3 >> 52); t3 &= 0xFFFFFFFFFFFFFULL; z0 |= t3; z1 &= t3;
|
|
z0 |= t4; z1 &= t4 ^ 0xF000000000000ULL;
|
|
|
|
/* ... except for a possible carry at bit 48 of t4 (i.e. bit 256 of the field element) */
|
|
VERIFY_CHECK(t4 >> 49 == 0);
|
|
|
|
return (z0 == 0) | (z1 == 0xFFFFFFFFFFFFFULL);
|
|
}
|
|
|
|
static int secp256k1_fe_normalizes_to_zero_var(secp256k1_fe *r) {
|
|
uint64_t t0, t1, t2, t3, t4;
|
|
uint64_t z0, z1;
|
|
uint64_t x;
|
|
|
|
t0 = r->n[0];
|
|
t4 = r->n[4];
|
|
|
|
/* Reduce t4 at the start so there will be at most a single carry from the first pass */
|
|
x = t4 >> 48;
|
|
|
|
/* The first pass ensures the magnitude is 1, ... */
|
|
t0 += x * 0x1000003D1ULL;
|
|
|
|
/* z0 tracks a possible raw value of 0, z1 tracks a possible raw value of P */
|
|
z0 = t0 & 0xFFFFFFFFFFFFFULL;
|
|
z1 = z0 ^ 0x1000003D0ULL;
|
|
|
|
/* Fast return path should catch the majority of cases */
|
|
if ((z0 != 0ULL) & (z1 != 0xFFFFFFFFFFFFFULL)) {
|
|
return 0;
|
|
}
|
|
|
|
t1 = r->n[1];
|
|
t2 = r->n[2];
|
|
t3 = r->n[3];
|
|
|
|
t4 &= 0x0FFFFFFFFFFFFULL;
|
|
|
|
t1 += (t0 >> 52);
|
|
t2 += (t1 >> 52); t1 &= 0xFFFFFFFFFFFFFULL; z0 |= t1; z1 &= t1;
|
|
t3 += (t2 >> 52); t2 &= 0xFFFFFFFFFFFFFULL; z0 |= t2; z1 &= t2;
|
|
t4 += (t3 >> 52); t3 &= 0xFFFFFFFFFFFFFULL; z0 |= t3; z1 &= t3;
|
|
z0 |= t4; z1 &= t4 ^ 0xF000000000000ULL;
|
|
|
|
/* ... except for a possible carry at bit 48 of t4 (i.e. bit 256 of the field element) */
|
|
VERIFY_CHECK(t4 >> 49 == 0);
|
|
|
|
return (z0 == 0) | (z1 == 0xFFFFFFFFFFFFFULL);
|
|
}
|
|
|
|
SECP256K1_INLINE static void secp256k1_fe_set_int(secp256k1_fe *r, int a) {
|
|
r->n[0] = a;
|
|
r->n[1] = r->n[2] = r->n[3] = r->n[4] = 0;
|
|
#ifdef VERIFY
|
|
r->magnitude = 1;
|
|
r->normalized = 1;
|
|
secp256k1_fe_verify(r);
|
|
#endif
|
|
}
|
|
|
|
SECP256K1_INLINE static int secp256k1_fe_is_zero(const secp256k1_fe *a) {
|
|
const uint64_t *t = a->n;
|
|
#ifdef VERIFY
|
|
VERIFY_CHECK(a->normalized);
|
|
secp256k1_fe_verify(a);
|
|
#endif
|
|
return (t[0] | t[1] | t[2] | t[3] | t[4]) == 0;
|
|
}
|
|
|
|
SECP256K1_INLINE static int secp256k1_fe_is_odd(const secp256k1_fe *a) {
|
|
#ifdef VERIFY
|
|
VERIFY_CHECK(a->normalized);
|
|
secp256k1_fe_verify(a);
|
|
#endif
|
|
return a->n[0] & 1;
|
|
}
|
|
|
|
SECP256K1_INLINE static void secp256k1_fe_clear(secp256k1_fe *a) {
|
|
int i;
|
|
#ifdef VERIFY
|
|
a->magnitude = 0;
|
|
a->normalized = 1;
|
|
#endif
|
|
for (i=0; i<5; i++) {
|
|
a->n[i] = 0;
|
|
}
|
|
}
|
|
|
|
static int secp256k1_fe_cmp_var(const secp256k1_fe *a, const secp256k1_fe *b) {
|
|
int i;
|
|
#ifdef VERIFY
|
|
VERIFY_CHECK(a->normalized);
|
|
VERIFY_CHECK(b->normalized);
|
|
secp256k1_fe_verify(a);
|
|
secp256k1_fe_verify(b);
|
|
#endif
|
|
for (i = 4; i >= 0; i--) {
|
|
if (a->n[i] > b->n[i]) {
|
|
return 1;
|
|
}
|
|
if (a->n[i] < b->n[i]) {
|
|
return -1;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int secp256k1_fe_set_b32(secp256k1_fe *r, const unsigned char *a) {
|
|
int i;
|
|
r->n[0] = r->n[1] = r->n[2] = r->n[3] = r->n[4] = 0;
|
|
for (i=0; i<32; i++) {
|
|
int j;
|
|
for (j=0; j<2; j++) {
|
|
int limb = (8*i+4*j)/52;
|
|
int shift = (8*i+4*j)%52;
|
|
r->n[limb] |= (uint64_t)((a[31-i] >> (4*j)) & 0xF) << shift;
|
|
}
|
|
}
|
|
if (r->n[4] == 0x0FFFFFFFFFFFFULL && (r->n[3] & r->n[2] & r->n[1]) == 0xFFFFFFFFFFFFFULL && r->n[0] >= 0xFFFFEFFFFFC2FULL) {
|
|
return 0;
|
|
}
|
|
#ifdef VERIFY
|
|
r->magnitude = 1;
|
|
r->normalized = 1;
|
|
secp256k1_fe_verify(r);
|
|
#endif
|
|
return 1;
|
|
}
|
|
|
|
/** Convert a field element to a 32-byte big endian value. Requires the input to be normalized */
|
|
static void secp256k1_fe_get_b32(unsigned char *r, const secp256k1_fe *a) {
|
|
int i;
|
|
#ifdef VERIFY
|
|
VERIFY_CHECK(a->normalized);
|
|
secp256k1_fe_verify(a);
|
|
#endif
|
|
for (i=0; i<32; i++) {
|
|
int j;
|
|
int c = 0;
|
|
for (j=0; j<2; j++) {
|
|
int limb = (8*i+4*j)/52;
|
|
int shift = (8*i+4*j)%52;
|
|
c |= ((a->n[limb] >> shift) & 0xF) << (4 * j);
|
|
}
|
|
r[31-i] = c;
|
|
}
|
|
}
|
|
|
|
SECP256K1_INLINE static void secp256k1_fe_negate(secp256k1_fe *r, const secp256k1_fe *a, int m) {
|
|
#ifdef VERIFY
|
|
VERIFY_CHECK(a->magnitude <= m);
|
|
secp256k1_fe_verify(a);
|
|
#endif
|
|
r->n[0] = 0xFFFFEFFFFFC2FULL * 2 * (m + 1) - a->n[0];
|
|
r->n[1] = 0xFFFFFFFFFFFFFULL * 2 * (m + 1) - a->n[1];
|
|
r->n[2] = 0xFFFFFFFFFFFFFULL * 2 * (m + 1) - a->n[2];
|
|
r->n[3] = 0xFFFFFFFFFFFFFULL * 2 * (m + 1) - a->n[3];
|
|
r->n[4] = 0x0FFFFFFFFFFFFULL * 2 * (m + 1) - a->n[4];
|
|
#ifdef VERIFY
|
|
r->magnitude = m + 1;
|
|
r->normalized = 0;
|
|
secp256k1_fe_verify(r);
|
|
#endif
|
|
}
|
|
|
|
SECP256K1_INLINE static void secp256k1_fe_mul_int(secp256k1_fe *r, int a) {
|
|
r->n[0] *= a;
|
|
r->n[1] *= a;
|
|
r->n[2] *= a;
|
|
r->n[3] *= a;
|
|
r->n[4] *= a;
|
|
#ifdef VERIFY
|
|
r->magnitude *= a;
|
|
r->normalized = 0;
|
|
secp256k1_fe_verify(r);
|
|
#endif
|
|
}
|
|
|
|
SECP256K1_INLINE static void secp256k1_fe_add(secp256k1_fe *r, const secp256k1_fe *a) {
|
|
#ifdef VERIFY
|
|
secp256k1_fe_verify(a);
|
|
#endif
|
|
r->n[0] += a->n[0];
|
|
r->n[1] += a->n[1];
|
|
r->n[2] += a->n[2];
|
|
r->n[3] += a->n[3];
|
|
r->n[4] += a->n[4];
|
|
#ifdef VERIFY
|
|
r->magnitude += a->magnitude;
|
|
r->normalized = 0;
|
|
secp256k1_fe_verify(r);
|
|
#endif
|
|
}
|
|
|
|
static void secp256k1_fe_mul(secp256k1_fe *r, const secp256k1_fe *a, const secp256k1_fe * SECP256K1_RESTRICT b) {
|
|
#ifdef VERIFY
|
|
VERIFY_CHECK(a->magnitude <= 8);
|
|
VERIFY_CHECK(b->magnitude <= 8);
|
|
secp256k1_fe_verify(a);
|
|
secp256k1_fe_verify(b);
|
|
VERIFY_CHECK(r != b);
|
|
#endif
|
|
secp256k1_fe_mul_inner(r->n, a->n, b->n);
|
|
#ifdef VERIFY
|
|
r->magnitude = 1;
|
|
r->normalized = 0;
|
|
secp256k1_fe_verify(r);
|
|
#endif
|
|
}
|
|
|
|
static void secp256k1_fe_sqr(secp256k1_fe *r, const secp256k1_fe *a) {
|
|
#ifdef VERIFY
|
|
VERIFY_CHECK(a->magnitude <= 8);
|
|
secp256k1_fe_verify(a);
|
|
#endif
|
|
secp256k1_fe_sqr_inner(r->n, a->n);
|
|
#ifdef VERIFY
|
|
r->magnitude = 1;
|
|
r->normalized = 0;
|
|
secp256k1_fe_verify(r);
|
|
#endif
|
|
}
|
|
|
|
static SECP256K1_INLINE void secp256k1_fe_cmov(secp256k1_fe *r, const secp256k1_fe *a, int flag) {
|
|
uint64_t mask0, mask1;
|
|
mask0 = flag + ~((uint64_t)0);
|
|
mask1 = ~mask0;
|
|
r->n[0] = (r->n[0] & mask0) | (a->n[0] & mask1);
|
|
r->n[1] = (r->n[1] & mask0) | (a->n[1] & mask1);
|
|
r->n[2] = (r->n[2] & mask0) | (a->n[2] & mask1);
|
|
r->n[3] = (r->n[3] & mask0) | (a->n[3] & mask1);
|
|
r->n[4] = (r->n[4] & mask0) | (a->n[4] & mask1);
|
|
#ifdef VERIFY
|
|
if (a->magnitude > r->magnitude) {
|
|
r->magnitude = a->magnitude;
|
|
}
|
|
r->normalized &= a->normalized;
|
|
#endif
|
|
}
|
|
|
|
static SECP256K1_INLINE void secp256k1_fe_storage_cmov(secp256k1_fe_storage *r, const secp256k1_fe_storage *a, int flag) {
|
|
uint64_t mask0, mask1;
|
|
mask0 = flag + ~((uint64_t)0);
|
|
mask1 = ~mask0;
|
|
r->n[0] = (r->n[0] & mask0) | (a->n[0] & mask1);
|
|
r->n[1] = (r->n[1] & mask0) | (a->n[1] & mask1);
|
|
r->n[2] = (r->n[2] & mask0) | (a->n[2] & mask1);
|
|
r->n[3] = (r->n[3] & mask0) | (a->n[3] & mask1);
|
|
}
|
|
|
|
static void secp256k1_fe_to_storage(secp256k1_fe_storage *r, const secp256k1_fe *a) {
|
|
#ifdef VERIFY
|
|
VERIFY_CHECK(a->normalized);
|
|
#endif
|
|
r->n[0] = a->n[0] | a->n[1] << 52;
|
|
r->n[1] = a->n[1] >> 12 | a->n[2] << 40;
|
|
r->n[2] = a->n[2] >> 24 | a->n[3] << 28;
|
|
r->n[3] = a->n[3] >> 36 | a->n[4] << 16;
|
|
}
|
|
|
|
static SECP256K1_INLINE void secp256k1_fe_from_storage(secp256k1_fe *r, const secp256k1_fe_storage *a) {
|
|
r->n[0] = a->n[0] & 0xFFFFFFFFFFFFFULL;
|
|
r->n[1] = a->n[0] >> 52 | ((a->n[1] << 12) & 0xFFFFFFFFFFFFFULL);
|
|
r->n[2] = a->n[1] >> 40 | ((a->n[2] << 24) & 0xFFFFFFFFFFFFFULL);
|
|
r->n[3] = a->n[2] >> 28 | ((a->n[3] << 36) & 0xFFFFFFFFFFFFFULL);
|
|
r->n[4] = a->n[3] >> 16;
|
|
#ifdef VERIFY
|
|
r->magnitude = 1;
|
|
r->normalized = 1;
|
|
#endif
|
|
}
|
|
|
|
#endif
|