go-ethereum/accounts/scwallet/wallet.go
Felix Lange b628d72766
build: upgrade to go 1.19 (#25726)
This changes the CI / release builds to use the latest Go version. It also
upgrades golangci-lint to a newer version compatible with Go 1.19.

In Go 1.19, godoc has gained official support for links and lists. The
syntax for code blocks in doc comments has changed and now requires a
leading tab character. gofmt adapts comments to the new syntax
automatically, so there are a lot of comment re-formatting changes in this
PR. We need to apply the new format in order to pass the CI lint stage with
Go 1.19.

With the linter upgrade, I have decided to disable 'gosec' - it produces
too many false-positive warnings. The 'deadcode' and 'varcheck' linters
have also been removed because golangci-lint warns about them being
unmaintained. 'unused' provides similar coverage and we already have it
enabled, so we don't lose much with this change.
2022-09-10 13:25:40 +02:00

1089 lines
35 KiB
Go

// Copyright 2018 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package scwallet
import (
"bytes"
"context"
"crypto/hmac"
"crypto/sha256"
"crypto/sha512"
"encoding/asn1"
"encoding/binary"
"errors"
"fmt"
"math/big"
"regexp"
"sort"
"strings"
"sync"
"time"
"github.com/ethereum/go-ethereum"
"github.com/ethereum/go-ethereum/accounts"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/core/types"
"github.com/ethereum/go-ethereum/crypto"
"github.com/ethereum/go-ethereum/log"
pcsc "github.com/gballet/go-libpcsclite"
"github.com/status-im/keycard-go/derivationpath"
)
// ErrPairingPasswordNeeded is returned if opening the smart card requires pairing with a pairing
// password. In this case, the calling application should request user input to enter
// the pairing password and send it back.
var ErrPairingPasswordNeeded = errors.New("smartcard: pairing password needed")
// ErrPINNeeded is returned if opening the smart card requires a PIN code. In
// this case, the calling application should request user input to enter the PIN
// and send it back.
var ErrPINNeeded = errors.New("smartcard: pin needed")
// ErrPINUnblockNeeded is returned if opening the smart card requires a PIN code,
// but all PIN attempts have already been exhausted. In this case the calling
// application should request user input for the PUK and a new PIN code to set
// fo the card.
var ErrPINUnblockNeeded = errors.New("smartcard: pin unblock needed")
// ErrAlreadyOpen is returned if the smart card is attempted to be opened, but
// there is already a paired and unlocked session.
var ErrAlreadyOpen = errors.New("smartcard: already open")
// ErrPubkeyMismatch is returned if the public key recovered from a signature
// does not match the one expected by the user.
var ErrPubkeyMismatch = errors.New("smartcard: recovered public key mismatch")
var (
appletAID = []byte{0xA0, 0x00, 0x00, 0x08, 0x04, 0x00, 0x01, 0x01, 0x01}
// DerivationSignatureHash is used to derive the public key from the signature of this hash
DerivationSignatureHash = sha256.Sum256(common.Hash{}.Bytes())
)
// List of APDU command-related constants
const (
claISO7816 = 0
claSCWallet = 0x80
insSelect = 0xA4
insGetResponse = 0xC0
sw1GetResponse = 0x61
sw1Ok = 0x90
insVerifyPin = 0x20
insUnblockPin = 0x22
insExportKey = 0xC2
insSign = 0xC0
insLoadKey = 0xD0
insDeriveKey = 0xD1
insStatus = 0xF2
)
// List of ADPU command parameters
const (
P1DeriveKeyFromMaster = uint8(0x00)
P1DeriveKeyFromParent = uint8(0x01)
P1DeriveKeyFromCurrent = uint8(0x10)
statusP1WalletStatus = uint8(0x00)
statusP1Path = uint8(0x01)
signP1PrecomputedHash = uint8(0x01)
signP2OnlyBlock = uint8(0x81)
exportP1Any = uint8(0x00)
exportP2Pubkey = uint8(0x01)
)
// Minimum time to wait between self derivation attempts, even it the user is
// requesting accounts like crazy.
const selfDeriveThrottling = time.Second
// Wallet represents a smartcard wallet instance.
type Wallet struct {
Hub *Hub // A handle to the Hub that instantiated this wallet.
PublicKey []byte // The wallet's public key (used for communication and identification, not signing!)
lock sync.Mutex // Lock that gates access to struct fields and communication with the card
card *pcsc.Card // A handle to the smartcard interface for the wallet.
session *Session // The secure communication session with the card
log log.Logger // Contextual logger to tag the base with its id
deriveNextPaths []accounts.DerivationPath // Next derivation paths for account auto-discovery (multiple bases supported)
deriveNextAddrs []common.Address // Next derived account addresses for auto-discovery (multiple bases supported)
deriveChain ethereum.ChainStateReader // Blockchain state reader to discover used account with
deriveReq chan chan struct{} // Channel to request a self-derivation on
deriveQuit chan chan error // Channel to terminate the self-deriver with
}
// NewWallet constructs and returns a new Wallet instance.
func NewWallet(hub *Hub, card *pcsc.Card) *Wallet {
wallet := &Wallet{
Hub: hub,
card: card,
}
return wallet
}
// transmit sends an APDU to the smartcard and receives and decodes the response.
// It automatically handles requests by the card to fetch the return data separately,
// and returns an error if the response status code is not success.
func transmit(card *pcsc.Card, command *commandAPDU) (*responseAPDU, error) {
data, err := command.serialize()
if err != nil {
return nil, err
}
responseData, _, err := card.Transmit(data)
if err != nil {
return nil, err
}
response := new(responseAPDU)
if err = response.deserialize(responseData); err != nil {
return nil, err
}
// Are we being asked to fetch the response separately?
if response.Sw1 == sw1GetResponse && (command.Cla != claISO7816 || command.Ins != insGetResponse) {
return transmit(card, &commandAPDU{
Cla: claISO7816,
Ins: insGetResponse,
P1: 0,
P2: 0,
Data: nil,
Le: response.Sw2,
})
}
if response.Sw1 != sw1Ok {
return nil, fmt.Errorf("unexpected insecure response status Cla=%#x, Ins=%#x, Sw=%#x%x", command.Cla, command.Ins, response.Sw1, response.Sw2)
}
return response, nil
}
// applicationInfo encodes information about the smartcard application - its
// instance UID and public key.
type applicationInfo struct {
InstanceUID []byte `asn1:"tag:15"`
PublicKey []byte `asn1:"tag:0"`
}
// connect connects to the wallet application and establishes a secure channel with it.
// must be called before any other interaction with the wallet.
func (w *Wallet) connect() error {
w.lock.Lock()
defer w.lock.Unlock()
appinfo, err := w.doselect()
if err != nil {
return err
}
channel, err := NewSecureChannelSession(w.card, appinfo.PublicKey)
if err != nil {
return err
}
w.PublicKey = appinfo.PublicKey
w.log = log.New("url", w.URL())
w.session = &Session{
Wallet: w,
Channel: channel,
}
return nil
}
// doselect is an internal (unlocked) function to send a SELECT APDU to the card.
func (w *Wallet) doselect() (*applicationInfo, error) {
response, err := transmit(w.card, &commandAPDU{
Cla: claISO7816,
Ins: insSelect,
P1: 4,
P2: 0,
Data: appletAID,
})
if err != nil {
return nil, err
}
appinfo := new(applicationInfo)
if _, err := asn1.UnmarshalWithParams(response.Data, appinfo, "tag:4"); err != nil {
return nil, err
}
return appinfo, nil
}
// ping checks the card's status and returns an error if unsuccessful.
func (w *Wallet) ping() error {
w.lock.Lock()
defer w.lock.Unlock()
// We can't ping if not paired
if !w.session.paired() {
return nil
}
if _, err := w.session.walletStatus(); err != nil {
return err
}
return nil
}
// release releases any resources held by an open wallet instance.
func (w *Wallet) release() error {
if w.session != nil {
return w.session.release()
}
return nil
}
// pair is an internal (unlocked) function for establishing a new pairing
// with the wallet.
func (w *Wallet) pair(puk []byte) error {
if w.session.paired() {
return fmt.Errorf("wallet already paired")
}
pairing, err := w.session.pair(puk)
if err != nil {
return err
}
if err = w.Hub.setPairing(w, &pairing); err != nil {
return err
}
return w.session.authenticate(pairing)
}
// Unpair deletes an existing wallet pairing.
func (w *Wallet) Unpair(pin []byte) error {
w.lock.Lock()
defer w.lock.Unlock()
if !w.session.paired() {
return fmt.Errorf("wallet %x not paired", w.PublicKey)
}
if err := w.session.verifyPin(pin); err != nil {
return fmt.Errorf("failed to verify pin: %s", err)
}
if err := w.session.unpair(); err != nil {
return fmt.Errorf("failed to unpair: %s", err)
}
if err := w.Hub.setPairing(w, nil); err != nil {
return err
}
return nil
}
// URL retrieves the canonical path under which this wallet is reachable. It is
// user by upper layers to define a sorting order over all wallets from multiple
// backends.
func (w *Wallet) URL() accounts.URL {
return accounts.URL{
Scheme: w.Hub.scheme,
Path: fmt.Sprintf("%x", w.PublicKey[1:5]), // Byte #0 isn't unique; 1:5 covers << 64K cards, bump to 1:9 for << 4M
}
}
// Status returns a textual status to aid the user in the current state of the
// wallet. It also returns an error indicating any failure the wallet might have
// encountered.
func (w *Wallet) Status() (string, error) {
w.lock.Lock()
defer w.lock.Unlock()
// If the card is not paired, we can only wait
if !w.session.paired() {
return "Unpaired, waiting for pairing password", nil
}
// Yay, we have an encrypted session, retrieve the actual status
status, err := w.session.walletStatus()
if err != nil {
return fmt.Sprintf("Failed: %v", err), err
}
switch {
case !w.session.verified && status.PinRetryCount == 0 && status.PukRetryCount == 0:
return "Bricked, waiting for full wipe", nil
case !w.session.verified && status.PinRetryCount == 0:
return fmt.Sprintf("Blocked, waiting for PUK (%d attempts left) and new PIN", status.PukRetryCount), nil
case !w.session.verified:
return fmt.Sprintf("Locked, waiting for PIN (%d attempts left)", status.PinRetryCount), nil
case !status.Initialized:
return "Empty, waiting for initialization", nil
default:
return "Online", nil
}
}
// Open initializes access to a wallet instance. It is not meant to unlock or
// decrypt account keys, rather simply to establish a connection to hardware
// wallets and/or to access derivation seeds.
//
// The passphrase parameter may or may not be used by the implementation of a
// particular wallet instance. The reason there is no passwordless open method
// is to strive towards a uniform wallet handling, oblivious to the different
// backend providers.
//
// Please note, if you open a wallet, you must close it to release any allocated
// resources (especially important when working with hardware wallets).
func (w *Wallet) Open(passphrase string) error {
w.lock.Lock()
defer w.lock.Unlock()
// If the session is already open, bail out
if w.session.verified {
return ErrAlreadyOpen
}
// If the smart card is not yet paired, attempt to do so either from a previous
// pairing key or form the supplied PUK code.
if !w.session.paired() {
// If a previous pairing exists, only ever try to use that
if pairing := w.Hub.pairing(w); pairing != nil {
if err := w.session.authenticate(*pairing); err != nil {
return fmt.Errorf("failed to authenticate card %x: %s", w.PublicKey[:4], err)
}
// Pairing still ok, fall through to PIN checks
} else {
// If no passphrase was supplied, request the PUK from the user
if passphrase == "" {
return ErrPairingPasswordNeeded
}
// Attempt to pair the smart card with the user supplied PUK
if err := w.pair([]byte(passphrase)); err != nil {
return err
}
// Pairing succeeded, fall through to PIN checks. This will of course fail,
// but we can't return ErrPINNeeded directly here because we don't know whether
// a PIN check or a PIN reset is needed.
passphrase = ""
}
}
// The smart card was successfully paired, retrieve its status to check whether
// PIN verification or unblocking is needed.
status, err := w.session.walletStatus()
if err != nil {
return err
}
// Request the appropriate next authentication data, or use the one supplied
switch {
case passphrase == "" && status.PinRetryCount > 0:
return ErrPINNeeded
case passphrase == "":
return ErrPINUnblockNeeded
case status.PinRetryCount > 0:
if !regexp.MustCompile(`^[0-9]{6,}$`).MatchString(passphrase) {
w.log.Error("PIN needs to be at least 6 digits")
return ErrPINNeeded
}
if err := w.session.verifyPin([]byte(passphrase)); err != nil {
return err
}
default:
if !regexp.MustCompile(`^[0-9]{12,}$`).MatchString(passphrase) {
w.log.Error("PUK needs to be at least 12 digits")
return ErrPINUnblockNeeded
}
if err := w.session.unblockPin([]byte(passphrase)); err != nil {
return err
}
}
// Smart card paired and unlocked, initialize and register
w.deriveReq = make(chan chan struct{})
w.deriveQuit = make(chan chan error)
go w.selfDerive()
// Notify anyone listening for wallet events that a new device is accessible
go w.Hub.updateFeed.Send(accounts.WalletEvent{Wallet: w, Kind: accounts.WalletOpened})
return nil
}
// Close stops and closes the wallet, freeing any resources.
func (w *Wallet) Close() error {
// Ensure the wallet was opened
w.lock.Lock()
dQuit := w.deriveQuit
w.lock.Unlock()
// Terminate the self-derivations
var derr error
if dQuit != nil {
errc := make(chan error)
dQuit <- errc
derr = <-errc // Save for later, we *must* close the USB
}
// Terminate the device connection
w.lock.Lock()
defer w.lock.Unlock()
w.deriveQuit = nil
w.deriveReq = nil
if err := w.release(); err != nil {
return err
}
return derr
}
// selfDerive is an account derivation loop that upon request attempts to find
// new non-zero accounts.
func (w *Wallet) selfDerive() {
w.log.Debug("Smart card wallet self-derivation started")
defer w.log.Debug("Smart card wallet self-derivation stopped")
// Execute self-derivations until termination or error
var (
reqc chan struct{}
errc chan error
err error
)
for errc == nil && err == nil {
// Wait until either derivation or termination is requested
select {
case errc = <-w.deriveQuit:
// Termination requested
continue
case reqc = <-w.deriveReq:
// Account discovery requested
}
// Derivation needs a chain and device access, skip if either unavailable
w.lock.Lock()
if w.session == nil || w.deriveChain == nil {
w.lock.Unlock()
reqc <- struct{}{}
continue
}
pairing := w.Hub.pairing(w)
// Device lock obtained, derive the next batch of accounts
var (
paths []accounts.DerivationPath
nextAcc accounts.Account
nextPaths = append([]accounts.DerivationPath{}, w.deriveNextPaths...)
nextAddrs = append([]common.Address{}, w.deriveNextAddrs...)
context = context.Background()
)
for i := 0; i < len(nextAddrs); i++ {
for empty := false; !empty; {
// Retrieve the next derived Ethereum account
if nextAddrs[i] == (common.Address{}) {
if nextAcc, err = w.session.derive(nextPaths[i]); err != nil {
w.log.Warn("Smartcard wallet account derivation failed", "err", err)
break
}
nextAddrs[i] = nextAcc.Address
}
// Check the account's status against the current chain state
var (
balance *big.Int
nonce uint64
)
balance, err = w.deriveChain.BalanceAt(context, nextAddrs[i], nil)
if err != nil {
w.log.Warn("Smartcard wallet balance retrieval failed", "err", err)
break
}
nonce, err = w.deriveChain.NonceAt(context, nextAddrs[i], nil)
if err != nil {
w.log.Warn("Smartcard wallet nonce retrieval failed", "err", err)
break
}
// If the next account is empty, stop self-derivation, but add for the last base path
if balance.Sign() == 0 && nonce == 0 {
empty = true
if i < len(nextAddrs)-1 {
break
}
}
// We've just self-derived a new account, start tracking it locally
path := make(accounts.DerivationPath, len(nextPaths[i]))
copy(path[:], nextPaths[i][:])
paths = append(paths, path)
// Display a log message to the user for new (or previously empty accounts)
if _, known := pairing.Accounts[nextAddrs[i]]; !known || !empty || nextAddrs[i] != w.deriveNextAddrs[i] {
w.log.Info("Smartcard wallet discovered new account", "address", nextAddrs[i], "path", path, "balance", balance, "nonce", nonce)
}
pairing.Accounts[nextAddrs[i]] = path
// Fetch the next potential account
if !empty {
nextAddrs[i] = common.Address{}
nextPaths[i][len(nextPaths[i])-1]++
}
}
}
// If there are new accounts, write them out
if len(paths) > 0 {
err = w.Hub.setPairing(w, pairing)
}
// Shift the self-derivation forward
w.deriveNextAddrs = nextAddrs
w.deriveNextPaths = nextPaths
// Self derivation complete, release device lock
w.lock.Unlock()
// Notify the user of termination and loop after a bit of time (to avoid trashing)
reqc <- struct{}{}
if err == nil {
select {
case errc = <-w.deriveQuit:
// Termination requested, abort
case <-time.After(selfDeriveThrottling):
// Waited enough, willing to self-derive again
}
}
}
// In case of error, wait for termination
if err != nil {
w.log.Debug("Smartcard wallet self-derivation failed", "err", err)
errc = <-w.deriveQuit
}
errc <- err
}
// Accounts retrieves the list of signing accounts the wallet is currently aware
// of. For hierarchical deterministic wallets, the list will not be exhaustive,
// rather only contain the accounts explicitly pinned during account derivation.
func (w *Wallet) Accounts() []accounts.Account {
// Attempt self-derivation if it's running
reqc := make(chan struct{}, 1)
select {
case w.deriveReq <- reqc:
// Self-derivation request accepted, wait for it
<-reqc
default:
// Self-derivation offline, throttled or busy, skip
}
w.lock.Lock()
defer w.lock.Unlock()
if pairing := w.Hub.pairing(w); pairing != nil {
ret := make([]accounts.Account, 0, len(pairing.Accounts))
for address, path := range pairing.Accounts {
ret = append(ret, w.makeAccount(address, path))
}
sort.Sort(accounts.AccountsByURL(ret))
return ret
}
return nil
}
func (w *Wallet) makeAccount(address common.Address, path accounts.DerivationPath) accounts.Account {
return accounts.Account{
Address: address,
URL: accounts.URL{
Scheme: w.Hub.scheme,
Path: fmt.Sprintf("%x/%s", w.PublicKey[1:3], path.String()),
},
}
}
// Contains returns whether an account is part of this particular wallet or not.
func (w *Wallet) Contains(account accounts.Account) bool {
if pairing := w.Hub.pairing(w); pairing != nil {
_, ok := pairing.Accounts[account.Address]
return ok
}
return false
}
// Initialize installs a keypair generated from the provided key into the wallet.
func (w *Wallet) Initialize(seed []byte) error {
go w.selfDerive()
// DO NOT lock at this stage, as the initialize
// function relies on Status()
return w.session.initialize(seed)
}
// Derive attempts to explicitly derive a hierarchical deterministic account at
// the specified derivation path. If requested, the derived account will be added
// to the wallet's tracked account list.
func (w *Wallet) Derive(path accounts.DerivationPath, pin bool) (accounts.Account, error) {
w.lock.Lock()
defer w.lock.Unlock()
account, err := w.session.derive(path)
if err != nil {
return accounts.Account{}, err
}
if pin {
pairing := w.Hub.pairing(w)
pairing.Accounts[account.Address] = path
if err := w.Hub.setPairing(w, pairing); err != nil {
return accounts.Account{}, err
}
}
return account, nil
}
// SelfDerive sets a base account derivation path from which the wallet attempts
// to discover non zero accounts and automatically add them to list of tracked
// accounts.
//
// Note, self derivation will increment the last component of the specified path
// opposed to descending into a child path to allow discovering accounts starting
// from non zero components.
//
// Some hardware wallets switched derivation paths through their evolution, so
// this method supports providing multiple bases to discover old user accounts
// too. Only the last base will be used to derive the next empty account.
//
// You can disable automatic account discovery by calling SelfDerive with a nil
// chain state reader.
func (w *Wallet) SelfDerive(bases []accounts.DerivationPath, chain ethereum.ChainStateReader) {
w.lock.Lock()
defer w.lock.Unlock()
w.deriveNextPaths = make([]accounts.DerivationPath, len(bases))
for i, base := range bases {
w.deriveNextPaths[i] = make(accounts.DerivationPath, len(base))
copy(w.deriveNextPaths[i][:], base[:])
}
w.deriveNextAddrs = make([]common.Address, len(bases))
w.deriveChain = chain
}
// SignData requests the wallet to sign the hash of the given data.
//
// It looks up the account specified either solely via its address contained within,
// or optionally with the aid of any location metadata from the embedded URL field.
//
// If the wallet requires additional authentication to sign the request (e.g.
// a password to decrypt the account, or a PIN code o verify the transaction),
// an AuthNeededError instance will be returned, containing infos for the user
// about which fields or actions are needed. The user may retry by providing
// the needed details via SignDataWithPassphrase, or by other means (e.g. unlock
// the account in a keystore).
func (w *Wallet) SignData(account accounts.Account, mimeType string, data []byte) ([]byte, error) {
return w.signHash(account, crypto.Keccak256(data))
}
func (w *Wallet) signHash(account accounts.Account, hash []byte) ([]byte, error) {
w.lock.Lock()
defer w.lock.Unlock()
path, err := w.findAccountPath(account)
if err != nil {
return nil, err
}
return w.session.sign(path, hash)
}
// SignTx requests the wallet to sign the given transaction.
//
// It looks up the account specified either solely via its address contained within,
// or optionally with the aid of any location metadata from the embedded URL field.
//
// If the wallet requires additional authentication to sign the request (e.g.
// a password to decrypt the account, or a PIN code o verify the transaction),
// an AuthNeededError instance will be returned, containing infos for the user
// about which fields or actions are needed. The user may retry by providing
// the needed details via SignTxWithPassphrase, or by other means (e.g. unlock
// the account in a keystore).
func (w *Wallet) SignTx(account accounts.Account, tx *types.Transaction, chainID *big.Int) (*types.Transaction, error) {
signer := types.LatestSignerForChainID(chainID)
hash := signer.Hash(tx)
sig, err := w.signHash(account, hash[:])
if err != nil {
return nil, err
}
return tx.WithSignature(signer, sig)
}
// SignDataWithPassphrase requests the wallet to sign the given hash with the
// given passphrase as extra authentication information.
//
// It looks up the account specified either solely via its address contained within,
// or optionally with the aid of any location metadata from the embedded URL field.
func (w *Wallet) SignDataWithPassphrase(account accounts.Account, passphrase, mimeType string, data []byte) ([]byte, error) {
return w.signHashWithPassphrase(account, passphrase, crypto.Keccak256(data))
}
func (w *Wallet) signHashWithPassphrase(account accounts.Account, passphrase string, hash []byte) ([]byte, error) {
if !w.session.verified {
if err := w.Open(passphrase); err != nil {
return nil, err
}
}
return w.signHash(account, hash)
}
// SignText requests the wallet to sign the hash of a given piece of data, prefixed
// by the Ethereum prefix scheme
// It looks up the account specified either solely via its address contained within,
// or optionally with the aid of any location metadata from the embedded URL field.
//
// If the wallet requires additional authentication to sign the request (e.g.
// a password to decrypt the account, or a PIN code o verify the transaction),
// an AuthNeededError instance will be returned, containing infos for the user
// about which fields or actions are needed. The user may retry by providing
// the needed details via SignHashWithPassphrase, or by other means (e.g. unlock
// the account in a keystore).
func (w *Wallet) SignText(account accounts.Account, text []byte) ([]byte, error) {
return w.signHash(account, accounts.TextHash(text))
}
// SignTextWithPassphrase implements accounts.Wallet, attempting to sign the
// given hash with the given account using passphrase as extra authentication
func (w *Wallet) SignTextWithPassphrase(account accounts.Account, passphrase string, text []byte) ([]byte, error) {
return w.signHashWithPassphrase(account, passphrase, crypto.Keccak256(accounts.TextHash(text)))
}
// SignTxWithPassphrase requests the wallet to sign the given transaction, with the
// given passphrase as extra authentication information.
//
// It looks up the account specified either solely via its address contained within,
// or optionally with the aid of any location metadata from the embedded URL field.
func (w *Wallet) SignTxWithPassphrase(account accounts.Account, passphrase string, tx *types.Transaction, chainID *big.Int) (*types.Transaction, error) {
if !w.session.verified {
if err := w.Open(passphrase); err != nil {
return nil, err
}
}
return w.SignTx(account, tx, chainID)
}
// findAccountPath returns the derivation path for the provided account.
// It first checks for the address in the list of pinned accounts, and if it is
// not found, attempts to parse the derivation path from the account's URL.
func (w *Wallet) findAccountPath(account accounts.Account) (accounts.DerivationPath, error) {
pairing := w.Hub.pairing(w)
if path, ok := pairing.Accounts[account.Address]; ok {
return path, nil
}
// Look for the path in the URL
if account.URL.Scheme != w.Hub.scheme {
return nil, fmt.Errorf("scheme %s does not match wallet scheme %s", account.URL.Scheme, w.Hub.scheme)
}
parts := strings.SplitN(account.URL.Path, "/", 2)
if len(parts) != 2 {
return nil, fmt.Errorf("invalid URL format: %s", account.URL)
}
if parts[0] != fmt.Sprintf("%x", w.PublicKey[1:3]) {
return nil, fmt.Errorf("URL %s is not for this wallet", account.URL)
}
return accounts.ParseDerivationPath(parts[1])
}
// Session represents a secured communication session with the wallet.
type Session struct {
Wallet *Wallet // A handle to the wallet that opened the session
Channel *SecureChannelSession // A secure channel for encrypted messages
verified bool // Whether the pin has been verified in this session.
}
// pair establishes a new pairing over this channel, using the provided secret.
func (s *Session) pair(secret []byte) (smartcardPairing, error) {
err := s.Channel.Pair(secret)
if err != nil {
return smartcardPairing{}, err
}
return smartcardPairing{
PublicKey: s.Wallet.PublicKey,
PairingIndex: s.Channel.PairingIndex,
PairingKey: s.Channel.PairingKey,
Accounts: make(map[common.Address]accounts.DerivationPath),
}, nil
}
// unpair deletes an existing pairing.
func (s *Session) unpair() error {
if !s.verified {
return fmt.Errorf("unpair requires that the PIN be verified")
}
return s.Channel.Unpair()
}
// verifyPin unlocks a wallet with the provided pin.
func (s *Session) verifyPin(pin []byte) error {
if _, err := s.Channel.transmitEncrypted(claSCWallet, insVerifyPin, 0, 0, pin); err != nil {
return err
}
s.verified = true
return nil
}
// unblockPin unblocks a wallet with the provided puk and resets the pin to the
// new one specified.
func (s *Session) unblockPin(pukpin []byte) error {
if _, err := s.Channel.transmitEncrypted(claSCWallet, insUnblockPin, 0, 0, pukpin); err != nil {
return err
}
s.verified = true
return nil
}
// release releases resources associated with the channel.
func (s *Session) release() error {
return s.Wallet.card.Disconnect(pcsc.LeaveCard)
}
// paired returns true if a valid pairing exists.
func (s *Session) paired() bool {
return s.Channel.PairingKey != nil
}
// authenticate uses an existing pairing to establish a secure channel.
func (s *Session) authenticate(pairing smartcardPairing) error {
if !bytes.Equal(s.Wallet.PublicKey, pairing.PublicKey) {
return fmt.Errorf("cannot pair using another wallet's pairing; %x != %x", s.Wallet.PublicKey, pairing.PublicKey)
}
s.Channel.PairingKey = pairing.PairingKey
s.Channel.PairingIndex = pairing.PairingIndex
return s.Channel.Open()
}
// walletStatus describes a smartcard wallet's status information.
type walletStatus struct {
PinRetryCount int // Number of remaining PIN retries
PukRetryCount int // Number of remaining PUK retries
Initialized bool // Whether the card has been initialized with a private key
}
// walletStatus fetches the wallet's status from the card.
func (s *Session) walletStatus() (*walletStatus, error) {
response, err := s.Channel.transmitEncrypted(claSCWallet, insStatus, statusP1WalletStatus, 0, nil)
if err != nil {
return nil, err
}
status := new(walletStatus)
if _, err := asn1.UnmarshalWithParams(response.Data, status, "tag:3"); err != nil {
return nil, err
}
return status, nil
}
// derivationPath fetches the wallet's current derivation path from the card.
//
//lint:ignore U1000 needs to be added to the console interface
func (s *Session) derivationPath() (accounts.DerivationPath, error) {
response, err := s.Channel.transmitEncrypted(claSCWallet, insStatus, statusP1Path, 0, nil)
if err != nil {
return nil, err
}
buf := bytes.NewReader(response.Data)
path := make(accounts.DerivationPath, len(response.Data)/4)
return path, binary.Read(buf, binary.BigEndian, &path)
}
// initializeData contains data needed to initialize the smartcard wallet.
type initializeData struct {
PublicKey []byte `asn1:"tag:0"`
PrivateKey []byte `asn1:"tag:1"`
ChainCode []byte `asn1:"tag:2"`
}
// initialize initializes the card with new key data.
func (s *Session) initialize(seed []byte) error {
// Check that the wallet isn't currently initialized,
// otherwise the key would be overwritten.
status, err := s.Wallet.Status()
if err != nil {
return err
}
if status == "Online" {
return fmt.Errorf("card is already initialized, cowardly refusing to proceed")
}
s.Wallet.lock.Lock()
defer s.Wallet.lock.Unlock()
// HMAC the seed to produce the private key and chain code
mac := hmac.New(sha512.New, []byte("Bitcoin seed"))
mac.Write(seed)
seed = mac.Sum(nil)
key, err := crypto.ToECDSA(seed[:32])
if err != nil {
return err
}
id := initializeData{}
id.PublicKey = crypto.FromECDSAPub(&key.PublicKey)
id.PrivateKey = seed[:32]
id.ChainCode = seed[32:]
data, err := asn1.Marshal(id)
if err != nil {
return err
}
// Nasty hack to force the top-level struct tag to be context-specific
data[0] = 0xA1
_, err = s.Channel.transmitEncrypted(claSCWallet, insLoadKey, 0x02, 0, data)
return err
}
// derive derives a new HD key path on the card.
func (s *Session) derive(path accounts.DerivationPath) (accounts.Account, error) {
startingPoint, path, err := derivationpath.Decode(path.String())
if err != nil {
return accounts.Account{}, err
}
var p1 uint8
switch startingPoint {
case derivationpath.StartingPointMaster:
p1 = P1DeriveKeyFromMaster
case derivationpath.StartingPointParent:
p1 = P1DeriveKeyFromParent
case derivationpath.StartingPointCurrent:
p1 = P1DeriveKeyFromCurrent
default:
return accounts.Account{}, fmt.Errorf("invalid startingPoint %d", startingPoint)
}
data := new(bytes.Buffer)
for _, segment := range path {
if err := binary.Write(data, binary.BigEndian, segment); err != nil {
return accounts.Account{}, err
}
}
_, err = s.Channel.transmitEncrypted(claSCWallet, insDeriveKey, p1, 0, data.Bytes())
if err != nil {
return accounts.Account{}, err
}
response, err := s.Channel.transmitEncrypted(claSCWallet, insSign, 0, 0, DerivationSignatureHash[:])
if err != nil {
return accounts.Account{}, err
}
sigdata := new(signatureData)
if _, err := asn1.UnmarshalWithParams(response.Data, sigdata, "tag:0"); err != nil {
return accounts.Account{}, err
}
rbytes, sbytes := sigdata.Signature.R.Bytes(), sigdata.Signature.S.Bytes()
sig := make([]byte, 65)
copy(sig[32-len(rbytes):32], rbytes)
copy(sig[64-len(sbytes):64], sbytes)
if err := confirmPublicKey(sig, sigdata.PublicKey); err != nil {
return accounts.Account{}, err
}
pub, err := crypto.UnmarshalPubkey(sigdata.PublicKey)
if err != nil {
return accounts.Account{}, err
}
return s.Wallet.makeAccount(crypto.PubkeyToAddress(*pub), path), nil
}
// keyExport contains information on an exported keypair.
//
//lint:ignore U1000 needs to be added to the console interface
type keyExport struct {
PublicKey []byte `asn1:"tag:0"`
PrivateKey []byte `asn1:"tag:1,optional"`
}
// publicKey returns the public key for the current derivation path.
//
//lint:ignore U1000 needs to be added to the console interface
func (s *Session) publicKey() ([]byte, error) {
response, err := s.Channel.transmitEncrypted(claSCWallet, insExportKey, exportP1Any, exportP2Pubkey, nil)
if err != nil {
return nil, err
}
keys := new(keyExport)
if _, err := asn1.UnmarshalWithParams(response.Data, keys, "tag:1"); err != nil {
return nil, err
}
return keys.PublicKey, nil
}
// signatureData contains information on a signature - the signature itself and
// the corresponding public key.
type signatureData struct {
PublicKey []byte `asn1:"tag:0"`
Signature struct {
R *big.Int
S *big.Int
}
}
// sign asks the card to sign a message, and returns a valid signature after
// recovering the v value.
func (s *Session) sign(path accounts.DerivationPath, hash []byte) ([]byte, error) {
startTime := time.Now()
_, err := s.derive(path)
if err != nil {
return nil, err
}
deriveTime := time.Now()
response, err := s.Channel.transmitEncrypted(claSCWallet, insSign, signP1PrecomputedHash, signP2OnlyBlock, hash)
if err != nil {
return nil, err
}
sigdata := new(signatureData)
if _, err := asn1.UnmarshalWithParams(response.Data, sigdata, "tag:0"); err != nil {
return nil, err
}
// Serialize the signature
rbytes, sbytes := sigdata.Signature.R.Bytes(), sigdata.Signature.S.Bytes()
sig := make([]byte, 65)
copy(sig[32-len(rbytes):32], rbytes)
copy(sig[64-len(sbytes):64], sbytes)
// Recover the V value.
sig, err = makeRecoverableSignature(hash, sig, sigdata.PublicKey)
if err != nil {
return nil, err
}
log.Debug("Signed using smartcard", "deriveTime", deriveTime.Sub(startTime), "signingTime", time.Since(deriveTime))
return sig, nil
}
// confirmPublicKey confirms that the given signature belongs to the specified key.
func confirmPublicKey(sig, pubkey []byte) error {
_, err := makeRecoverableSignature(DerivationSignatureHash[:], sig, pubkey)
return err
}
// makeRecoverableSignature uses a signature and an expected public key to
// recover the v value and produce a recoverable signature.
func makeRecoverableSignature(hash, sig, expectedPubkey []byte) ([]byte, error) {
var libraryError error
for v := 0; v < 2; v++ {
sig[64] = byte(v)
if pubkey, err := crypto.Ecrecover(hash, sig); err == nil {
if bytes.Equal(pubkey, expectedPubkey) {
return sig, nil
}
} else {
libraryError = err
}
}
if libraryError != nil {
return nil, libraryError
}
return nil, ErrPubkeyMismatch
}