go-ethereum/consensus/ethash/consensus.go
Martin HS a5a4fa7032
all: use uint256 in state (#28598)
This change makes use of uin256 to represent balance in state. It touches primarily upon statedb, stateobject and state processing, trying to avoid changes in transaction pools, core types, rpc and tracers.
2024-01-23 14:51:58 +01:00

599 lines
22 KiB
Go

// Copyright 2017 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package ethash
import (
"errors"
"fmt"
"math/big"
"time"
mapset "github.com/deckarep/golang-set/v2"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/common/math"
"github.com/ethereum/go-ethereum/consensus"
"github.com/ethereum/go-ethereum/consensus/misc"
"github.com/ethereum/go-ethereum/consensus/misc/eip1559"
"github.com/ethereum/go-ethereum/core/state"
"github.com/ethereum/go-ethereum/core/types"
"github.com/ethereum/go-ethereum/params"
"github.com/ethereum/go-ethereum/rlp"
"github.com/ethereum/go-ethereum/trie"
"github.com/holiman/uint256"
"golang.org/x/crypto/sha3"
)
// Ethash proof-of-work protocol constants.
var (
FrontierBlockReward = uint256.NewInt(5e+18) // Block reward in wei for successfully mining a block
ByzantiumBlockReward = uint256.NewInt(3e+18) // Block reward in wei for successfully mining a block upward from Byzantium
ConstantinopleBlockReward = uint256.NewInt(2e+18) // Block reward in wei for successfully mining a block upward from Constantinople
maxUncles = 2 // Maximum number of uncles allowed in a single block
allowedFutureBlockTimeSeconds = int64(15) // Max seconds from current time allowed for blocks, before they're considered future blocks
// calcDifficultyEip5133 is the difficulty adjustment algorithm as specified by EIP 5133.
// It offsets the bomb a total of 11.4M blocks.
// Specification EIP-5133: https://eips.ethereum.org/EIPS/eip-5133
calcDifficultyEip5133 = makeDifficultyCalculator(big.NewInt(11_400_000))
// calcDifficultyEip4345 is the difficulty adjustment algorithm as specified by EIP 4345.
// It offsets the bomb a total of 10.7M blocks.
// Specification EIP-4345: https://eips.ethereum.org/EIPS/eip-4345
calcDifficultyEip4345 = makeDifficultyCalculator(big.NewInt(10_700_000))
// calcDifficultyEip3554 is the difficulty adjustment algorithm as specified by EIP 3554.
// It offsets the bomb a total of 9.7M blocks.
// Specification EIP-3554: https://eips.ethereum.org/EIPS/eip-3554
calcDifficultyEip3554 = makeDifficultyCalculator(big.NewInt(9700000))
// calcDifficultyEip2384 is the difficulty adjustment algorithm as specified by EIP 2384.
// It offsets the bomb 4M blocks from Constantinople, so in total 9M blocks.
// Specification EIP-2384: https://eips.ethereum.org/EIPS/eip-2384
calcDifficultyEip2384 = makeDifficultyCalculator(big.NewInt(9000000))
// calcDifficultyConstantinople is the difficulty adjustment algorithm for Constantinople.
// It returns the difficulty that a new block should have when created at time given the
// parent block's time and difficulty. The calculation uses the Byzantium rules, but with
// bomb offset 5M.
// Specification EIP-1234: https://eips.ethereum.org/EIPS/eip-1234
calcDifficultyConstantinople = makeDifficultyCalculator(big.NewInt(5000000))
// calcDifficultyByzantium is the difficulty adjustment algorithm. It returns
// the difficulty that a new block should have when created at time given the
// parent block's time and difficulty. The calculation uses the Byzantium rules.
// Specification EIP-649: https://eips.ethereum.org/EIPS/eip-649
calcDifficultyByzantium = makeDifficultyCalculator(big.NewInt(3000000))
)
// Various error messages to mark blocks invalid. These should be private to
// prevent engine specific errors from being referenced in the remainder of the
// codebase, inherently breaking if the engine is swapped out. Please put common
// error types into the consensus package.
var (
errOlderBlockTime = errors.New("timestamp older than parent")
errTooManyUncles = errors.New("too many uncles")
errDuplicateUncle = errors.New("duplicate uncle")
errUncleIsAncestor = errors.New("uncle is ancestor")
errDanglingUncle = errors.New("uncle's parent is not ancestor")
)
// Author implements consensus.Engine, returning the header's coinbase as the
// proof-of-work verified author of the block.
func (ethash *Ethash) Author(header *types.Header) (common.Address, error) {
return header.Coinbase, nil
}
// VerifyHeader checks whether a header conforms to the consensus rules of the
// stock Ethereum ethash engine.
func (ethash *Ethash) VerifyHeader(chain consensus.ChainHeaderReader, header *types.Header) error {
// Short circuit if the header is known, or its parent not
number := header.Number.Uint64()
if chain.GetHeader(header.Hash(), number) != nil {
return nil
}
parent := chain.GetHeader(header.ParentHash, number-1)
if parent == nil {
return consensus.ErrUnknownAncestor
}
// Sanity checks passed, do a proper verification
return ethash.verifyHeader(chain, header, parent, false, time.Now().Unix())
}
// VerifyHeaders is similar to VerifyHeader, but verifies a batch of headers
// concurrently. The method returns a quit channel to abort the operations and
// a results channel to retrieve the async verifications.
func (ethash *Ethash) VerifyHeaders(chain consensus.ChainHeaderReader, headers []*types.Header) (chan<- struct{}, <-chan error) {
// If we're running a full engine faking, accept any input as valid
if ethash.fakeFull || len(headers) == 0 {
abort, results := make(chan struct{}), make(chan error, len(headers))
for i := 0; i < len(headers); i++ {
results <- nil
}
return abort, results
}
abort := make(chan struct{})
results := make(chan error, len(headers))
unixNow := time.Now().Unix()
go func() {
for i, header := range headers {
var parent *types.Header
if i == 0 {
parent = chain.GetHeader(headers[0].ParentHash, headers[0].Number.Uint64()-1)
} else if headers[i-1].Hash() == headers[i].ParentHash {
parent = headers[i-1]
}
var err error
if parent == nil {
err = consensus.ErrUnknownAncestor
} else {
err = ethash.verifyHeader(chain, header, parent, false, unixNow)
}
select {
case <-abort:
return
case results <- err:
}
}
}()
return abort, results
}
// VerifyUncles verifies that the given block's uncles conform to the consensus
// rules of the stock Ethereum ethash engine.
func (ethash *Ethash) VerifyUncles(chain consensus.ChainReader, block *types.Block) error {
// If we're running a full engine faking, accept any input as valid
if ethash.fakeFull {
return nil
}
// Verify that there are at most 2 uncles included in this block
if len(block.Uncles()) > maxUncles {
return errTooManyUncles
}
if len(block.Uncles()) == 0 {
return nil
}
// Gather the set of past uncles and ancestors
uncles, ancestors := mapset.NewSet[common.Hash](), make(map[common.Hash]*types.Header)
number, parent := block.NumberU64()-1, block.ParentHash()
for i := 0; i < 7; i++ {
ancestorHeader := chain.GetHeader(parent, number)
if ancestorHeader == nil {
break
}
ancestors[parent] = ancestorHeader
// If the ancestor doesn't have any uncles, we don't have to iterate them
if ancestorHeader.UncleHash != types.EmptyUncleHash {
// Need to add those uncles to the banned list too
ancestor := chain.GetBlock(parent, number)
if ancestor == nil {
break
}
for _, uncle := range ancestor.Uncles() {
uncles.Add(uncle.Hash())
}
}
parent, number = ancestorHeader.ParentHash, number-1
}
ancestors[block.Hash()] = block.Header()
uncles.Add(block.Hash())
// Verify each of the uncles that it's recent, but not an ancestor
for _, uncle := range block.Uncles() {
// Make sure every uncle is rewarded only once
hash := uncle.Hash()
if uncles.Contains(hash) {
return errDuplicateUncle
}
uncles.Add(hash)
// Make sure the uncle has a valid ancestry
if ancestors[hash] != nil {
return errUncleIsAncestor
}
if ancestors[uncle.ParentHash] == nil || uncle.ParentHash == block.ParentHash() {
return errDanglingUncle
}
if err := ethash.verifyHeader(chain, uncle, ancestors[uncle.ParentHash], true, time.Now().Unix()); err != nil {
return err
}
}
return nil
}
// verifyHeader checks whether a header conforms to the consensus rules of the
// stock Ethereum ethash engine.
// See YP section 4.3.4. "Block Header Validity"
func (ethash *Ethash) verifyHeader(chain consensus.ChainHeaderReader, header, parent *types.Header, uncle bool, unixNow int64) error {
// Ensure that the header's extra-data section is of a reasonable size
if uint64(len(header.Extra)) > params.MaximumExtraDataSize {
return fmt.Errorf("extra-data too long: %d > %d", len(header.Extra), params.MaximumExtraDataSize)
}
// Verify the header's timestamp
if !uncle {
if header.Time > uint64(unixNow+allowedFutureBlockTimeSeconds) {
return consensus.ErrFutureBlock
}
}
if header.Time <= parent.Time {
return errOlderBlockTime
}
// Verify the block's difficulty based on its timestamp and parent's difficulty
expected := ethash.CalcDifficulty(chain, header.Time, parent)
if expected.Cmp(header.Difficulty) != 0 {
return fmt.Errorf("invalid difficulty: have %v, want %v", header.Difficulty, expected)
}
// Verify that the gas limit is <= 2^63-1
if header.GasLimit > params.MaxGasLimit {
return fmt.Errorf("invalid gasLimit: have %v, max %v", header.GasLimit, params.MaxGasLimit)
}
// Verify that the gasUsed is <= gasLimit
if header.GasUsed > header.GasLimit {
return fmt.Errorf("invalid gasUsed: have %d, gasLimit %d", header.GasUsed, header.GasLimit)
}
// Verify the block's gas usage and (if applicable) verify the base fee.
if !chain.Config().IsLondon(header.Number) {
// Verify BaseFee not present before EIP-1559 fork.
if header.BaseFee != nil {
return fmt.Errorf("invalid baseFee before fork: have %d, expected 'nil'", header.BaseFee)
}
if err := misc.VerifyGaslimit(parent.GasLimit, header.GasLimit); err != nil {
return err
}
} else if err := eip1559.VerifyEIP1559Header(chain.Config(), parent, header); err != nil {
// Verify the header's EIP-1559 attributes.
return err
}
// Verify that the block number is parent's +1
if diff := new(big.Int).Sub(header.Number, parent.Number); diff.Cmp(big.NewInt(1)) != 0 {
return consensus.ErrInvalidNumber
}
if chain.Config().IsShanghai(header.Number, header.Time) {
return errors.New("ethash does not support shanghai fork")
}
// Verify the non-existence of withdrawalsHash.
if header.WithdrawalsHash != nil {
return fmt.Errorf("invalid withdrawalsHash: have %x, expected nil", header.WithdrawalsHash)
}
if chain.Config().IsCancun(header.Number, header.Time) {
return errors.New("ethash does not support cancun fork")
}
// Verify the non-existence of cancun-specific header fields
switch {
case header.ExcessBlobGas != nil:
return fmt.Errorf("invalid excessBlobGas: have %d, expected nil", header.ExcessBlobGas)
case header.BlobGasUsed != nil:
return fmt.Errorf("invalid blobGasUsed: have %d, expected nil", header.BlobGasUsed)
case header.ParentBeaconRoot != nil:
return fmt.Errorf("invalid parentBeaconRoot, have %#x, expected nil", header.ParentBeaconRoot)
}
// Add some fake checks for tests
if ethash.fakeDelay != nil {
time.Sleep(*ethash.fakeDelay)
}
if ethash.fakeFail != nil && *ethash.fakeFail == header.Number.Uint64() {
return errors.New("invalid tester pow")
}
// If all checks passed, validate any special fields for hard forks
if err := misc.VerifyDAOHeaderExtraData(chain.Config(), header); err != nil {
return err
}
return nil
}
// CalcDifficulty is the difficulty adjustment algorithm. It returns
// the difficulty that a new block should have when created at time
// given the parent block's time and difficulty.
func (ethash *Ethash) CalcDifficulty(chain consensus.ChainHeaderReader, time uint64, parent *types.Header) *big.Int {
return CalcDifficulty(chain.Config(), time, parent)
}
// CalcDifficulty is the difficulty adjustment algorithm. It returns
// the difficulty that a new block should have when created at time
// given the parent block's time and difficulty.
func CalcDifficulty(config *params.ChainConfig, time uint64, parent *types.Header) *big.Int {
next := new(big.Int).Add(parent.Number, big1)
switch {
case config.IsGrayGlacier(next):
return calcDifficultyEip5133(time, parent)
case config.IsArrowGlacier(next):
return calcDifficultyEip4345(time, parent)
case config.IsLondon(next):
return calcDifficultyEip3554(time, parent)
case config.IsMuirGlacier(next):
return calcDifficultyEip2384(time, parent)
case config.IsConstantinople(next):
return calcDifficultyConstantinople(time, parent)
case config.IsByzantium(next):
return calcDifficultyByzantium(time, parent)
case config.IsHomestead(next):
return calcDifficultyHomestead(time, parent)
default:
return calcDifficultyFrontier(time, parent)
}
}
// Some weird constants to avoid constant memory allocs for them.
var (
expDiffPeriod = big.NewInt(100000)
big1 = big.NewInt(1)
big2 = big.NewInt(2)
big9 = big.NewInt(9)
big10 = big.NewInt(10)
bigMinus99 = big.NewInt(-99)
)
// makeDifficultyCalculator creates a difficultyCalculator with the given bomb-delay.
// the difficulty is calculated with Byzantium rules, which differs from Homestead in
// how uncles affect the calculation
func makeDifficultyCalculator(bombDelay *big.Int) func(time uint64, parent *types.Header) *big.Int {
// Note, the calculations below looks at the parent number, which is 1 below
// the block number. Thus we remove one from the delay given
bombDelayFromParent := new(big.Int).Sub(bombDelay, big1)
return func(time uint64, parent *types.Header) *big.Int {
// https://github.com/ethereum/EIPs/issues/100.
// algorithm:
// diff = (parent_diff +
// (parent_diff / 2048 * max((2 if len(parent.uncles) else 1) - ((timestamp - parent.timestamp) // 9), -99))
// ) + 2^(periodCount - 2)
bigTime := new(big.Int).SetUint64(time)
bigParentTime := new(big.Int).SetUint64(parent.Time)
// holds intermediate values to make the algo easier to read & audit
x := new(big.Int)
y := new(big.Int)
// (2 if len(parent_uncles) else 1) - (block_timestamp - parent_timestamp) // 9
x.Sub(bigTime, bigParentTime)
x.Div(x, big9)
if parent.UncleHash == types.EmptyUncleHash {
x.Sub(big1, x)
} else {
x.Sub(big2, x)
}
// max((2 if len(parent_uncles) else 1) - (block_timestamp - parent_timestamp) // 9, -99)
if x.Cmp(bigMinus99) < 0 {
x.Set(bigMinus99)
}
// parent_diff + (parent_diff / 2048 * max((2 if len(parent.uncles) else 1) - ((timestamp - parent.timestamp) // 9), -99))
y.Div(parent.Difficulty, params.DifficultyBoundDivisor)
x.Mul(y, x)
x.Add(parent.Difficulty, x)
// minimum difficulty can ever be (before exponential factor)
if x.Cmp(params.MinimumDifficulty) < 0 {
x.Set(params.MinimumDifficulty)
}
// calculate a fake block number for the ice-age delay
// Specification: https://eips.ethereum.org/EIPS/eip-1234
fakeBlockNumber := new(big.Int)
if parent.Number.Cmp(bombDelayFromParent) >= 0 {
fakeBlockNumber = fakeBlockNumber.Sub(parent.Number, bombDelayFromParent)
}
// for the exponential factor
periodCount := fakeBlockNumber
periodCount.Div(periodCount, expDiffPeriod)
// the exponential factor, commonly referred to as "the bomb"
// diff = diff + 2^(periodCount - 2)
if periodCount.Cmp(big1) > 0 {
y.Sub(periodCount, big2)
y.Exp(big2, y, nil)
x.Add(x, y)
}
return x
}
}
// calcDifficultyHomestead is the difficulty adjustment algorithm. It returns
// the difficulty that a new block should have when created at time given the
// parent block's time and difficulty. The calculation uses the Homestead rules.
func calcDifficultyHomestead(time uint64, parent *types.Header) *big.Int {
// https://github.com/ethereum/EIPs/blob/master/EIPS/eip-2.md
// algorithm:
// diff = (parent_diff +
// (parent_diff / 2048 * max(1 - (block_timestamp - parent_timestamp) // 10, -99))
// ) + 2^(periodCount - 2)
bigTime := new(big.Int).SetUint64(time)
bigParentTime := new(big.Int).SetUint64(parent.Time)
// holds intermediate values to make the algo easier to read & audit
x := new(big.Int)
y := new(big.Int)
// 1 - (block_timestamp - parent_timestamp) // 10
x.Sub(bigTime, bigParentTime)
x.Div(x, big10)
x.Sub(big1, x)
// max(1 - (block_timestamp - parent_timestamp) // 10, -99)
if x.Cmp(bigMinus99) < 0 {
x.Set(bigMinus99)
}
// (parent_diff + parent_diff // 2048 * max(1 - (block_timestamp - parent_timestamp) // 10, -99))
y.Div(parent.Difficulty, params.DifficultyBoundDivisor)
x.Mul(y, x)
x.Add(parent.Difficulty, x)
// minimum difficulty can ever be (before exponential factor)
if x.Cmp(params.MinimumDifficulty) < 0 {
x.Set(params.MinimumDifficulty)
}
// for the exponential factor
periodCount := new(big.Int).Add(parent.Number, big1)
periodCount.Div(periodCount, expDiffPeriod)
// the exponential factor, commonly referred to as "the bomb"
// diff = diff + 2^(periodCount - 2)
if periodCount.Cmp(big1) > 0 {
y.Sub(periodCount, big2)
y.Exp(big2, y, nil)
x.Add(x, y)
}
return x
}
// calcDifficultyFrontier is the difficulty adjustment algorithm. It returns the
// difficulty that a new block should have when created at time given the parent
// block's time and difficulty. The calculation uses the Frontier rules.
func calcDifficultyFrontier(time uint64, parent *types.Header) *big.Int {
diff := new(big.Int)
adjust := new(big.Int).Div(parent.Difficulty, params.DifficultyBoundDivisor)
bigTime := new(big.Int)
bigParentTime := new(big.Int)
bigTime.SetUint64(time)
bigParentTime.SetUint64(parent.Time)
if bigTime.Sub(bigTime, bigParentTime).Cmp(params.DurationLimit) < 0 {
diff.Add(parent.Difficulty, adjust)
} else {
diff.Sub(parent.Difficulty, adjust)
}
if diff.Cmp(params.MinimumDifficulty) < 0 {
diff.Set(params.MinimumDifficulty)
}
periodCount := new(big.Int).Add(parent.Number, big1)
periodCount.Div(periodCount, expDiffPeriod)
if periodCount.Cmp(big1) > 0 {
// diff = diff + 2^(periodCount - 2)
expDiff := periodCount.Sub(periodCount, big2)
expDiff.Exp(big2, expDiff, nil)
diff.Add(diff, expDiff)
diff = math.BigMax(diff, params.MinimumDifficulty)
}
return diff
}
// Exported for fuzzing
var FrontierDifficultyCalculator = calcDifficultyFrontier
var HomesteadDifficultyCalculator = calcDifficultyHomestead
var DynamicDifficultyCalculator = makeDifficultyCalculator
// Prepare implements consensus.Engine, initializing the difficulty field of a
// header to conform to the ethash protocol. The changes are done inline.
func (ethash *Ethash) Prepare(chain consensus.ChainHeaderReader, header *types.Header) error {
parent := chain.GetHeader(header.ParentHash, header.Number.Uint64()-1)
if parent == nil {
return consensus.ErrUnknownAncestor
}
header.Difficulty = ethash.CalcDifficulty(chain, header.Time, parent)
return nil
}
// Finalize implements consensus.Engine, accumulating the block and uncle rewards.
func (ethash *Ethash) Finalize(chain consensus.ChainHeaderReader, header *types.Header, state *state.StateDB, txs []*types.Transaction, uncles []*types.Header, withdrawals []*types.Withdrawal) {
// Accumulate any block and uncle rewards
accumulateRewards(chain.Config(), state, header, uncles)
}
// FinalizeAndAssemble implements consensus.Engine, accumulating the block and
// uncle rewards, setting the final state and assembling the block.
func (ethash *Ethash) FinalizeAndAssemble(chain consensus.ChainHeaderReader, header *types.Header, state *state.StateDB, txs []*types.Transaction, uncles []*types.Header, receipts []*types.Receipt, withdrawals []*types.Withdrawal) (*types.Block, error) {
if len(withdrawals) > 0 {
return nil, errors.New("ethash does not support withdrawals")
}
// Finalize block
ethash.Finalize(chain, header, state, txs, uncles, nil)
// Assign the final state root to header.
header.Root = state.IntermediateRoot(chain.Config().IsEIP158(header.Number))
// Header seems complete, assemble into a block and return
return types.NewBlock(header, txs, uncles, receipts, trie.NewStackTrie(nil)), nil
}
// SealHash returns the hash of a block prior to it being sealed.
func (ethash *Ethash) SealHash(header *types.Header) (hash common.Hash) {
hasher := sha3.NewLegacyKeccak256()
enc := []interface{}{
header.ParentHash,
header.UncleHash,
header.Coinbase,
header.Root,
header.TxHash,
header.ReceiptHash,
header.Bloom,
header.Difficulty,
header.Number,
header.GasLimit,
header.GasUsed,
header.Time,
header.Extra,
}
if header.BaseFee != nil {
enc = append(enc, header.BaseFee)
}
if header.WithdrawalsHash != nil {
panic("withdrawal hash set on ethash")
}
if header.ExcessBlobGas != nil {
panic("excess blob gas set on ethash")
}
if header.BlobGasUsed != nil {
panic("blob gas used set on ethash")
}
if header.ParentBeaconRoot != nil {
panic("parent beacon root set on ethash")
}
rlp.Encode(hasher, enc)
hasher.Sum(hash[:0])
return hash
}
// Some weird constants to avoid constant memory allocs for them.
var (
u256_8 = uint256.NewInt(8)
u256_32 = uint256.NewInt(32)
)
// AccumulateRewards credits the coinbase of the given block with the mining
// reward. The total reward consists of the static block reward and rewards for
// included uncles. The coinbase of each uncle block is also rewarded.
func accumulateRewards(config *params.ChainConfig, state *state.StateDB, header *types.Header, uncles []*types.Header) {
// Select the correct block reward based on chain progression
blockReward := FrontierBlockReward
if config.IsByzantium(header.Number) {
blockReward = ByzantiumBlockReward
}
if config.IsConstantinople(header.Number) {
blockReward = ConstantinopleBlockReward
}
// Accumulate the rewards for the miner and any included uncles
reward := new(uint256.Int).Set(blockReward)
r := new(uint256.Int)
hNum, _ := uint256.FromBig(header.Number)
for _, uncle := range uncles {
uNum, _ := uint256.FromBig(uncle.Number)
r.AddUint64(uNum, 8)
r.Sub(r, hNum)
r.Mul(r, blockReward)
r.Div(r, u256_8)
state.AddBalance(uncle.Coinbase, r)
r.Div(blockReward, u256_32)
reward.Add(reward, r)
}
state.AddBalance(header.Coinbase, reward)
}