go-ethereum/eth/downloader/downloader_test.go
s7v7nislands db18293c32
eth/downloader: use atomic types (#27030)
* eth/downloader: use atomic type

* Update eth/downloader/downloader_test.go

Co-authored-by: Martin Holst Swende <martin@swende.se>

* Update eth/downloader/downloader_test.go

Co-authored-by: Martin Holst Swende <martin@swende.se>

---------

Co-authored-by: Martin Holst Swende <martin@swende.se>
2023-04-03 22:48:10 +03:00

1497 lines
57 KiB
Go

// Copyright 2015 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package downloader
import (
"errors"
"fmt"
"math/big"
"os"
"strings"
"sync"
"sync/atomic"
"testing"
"time"
"github.com/ethereum/go-ethereum"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/consensus/ethash"
"github.com/ethereum/go-ethereum/core"
"github.com/ethereum/go-ethereum/core/rawdb"
"github.com/ethereum/go-ethereum/core/types"
"github.com/ethereum/go-ethereum/core/vm"
"github.com/ethereum/go-ethereum/eth/protocols/eth"
"github.com/ethereum/go-ethereum/eth/protocols/snap"
"github.com/ethereum/go-ethereum/event"
"github.com/ethereum/go-ethereum/log"
"github.com/ethereum/go-ethereum/params"
"github.com/ethereum/go-ethereum/rlp"
"github.com/ethereum/go-ethereum/trie"
)
// downloadTester is a test simulator for mocking out local block chain.
type downloadTester struct {
freezer string
chain *core.BlockChain
downloader *Downloader
peers map[string]*downloadTesterPeer
lock sync.RWMutex
}
// newTester creates a new downloader test mocker.
func newTester(t *testing.T) *downloadTester {
return newTesterWithNotification(t, nil)
}
// newTester creates a new downloader test mocker.
func newTesterWithNotification(t *testing.T, success func()) *downloadTester {
freezer := t.TempDir()
db, err := rawdb.NewDatabaseWithFreezer(rawdb.NewMemoryDatabase(), freezer, "", false)
if err != nil {
panic(err)
}
t.Cleanup(func() {
db.Close()
})
gspec := &core.Genesis{
Config: params.TestChainConfig,
Alloc: core.GenesisAlloc{testAddress: {Balance: big.NewInt(1000000000000000)}},
BaseFee: big.NewInt(params.InitialBaseFee),
}
chain, err := core.NewBlockChain(db, nil, gspec, nil, ethash.NewFaker(), vm.Config{}, nil, nil)
if err != nil {
panic(err)
}
tester := &downloadTester{
freezer: freezer,
chain: chain,
peers: make(map[string]*downloadTesterPeer),
}
tester.downloader = New(0, db, new(event.TypeMux), tester.chain, nil, tester.dropPeer, success)
return tester
}
// terminate aborts any operations on the embedded downloader and releases all
// held resources.
func (dl *downloadTester) terminate() {
dl.downloader.Terminate()
dl.chain.Stop()
os.RemoveAll(dl.freezer)
}
// sync starts synchronizing with a remote peer, blocking until it completes.
func (dl *downloadTester) sync(id string, td *big.Int, mode SyncMode) error {
head := dl.peers[id].chain.CurrentBlock()
if td == nil {
// If no particular TD was requested, load from the peer's blockchain
td = dl.peers[id].chain.GetTd(head.Hash(), head.Number.Uint64())
}
// Synchronise with the chosen peer and ensure proper cleanup afterwards
err := dl.downloader.synchronise(id, head.Hash(), td, nil, mode, false, nil)
select {
case <-dl.downloader.cancelCh:
// Ok, downloader fully cancelled after sync cycle
default:
// Downloader is still accepting packets, can block a peer up
panic("downloader active post sync cycle") // panic will be caught by tester
}
return err
}
// newPeer registers a new block download source into the downloader.
func (dl *downloadTester) newPeer(id string, version uint, blocks []*types.Block) *downloadTesterPeer {
dl.lock.Lock()
defer dl.lock.Unlock()
peer := &downloadTesterPeer{
dl: dl,
id: id,
chain: newTestBlockchain(blocks),
withholdHeaders: make(map[common.Hash]struct{}),
}
dl.peers[id] = peer
if err := dl.downloader.RegisterPeer(id, version, peer); err != nil {
panic(err)
}
if err := dl.downloader.SnapSyncer.Register(peer); err != nil {
panic(err)
}
return peer
}
// dropPeer simulates a hard peer removal from the connection pool.
func (dl *downloadTester) dropPeer(id string) {
dl.lock.Lock()
defer dl.lock.Unlock()
delete(dl.peers, id)
dl.downloader.SnapSyncer.Unregister(id)
dl.downloader.UnregisterPeer(id)
}
type downloadTesterPeer struct {
dl *downloadTester
id string
chain *core.BlockChain
withholdHeaders map[common.Hash]struct{}
}
// Head constructs a function to retrieve a peer's current head hash
// and total difficulty.
func (dlp *downloadTesterPeer) Head() (common.Hash, *big.Int) {
head := dlp.chain.CurrentBlock()
return head.Hash(), dlp.chain.GetTd(head.Hash(), head.Number.Uint64())
}
func unmarshalRlpHeaders(rlpdata []rlp.RawValue) []*types.Header {
var headers = make([]*types.Header, len(rlpdata))
for i, data := range rlpdata {
var h types.Header
if err := rlp.DecodeBytes(data, &h); err != nil {
panic(err)
}
headers[i] = &h
}
return headers
}
// RequestHeadersByHash constructs a GetBlockHeaders function based on a hashed
// origin; associated with a particular peer in the download tester. The returned
// function can be used to retrieve batches of headers from the particular peer.
func (dlp *downloadTesterPeer) RequestHeadersByHash(origin common.Hash, amount int, skip int, reverse bool, sink chan *eth.Response) (*eth.Request, error) {
// Service the header query via the live handler code
rlpHeaders := eth.ServiceGetBlockHeadersQuery(dlp.chain, &eth.GetBlockHeadersPacket{
Origin: eth.HashOrNumber{
Hash: origin,
},
Amount: uint64(amount),
Skip: uint64(skip),
Reverse: reverse,
}, nil)
headers := unmarshalRlpHeaders(rlpHeaders)
// If a malicious peer is simulated withholding headers, delete them
for hash := range dlp.withholdHeaders {
for i, header := range headers {
if header.Hash() == hash {
headers = append(headers[:i], headers[i+1:]...)
break
}
}
}
hashes := make([]common.Hash, len(headers))
for i, header := range headers {
hashes[i] = header.Hash()
}
// Deliver the headers to the downloader
req := &eth.Request{
Peer: dlp.id,
}
res := &eth.Response{
Req: req,
Res: (*eth.BlockHeadersPacket)(&headers),
Meta: hashes,
Time: 1,
Done: make(chan error, 1), // Ignore the returned status
}
go func() {
sink <- res
}()
return req, nil
}
// RequestHeadersByNumber constructs a GetBlockHeaders function based on a numbered
// origin; associated with a particular peer in the download tester. The returned
// function can be used to retrieve batches of headers from the particular peer.
func (dlp *downloadTesterPeer) RequestHeadersByNumber(origin uint64, amount int, skip int, reverse bool, sink chan *eth.Response) (*eth.Request, error) {
// Service the header query via the live handler code
rlpHeaders := eth.ServiceGetBlockHeadersQuery(dlp.chain, &eth.GetBlockHeadersPacket{
Origin: eth.HashOrNumber{
Number: origin,
},
Amount: uint64(amount),
Skip: uint64(skip),
Reverse: reverse,
}, nil)
headers := unmarshalRlpHeaders(rlpHeaders)
// If a malicious peer is simulated withholding headers, delete them
for hash := range dlp.withholdHeaders {
for i, header := range headers {
if header.Hash() == hash {
headers = append(headers[:i], headers[i+1:]...)
break
}
}
}
hashes := make([]common.Hash, len(headers))
for i, header := range headers {
hashes[i] = header.Hash()
}
// Deliver the headers to the downloader
req := &eth.Request{
Peer: dlp.id,
}
res := &eth.Response{
Req: req,
Res: (*eth.BlockHeadersPacket)(&headers),
Meta: hashes,
Time: 1,
Done: make(chan error, 1), // Ignore the returned status
}
go func() {
sink <- res
}()
return req, nil
}
// RequestBodies constructs a getBlockBodies method associated with a particular
// peer in the download tester. The returned function can be used to retrieve
// batches of block bodies from the particularly requested peer.
func (dlp *downloadTesterPeer) RequestBodies(hashes []common.Hash, sink chan *eth.Response) (*eth.Request, error) {
blobs := eth.ServiceGetBlockBodiesQuery(dlp.chain, hashes)
bodies := make([]*eth.BlockBody, len(blobs))
for i, blob := range blobs {
bodies[i] = new(eth.BlockBody)
rlp.DecodeBytes(blob, bodies[i])
}
var (
txsHashes = make([]common.Hash, len(bodies))
uncleHashes = make([]common.Hash, len(bodies))
withdrawalHashes = make([]common.Hash, len(bodies))
)
hasher := trie.NewStackTrie(nil)
for i, body := range bodies {
txsHashes[i] = types.DeriveSha(types.Transactions(body.Transactions), hasher)
uncleHashes[i] = types.CalcUncleHash(body.Uncles)
}
req := &eth.Request{
Peer: dlp.id,
}
res := &eth.Response{
Req: req,
Res: (*eth.BlockBodiesPacket)(&bodies),
Meta: [][]common.Hash{txsHashes, uncleHashes, withdrawalHashes},
Time: 1,
Done: make(chan error, 1), // Ignore the returned status
}
go func() {
sink <- res
}()
return req, nil
}
// RequestReceipts constructs a getReceipts method associated with a particular
// peer in the download tester. The returned function can be used to retrieve
// batches of block receipts from the particularly requested peer.
func (dlp *downloadTesterPeer) RequestReceipts(hashes []common.Hash, sink chan *eth.Response) (*eth.Request, error) {
blobs := eth.ServiceGetReceiptsQuery(dlp.chain, hashes)
receipts := make([][]*types.Receipt, len(blobs))
for i, blob := range blobs {
rlp.DecodeBytes(blob, &receipts[i])
}
hasher := trie.NewStackTrie(nil)
hashes = make([]common.Hash, len(receipts))
for i, receipt := range receipts {
hashes[i] = types.DeriveSha(types.Receipts(receipt), hasher)
}
req := &eth.Request{
Peer: dlp.id,
}
res := &eth.Response{
Req: req,
Res: (*eth.ReceiptsPacket)(&receipts),
Meta: hashes,
Time: 1,
Done: make(chan error, 1), // Ignore the returned status
}
go func() {
sink <- res
}()
return req, nil
}
// ID retrieves the peer's unique identifier.
func (dlp *downloadTesterPeer) ID() string {
return dlp.id
}
// RequestAccountRange fetches a batch of accounts rooted in a specific account
// trie, starting with the origin.
func (dlp *downloadTesterPeer) RequestAccountRange(id uint64, root, origin, limit common.Hash, bytes uint64) error {
// Create the request and service it
req := &snap.GetAccountRangePacket{
ID: id,
Root: root,
Origin: origin,
Limit: limit,
Bytes: bytes,
}
slimaccs, proofs := snap.ServiceGetAccountRangeQuery(dlp.chain, req)
// We need to convert to non-slim format, delegate to the packet code
res := &snap.AccountRangePacket{
ID: id,
Accounts: slimaccs,
Proof: proofs,
}
hashes, accounts, _ := res.Unpack()
go dlp.dl.downloader.SnapSyncer.OnAccounts(dlp, id, hashes, accounts, proofs)
return nil
}
// RequestStorageRanges fetches a batch of storage slots belonging to one or
// more accounts. If slots from only one account is requested, an origin marker
// may also be used to retrieve from there.
func (dlp *downloadTesterPeer) RequestStorageRanges(id uint64, root common.Hash, accounts []common.Hash, origin, limit []byte, bytes uint64) error {
// Create the request and service it
req := &snap.GetStorageRangesPacket{
ID: id,
Accounts: accounts,
Root: root,
Origin: origin,
Limit: limit,
Bytes: bytes,
}
storage, proofs := snap.ServiceGetStorageRangesQuery(dlp.chain, req)
// We need to convert to demultiplex, delegate to the packet code
res := &snap.StorageRangesPacket{
ID: id,
Slots: storage,
Proof: proofs,
}
hashes, slots := res.Unpack()
go dlp.dl.downloader.SnapSyncer.OnStorage(dlp, id, hashes, slots, proofs)
return nil
}
// RequestByteCodes fetches a batch of bytecodes by hash.
func (dlp *downloadTesterPeer) RequestByteCodes(id uint64, hashes []common.Hash, bytes uint64) error {
req := &snap.GetByteCodesPacket{
ID: id,
Hashes: hashes,
Bytes: bytes,
}
codes := snap.ServiceGetByteCodesQuery(dlp.chain, req)
go dlp.dl.downloader.SnapSyncer.OnByteCodes(dlp, id, codes)
return nil
}
// RequestTrieNodes fetches a batch of account or storage trie nodes rooted in
// a specific state trie.
func (dlp *downloadTesterPeer) RequestTrieNodes(id uint64, root common.Hash, paths []snap.TrieNodePathSet, bytes uint64) error {
req := &snap.GetTrieNodesPacket{
ID: id,
Root: root,
Paths: paths,
Bytes: bytes,
}
nodes, _ := snap.ServiceGetTrieNodesQuery(dlp.chain, req, time.Now())
go dlp.dl.downloader.SnapSyncer.OnTrieNodes(dlp, id, nodes)
return nil
}
// Log retrieves the peer's own contextual logger.
func (dlp *downloadTesterPeer) Log() log.Logger {
return log.New("peer", dlp.id)
}
// assertOwnChain checks if the local chain contains the correct number of items
// of the various chain components.
func assertOwnChain(t *testing.T, tester *downloadTester, length int) {
// Mark this method as a helper to report errors at callsite, not in here
t.Helper()
headers, blocks, receipts := length, length, length
if tester.downloader.getMode() == LightSync {
blocks, receipts = 1, 1
}
if hs := int(tester.chain.CurrentHeader().Number.Uint64()) + 1; hs != headers {
t.Fatalf("synchronised headers mismatch: have %v, want %v", hs, headers)
}
if bs := int(tester.chain.CurrentBlock().Number.Uint64()) + 1; bs != blocks {
t.Fatalf("synchronised blocks mismatch: have %v, want %v", bs, blocks)
}
if rs := int(tester.chain.CurrentSnapBlock().Number.Uint64()) + 1; rs != receipts {
t.Fatalf("synchronised receipts mismatch: have %v, want %v", rs, receipts)
}
}
func TestCanonicalSynchronisation66Full(t *testing.T) { testCanonSync(t, eth.ETH66, FullSync) }
func TestCanonicalSynchronisation66Snap(t *testing.T) { testCanonSync(t, eth.ETH66, SnapSync) }
func TestCanonicalSynchronisation66Light(t *testing.T) { testCanonSync(t, eth.ETH66, LightSync) }
func TestCanonicalSynchronisation67Full(t *testing.T) { testCanonSync(t, eth.ETH67, FullSync) }
func TestCanonicalSynchronisation67Snap(t *testing.T) { testCanonSync(t, eth.ETH67, SnapSync) }
func TestCanonicalSynchronisation67Light(t *testing.T) { testCanonSync(t, eth.ETH67, LightSync) }
func testCanonSync(t *testing.T, protocol uint, mode SyncMode) {
tester := newTester(t)
defer tester.terminate()
// Create a small enough block chain to download
chain := testChainBase.shorten(blockCacheMaxItems - 15)
tester.newPeer("peer", protocol, chain.blocks[1:])
// Synchronise with the peer and make sure all relevant data was retrieved
if err := tester.sync("peer", nil, mode); err != nil {
t.Fatalf("failed to synchronise blocks: %v", err)
}
assertOwnChain(t, tester, len(chain.blocks))
}
// Tests that if a large batch of blocks are being downloaded, it is throttled
// until the cached blocks are retrieved.
func TestThrottling66Full(t *testing.T) { testThrottling(t, eth.ETH66, FullSync) }
func TestThrottling66Snap(t *testing.T) { testThrottling(t, eth.ETH66, SnapSync) }
func TestThrottling67Full(t *testing.T) { testThrottling(t, eth.ETH67, FullSync) }
func TestThrottling67Snap(t *testing.T) { testThrottling(t, eth.ETH67, SnapSync) }
func testThrottling(t *testing.T, protocol uint, mode SyncMode) {
tester := newTester(t)
defer tester.terminate()
// Create a long block chain to download and the tester
targetBlocks := len(testChainBase.blocks) - 1
tester.newPeer("peer", protocol, testChainBase.blocks[1:])
// Wrap the importer to allow stepping
var blocked atomic.Uint32
proceed := make(chan struct{})
tester.downloader.chainInsertHook = func(results []*fetchResult) {
blocked.Store(uint32(len(results)))
<-proceed
}
// Start a synchronisation concurrently
errc := make(chan error, 1)
go func() {
errc <- tester.sync("peer", nil, mode)
}()
// Iteratively take some blocks, always checking the retrieval count
for {
// Check the retrieval count synchronously (! reason for this ugly block)
tester.lock.RLock()
retrieved := int(tester.chain.CurrentSnapBlock().Number.Uint64()) + 1
tester.lock.RUnlock()
if retrieved >= targetBlocks+1 {
break
}
// Wait a bit for sync to throttle itself
var cached, frozen int
for start := time.Now(); time.Since(start) < 3*time.Second; {
time.Sleep(25 * time.Millisecond)
tester.lock.Lock()
tester.downloader.queue.lock.Lock()
tester.downloader.queue.resultCache.lock.Lock()
{
cached = tester.downloader.queue.resultCache.countCompleted()
frozen = int(blocked.Load())
retrieved = int(tester.chain.CurrentSnapBlock().Number.Uint64()) + 1
}
tester.downloader.queue.resultCache.lock.Unlock()
tester.downloader.queue.lock.Unlock()
tester.lock.Unlock()
if cached == blockCacheMaxItems ||
cached == blockCacheMaxItems-reorgProtHeaderDelay ||
retrieved+cached+frozen == targetBlocks+1 ||
retrieved+cached+frozen == targetBlocks+1-reorgProtHeaderDelay {
break
}
}
// Make sure we filled up the cache, then exhaust it
time.Sleep(25 * time.Millisecond) // give it a chance to screw up
tester.lock.RLock()
retrieved = int(tester.chain.CurrentSnapBlock().Number.Uint64()) + 1
tester.lock.RUnlock()
if cached != blockCacheMaxItems && cached != blockCacheMaxItems-reorgProtHeaderDelay && retrieved+cached+frozen != targetBlocks+1 && retrieved+cached+frozen != targetBlocks+1-reorgProtHeaderDelay {
t.Fatalf("block count mismatch: have %v, want %v (owned %v, blocked %v, target %v)", cached, blockCacheMaxItems, retrieved, frozen, targetBlocks+1)
}
// Permit the blocked blocks to import
if blocked.Load() > 0 {
blocked.Store(uint32(0))
proceed <- struct{}{}
}
}
// Check that we haven't pulled more blocks than available
assertOwnChain(t, tester, targetBlocks+1)
if err := <-errc; err != nil {
t.Fatalf("block synchronization failed: %v", err)
}
}
// Tests that simple synchronization against a forked chain works correctly. In
// this test common ancestor lookup should *not* be short circuited, and a full
// binary search should be executed.
func TestForkedSync66Full(t *testing.T) { testForkedSync(t, eth.ETH66, FullSync) }
func TestForkedSync66Snap(t *testing.T) { testForkedSync(t, eth.ETH66, SnapSync) }
func TestForkedSync66Light(t *testing.T) { testForkedSync(t, eth.ETH66, LightSync) }
func TestForkedSync67Full(t *testing.T) { testForkedSync(t, eth.ETH67, FullSync) }
func TestForkedSync67Snap(t *testing.T) { testForkedSync(t, eth.ETH67, SnapSync) }
func TestForkedSync67Light(t *testing.T) { testForkedSync(t, eth.ETH67, LightSync) }
func testForkedSync(t *testing.T, protocol uint, mode SyncMode) {
tester := newTester(t)
defer tester.terminate()
chainA := testChainForkLightA.shorten(len(testChainBase.blocks) + 80)
chainB := testChainForkLightB.shorten(len(testChainBase.blocks) + 81)
tester.newPeer("fork A", protocol, chainA.blocks[1:])
tester.newPeer("fork B", protocol, chainB.blocks[1:])
// Synchronise with the peer and make sure all blocks were retrieved
if err := tester.sync("fork A", nil, mode); err != nil {
t.Fatalf("failed to synchronise blocks: %v", err)
}
assertOwnChain(t, tester, len(chainA.blocks))
// Synchronise with the second peer and make sure that fork is pulled too
if err := tester.sync("fork B", nil, mode); err != nil {
t.Fatalf("failed to synchronise blocks: %v", err)
}
assertOwnChain(t, tester, len(chainB.blocks))
}
// Tests that synchronising against a much shorter but much heavier fork works
// currently and is not dropped.
func TestHeavyForkedSync66Full(t *testing.T) { testHeavyForkedSync(t, eth.ETH66, FullSync) }
func TestHeavyForkedSync66Snap(t *testing.T) { testHeavyForkedSync(t, eth.ETH66, SnapSync) }
func TestHeavyForkedSync66Light(t *testing.T) { testHeavyForkedSync(t, eth.ETH66, LightSync) }
func TestHeavyForkedSync67Full(t *testing.T) { testHeavyForkedSync(t, eth.ETH67, FullSync) }
func TestHeavyForkedSync67Snap(t *testing.T) { testHeavyForkedSync(t, eth.ETH67, SnapSync) }
func TestHeavyForkedSync67Light(t *testing.T) { testHeavyForkedSync(t, eth.ETH67, LightSync) }
func testHeavyForkedSync(t *testing.T, protocol uint, mode SyncMode) {
tester := newTester(t)
defer tester.terminate()
chainA := testChainForkLightA.shorten(len(testChainBase.blocks) + 80)
chainB := testChainForkHeavy.shorten(len(testChainBase.blocks) + 79)
tester.newPeer("light", protocol, chainA.blocks[1:])
tester.newPeer("heavy", protocol, chainB.blocks[1:])
// Synchronise with the peer and make sure all blocks were retrieved
if err := tester.sync("light", nil, mode); err != nil {
t.Fatalf("failed to synchronise blocks: %v", err)
}
assertOwnChain(t, tester, len(chainA.blocks))
// Synchronise with the second peer and make sure that fork is pulled too
if err := tester.sync("heavy", nil, mode); err != nil {
t.Fatalf("failed to synchronise blocks: %v", err)
}
assertOwnChain(t, tester, len(chainB.blocks))
}
// Tests that chain forks are contained within a certain interval of the current
// chain head, ensuring that malicious peers cannot waste resources by feeding
// long dead chains.
func TestBoundedForkedSync66Full(t *testing.T) { testBoundedForkedSync(t, eth.ETH66, FullSync) }
func TestBoundedForkedSync66Snap(t *testing.T) { testBoundedForkedSync(t, eth.ETH66, SnapSync) }
func TestBoundedForkedSync66Light(t *testing.T) { testBoundedForkedSync(t, eth.ETH66, LightSync) }
func TestBoundedForkedSync67Full(t *testing.T) { testBoundedForkedSync(t, eth.ETH67, FullSync) }
func TestBoundedForkedSync67Snap(t *testing.T) { testBoundedForkedSync(t, eth.ETH67, SnapSync) }
func TestBoundedForkedSync67Light(t *testing.T) { testBoundedForkedSync(t, eth.ETH67, LightSync) }
func testBoundedForkedSync(t *testing.T, protocol uint, mode SyncMode) {
tester := newTester(t)
defer tester.terminate()
chainA := testChainForkLightA
chainB := testChainForkLightB
tester.newPeer("original", protocol, chainA.blocks[1:])
tester.newPeer("rewriter", protocol, chainB.blocks[1:])
// Synchronise with the peer and make sure all blocks were retrieved
if err := tester.sync("original", nil, mode); err != nil {
t.Fatalf("failed to synchronise blocks: %v", err)
}
assertOwnChain(t, tester, len(chainA.blocks))
// Synchronise with the second peer and ensure that the fork is rejected to being too old
if err := tester.sync("rewriter", nil, mode); err != errInvalidAncestor {
t.Fatalf("sync failure mismatch: have %v, want %v", err, errInvalidAncestor)
}
}
// Tests that chain forks are contained within a certain interval of the current
// chain head for short but heavy forks too. These are a bit special because they
// take different ancestor lookup paths.
func TestBoundedHeavyForkedSync66Full(t *testing.T) {
testBoundedHeavyForkedSync(t, eth.ETH66, FullSync)
}
func TestBoundedHeavyForkedSync66Snap(t *testing.T) {
testBoundedHeavyForkedSync(t, eth.ETH66, SnapSync)
}
func TestBoundedHeavyForkedSync66Light(t *testing.T) {
testBoundedHeavyForkedSync(t, eth.ETH66, LightSync)
}
func TestBoundedHeavyForkedSync67Full(t *testing.T) {
testBoundedHeavyForkedSync(t, eth.ETH67, FullSync)
}
func TestBoundedHeavyForkedSync67Snap(t *testing.T) {
testBoundedHeavyForkedSync(t, eth.ETH67, SnapSync)
}
func TestBoundedHeavyForkedSync67Light(t *testing.T) {
testBoundedHeavyForkedSync(t, eth.ETH67, LightSync)
}
func testBoundedHeavyForkedSync(t *testing.T, protocol uint, mode SyncMode) {
tester := newTester(t)
defer tester.terminate()
// Create a long enough forked chain
chainA := testChainForkLightA
chainB := testChainForkHeavy
tester.newPeer("original", protocol, chainA.blocks[1:])
// Synchronise with the peer and make sure all blocks were retrieved
if err := tester.sync("original", nil, mode); err != nil {
t.Fatalf("failed to synchronise blocks: %v", err)
}
assertOwnChain(t, tester, len(chainA.blocks))
tester.newPeer("heavy-rewriter", protocol, chainB.blocks[1:])
// Synchronise with the second peer and ensure that the fork is rejected to being too old
if err := tester.sync("heavy-rewriter", nil, mode); err != errInvalidAncestor {
t.Fatalf("sync failure mismatch: have %v, want %v", err, errInvalidAncestor)
}
}
// Tests that a canceled download wipes all previously accumulated state.
func TestCancel66Full(t *testing.T) { testCancel(t, eth.ETH66, FullSync) }
func TestCancel66Snap(t *testing.T) { testCancel(t, eth.ETH66, SnapSync) }
func TestCancel66Light(t *testing.T) { testCancel(t, eth.ETH66, LightSync) }
func TestCancel67Full(t *testing.T) { testCancel(t, eth.ETH67, FullSync) }
func TestCancel67Snap(t *testing.T) { testCancel(t, eth.ETH67, SnapSync) }
func TestCancel67Light(t *testing.T) { testCancel(t, eth.ETH67, LightSync) }
func testCancel(t *testing.T, protocol uint, mode SyncMode) {
tester := newTester(t)
defer tester.terminate()
chain := testChainBase.shorten(MaxHeaderFetch)
tester.newPeer("peer", protocol, chain.blocks[1:])
// Make sure canceling works with a pristine downloader
tester.downloader.Cancel()
if !tester.downloader.queue.Idle() {
t.Errorf("download queue not idle")
}
// Synchronise with the peer, but cancel afterwards
if err := tester.sync("peer", nil, mode); err != nil {
t.Fatalf("failed to synchronise blocks: %v", err)
}
tester.downloader.Cancel()
if !tester.downloader.queue.Idle() {
t.Errorf("download queue not idle")
}
}
// Tests that synchronisation from multiple peers works as intended (multi thread sanity test).
func TestMultiSynchronisation66Full(t *testing.T) { testMultiSynchronisation(t, eth.ETH66, FullSync) }
func TestMultiSynchronisation66Snap(t *testing.T) { testMultiSynchronisation(t, eth.ETH66, SnapSync) }
func TestMultiSynchronisation66Light(t *testing.T) { testMultiSynchronisation(t, eth.ETH66, LightSync) }
func TestMultiSynchronisation67Full(t *testing.T) { testMultiSynchronisation(t, eth.ETH67, FullSync) }
func TestMultiSynchronisation67Snap(t *testing.T) { testMultiSynchronisation(t, eth.ETH67, SnapSync) }
func TestMultiSynchronisation67Light(t *testing.T) { testMultiSynchronisation(t, eth.ETH67, LightSync) }
func testMultiSynchronisation(t *testing.T, protocol uint, mode SyncMode) {
tester := newTester(t)
defer tester.terminate()
// Create various peers with various parts of the chain
targetPeers := 8
chain := testChainBase.shorten(targetPeers * 100)
for i := 0; i < targetPeers; i++ {
id := fmt.Sprintf("peer #%d", i)
tester.newPeer(id, protocol, chain.shorten(len(chain.blocks) / (i + 1)).blocks[1:])
}
if err := tester.sync("peer #0", nil, mode); err != nil {
t.Fatalf("failed to synchronise blocks: %v", err)
}
assertOwnChain(t, tester, len(chain.blocks))
}
// Tests that synchronisations behave well in multi-version protocol environments
// and not wreak havoc on other nodes in the network.
func TestMultiProtoSynchronisation66Full(t *testing.T) { testMultiProtoSync(t, eth.ETH66, FullSync) }
func TestMultiProtoSynchronisation66Snap(t *testing.T) { testMultiProtoSync(t, eth.ETH66, SnapSync) }
func TestMultiProtoSynchronisation66Light(t *testing.T) { testMultiProtoSync(t, eth.ETH66, LightSync) }
func TestMultiProtoSynchronisation67Full(t *testing.T) { testMultiProtoSync(t, eth.ETH67, FullSync) }
func TestMultiProtoSynchronisation67Snap(t *testing.T) { testMultiProtoSync(t, eth.ETH67, SnapSync) }
func TestMultiProtoSynchronisation67Light(t *testing.T) { testMultiProtoSync(t, eth.ETH67, LightSync) }
func testMultiProtoSync(t *testing.T, protocol uint, mode SyncMode) {
tester := newTester(t)
defer tester.terminate()
// Create a small enough block chain to download
chain := testChainBase.shorten(blockCacheMaxItems - 15)
// Create peers of every type
tester.newPeer("peer 66", eth.ETH66, chain.blocks[1:])
tester.newPeer("peer 67", eth.ETH67, chain.blocks[1:])
// Synchronise with the requested peer and make sure all blocks were retrieved
if err := tester.sync(fmt.Sprintf("peer %d", protocol), nil, mode); err != nil {
t.Fatalf("failed to synchronise blocks: %v", err)
}
assertOwnChain(t, tester, len(chain.blocks))
// Check that no peers have been dropped off
for _, version := range []int{66, 67} {
peer := fmt.Sprintf("peer %d", version)
if _, ok := tester.peers[peer]; !ok {
t.Errorf("%s dropped", peer)
}
}
}
// Tests that if a block is empty (e.g. header only), no body request should be
// made, and instead the header should be assembled into a whole block in itself.
func TestEmptyShortCircuit66Full(t *testing.T) { testEmptyShortCircuit(t, eth.ETH66, FullSync) }
func TestEmptyShortCircuit66Snap(t *testing.T) { testEmptyShortCircuit(t, eth.ETH66, SnapSync) }
func TestEmptyShortCircuit66Light(t *testing.T) { testEmptyShortCircuit(t, eth.ETH66, LightSync) }
func TestEmptyShortCircuit67Full(t *testing.T) { testEmptyShortCircuit(t, eth.ETH67, FullSync) }
func TestEmptyShortCircuit67Snap(t *testing.T) { testEmptyShortCircuit(t, eth.ETH67, SnapSync) }
func TestEmptyShortCircuit67Light(t *testing.T) { testEmptyShortCircuit(t, eth.ETH67, LightSync) }
func testEmptyShortCircuit(t *testing.T, protocol uint, mode SyncMode) {
tester := newTester(t)
defer tester.terminate()
// Create a block chain to download
chain := testChainBase
tester.newPeer("peer", protocol, chain.blocks[1:])
// Instrument the downloader to signal body requests
var bodiesHave, receiptsHave atomic.Int32
tester.downloader.bodyFetchHook = func(headers []*types.Header) {
bodiesHave.Add(int32(len(headers)))
}
tester.downloader.receiptFetchHook = func(headers []*types.Header) {
receiptsHave.Add(int32(len(headers)))
}
// Synchronise with the peer and make sure all blocks were retrieved
if err := tester.sync("peer", nil, mode); err != nil {
t.Fatalf("failed to synchronise blocks: %v", err)
}
assertOwnChain(t, tester, len(chain.blocks))
// Validate the number of block bodies that should have been requested
bodiesNeeded, receiptsNeeded := 0, 0
for _, block := range chain.blocks[1:] {
if mode != LightSync && (len(block.Transactions()) > 0 || len(block.Uncles()) > 0) {
bodiesNeeded++
}
}
for _, block := range chain.blocks[1:] {
if mode == SnapSync && len(block.Transactions()) > 0 {
receiptsNeeded++
}
}
if int(bodiesHave.Load()) != bodiesNeeded {
t.Errorf("body retrieval count mismatch: have %v, want %v", bodiesHave.Load(), bodiesNeeded)
}
if int(receiptsHave.Load()) != receiptsNeeded {
t.Errorf("receipt retrieval count mismatch: have %v, want %v", receiptsHave.Load(), receiptsNeeded)
}
}
// Tests that headers are enqueued continuously, preventing malicious nodes from
// stalling the downloader by feeding gapped header chains.
func TestMissingHeaderAttack66Full(t *testing.T) { testMissingHeaderAttack(t, eth.ETH66, FullSync) }
func TestMissingHeaderAttack66Snap(t *testing.T) { testMissingHeaderAttack(t, eth.ETH66, SnapSync) }
func TestMissingHeaderAttack66Light(t *testing.T) { testMissingHeaderAttack(t, eth.ETH66, LightSync) }
func TestMissingHeaderAttack67Full(t *testing.T) { testMissingHeaderAttack(t, eth.ETH67, FullSync) }
func TestMissingHeaderAttack67Snap(t *testing.T) { testMissingHeaderAttack(t, eth.ETH67, SnapSync) }
func TestMissingHeaderAttack67Light(t *testing.T) { testMissingHeaderAttack(t, eth.ETH67, LightSync) }
func testMissingHeaderAttack(t *testing.T, protocol uint, mode SyncMode) {
tester := newTester(t)
defer tester.terminate()
chain := testChainBase.shorten(blockCacheMaxItems - 15)
attacker := tester.newPeer("attack", protocol, chain.blocks[1:])
attacker.withholdHeaders[chain.blocks[len(chain.blocks)/2-1].Hash()] = struct{}{}
if err := tester.sync("attack", nil, mode); err == nil {
t.Fatalf("succeeded attacker synchronisation")
}
// Synchronise with the valid peer and make sure sync succeeds
tester.newPeer("valid", protocol, chain.blocks[1:])
if err := tester.sync("valid", nil, mode); err != nil {
t.Fatalf("failed to synchronise blocks: %v", err)
}
assertOwnChain(t, tester, len(chain.blocks))
}
// Tests that if requested headers are shifted (i.e. first is missing), the queue
// detects the invalid numbering.
func TestShiftedHeaderAttack66Full(t *testing.T) { testShiftedHeaderAttack(t, eth.ETH66, FullSync) }
func TestShiftedHeaderAttack66Snap(t *testing.T) { testShiftedHeaderAttack(t, eth.ETH66, SnapSync) }
func TestShiftedHeaderAttack66Light(t *testing.T) { testShiftedHeaderAttack(t, eth.ETH66, LightSync) }
func TestShiftedHeaderAttack67Full(t *testing.T) { testShiftedHeaderAttack(t, eth.ETH67, FullSync) }
func TestShiftedHeaderAttack67Snap(t *testing.T) { testShiftedHeaderAttack(t, eth.ETH67, SnapSync) }
func TestShiftedHeaderAttack67Light(t *testing.T) { testShiftedHeaderAttack(t, eth.ETH67, LightSync) }
func testShiftedHeaderAttack(t *testing.T, protocol uint, mode SyncMode) {
tester := newTester(t)
defer tester.terminate()
chain := testChainBase.shorten(blockCacheMaxItems - 15)
// Attempt a full sync with an attacker feeding shifted headers
attacker := tester.newPeer("attack", protocol, chain.blocks[1:])
attacker.withholdHeaders[chain.blocks[1].Hash()] = struct{}{}
if err := tester.sync("attack", nil, mode); err == nil {
t.Fatalf("succeeded attacker synchronisation")
}
// Synchronise with the valid peer and make sure sync succeeds
tester.newPeer("valid", protocol, chain.blocks[1:])
if err := tester.sync("valid", nil, mode); err != nil {
t.Fatalf("failed to synchronise blocks: %v", err)
}
assertOwnChain(t, tester, len(chain.blocks))
}
// Tests that upon detecting an invalid header, the recent ones are rolled back
// for various failure scenarios. Afterwards a full sync is attempted to make
// sure no state was corrupted.
func TestInvalidHeaderRollback66Snap(t *testing.T) { testInvalidHeaderRollback(t, eth.ETH66, SnapSync) }
func TestInvalidHeaderRollback67Snap(t *testing.T) { testInvalidHeaderRollback(t, eth.ETH67, SnapSync) }
func testInvalidHeaderRollback(t *testing.T, protocol uint, mode SyncMode) {
tester := newTester(t)
defer tester.terminate()
// Create a small enough block chain to download
targetBlocks := 3*fsHeaderSafetyNet + 256 + fsMinFullBlocks
chain := testChainBase.shorten(targetBlocks)
// Attempt to sync with an attacker that feeds junk during the fast sync phase.
// This should result in the last fsHeaderSafetyNet headers being rolled back.
missing := fsHeaderSafetyNet + MaxHeaderFetch + 1
fastAttacker := tester.newPeer("fast-attack", protocol, chain.blocks[1:])
fastAttacker.withholdHeaders[chain.blocks[missing].Hash()] = struct{}{}
if err := tester.sync("fast-attack", nil, mode); err == nil {
t.Fatalf("succeeded fast attacker synchronisation")
}
if head := tester.chain.CurrentHeader().Number.Int64(); int(head) > MaxHeaderFetch {
t.Errorf("rollback head mismatch: have %v, want at most %v", head, MaxHeaderFetch)
}
// Attempt to sync with an attacker that feeds junk during the block import phase.
// This should result in both the last fsHeaderSafetyNet number of headers being
// rolled back, and also the pivot point being reverted to a non-block status.
missing = 3*fsHeaderSafetyNet + MaxHeaderFetch + 1
blockAttacker := tester.newPeer("block-attack", protocol, chain.blocks[1:])
fastAttacker.withholdHeaders[chain.blocks[missing].Hash()] = struct{}{} // Make sure the fast-attacker doesn't fill in
blockAttacker.withholdHeaders[chain.blocks[missing].Hash()] = struct{}{}
if err := tester.sync("block-attack", nil, mode); err == nil {
t.Fatalf("succeeded block attacker synchronisation")
}
if head := tester.chain.CurrentHeader().Number.Int64(); int(head) > 2*fsHeaderSafetyNet+MaxHeaderFetch {
t.Errorf("rollback head mismatch: have %v, want at most %v", head, 2*fsHeaderSafetyNet+MaxHeaderFetch)
}
if mode == SnapSync {
if head := tester.chain.CurrentBlock().Number.Uint64(); head != 0 {
t.Errorf("fast sync pivot block #%d not rolled back", head)
}
}
// Attempt to sync with an attacker that withholds promised blocks after the
// fast sync pivot point. This could be a trial to leave the node with a bad
// but already imported pivot block.
withholdAttacker := tester.newPeer("withhold-attack", protocol, chain.blocks[1:])
tester.downloader.syncInitHook = func(uint64, uint64) {
for i := missing; i < len(chain.blocks); i++ {
withholdAttacker.withholdHeaders[chain.blocks[i].Hash()] = struct{}{}
}
tester.downloader.syncInitHook = nil
}
if err := tester.sync("withhold-attack", nil, mode); err == nil {
t.Fatalf("succeeded withholding attacker synchronisation")
}
if head := tester.chain.CurrentHeader().Number.Int64(); int(head) > 2*fsHeaderSafetyNet+MaxHeaderFetch {
t.Errorf("rollback head mismatch: have %v, want at most %v", head, 2*fsHeaderSafetyNet+MaxHeaderFetch)
}
if mode == SnapSync {
if head := tester.chain.CurrentBlock().Number.Uint64(); head != 0 {
t.Errorf("fast sync pivot block #%d not rolled back", head)
}
}
// Synchronise with the valid peer and make sure sync succeeds. Since the last rollback
// should also disable fast syncing for this process, verify that we did a fresh full
// sync. Note, we can't assert anything about the receipts since we won't purge the
// database of them, hence we can't use assertOwnChain.
tester.newPeer("valid", protocol, chain.blocks[1:])
if err := tester.sync("valid", nil, mode); err != nil {
t.Fatalf("failed to synchronise blocks: %v", err)
}
assertOwnChain(t, tester, len(chain.blocks))
}
// Tests that a peer advertising a high TD doesn't get to stall the downloader
// afterwards by not sending any useful hashes.
func TestHighTDStarvationAttack66Full(t *testing.T) {
testHighTDStarvationAttack(t, eth.ETH66, FullSync)
}
func TestHighTDStarvationAttack66Snap(t *testing.T) {
testHighTDStarvationAttack(t, eth.ETH66, SnapSync)
}
func TestHighTDStarvationAttack66Light(t *testing.T) {
testHighTDStarvationAttack(t, eth.ETH66, LightSync)
}
func TestHighTDStarvationAttack67Full(t *testing.T) {
testHighTDStarvationAttack(t, eth.ETH67, FullSync)
}
func TestHighTDStarvationAttack67Snap(t *testing.T) {
testHighTDStarvationAttack(t, eth.ETH67, SnapSync)
}
func TestHighTDStarvationAttack67Light(t *testing.T) {
testHighTDStarvationAttack(t, eth.ETH67, LightSync)
}
func testHighTDStarvationAttack(t *testing.T, protocol uint, mode SyncMode) {
tester := newTester(t)
defer tester.terminate()
chain := testChainBase.shorten(1)
tester.newPeer("attack", protocol, chain.blocks[1:])
if err := tester.sync("attack", big.NewInt(1000000), mode); err != errStallingPeer {
t.Fatalf("synchronisation error mismatch: have %v, want %v", err, errStallingPeer)
}
}
// Tests that misbehaving peers are disconnected, whilst behaving ones are not.
func TestBlockHeaderAttackerDropping66(t *testing.T) { testBlockHeaderAttackerDropping(t, eth.ETH66) }
func TestBlockHeaderAttackerDropping67(t *testing.T) { testBlockHeaderAttackerDropping(t, eth.ETH67) }
func testBlockHeaderAttackerDropping(t *testing.T, protocol uint) {
// Define the disconnection requirement for individual hash fetch errors
tests := []struct {
result error
drop bool
}{
{nil, false}, // Sync succeeded, all is well
{errBusy, false}, // Sync is already in progress, no problem
{errUnknownPeer, false}, // Peer is unknown, was already dropped, don't double drop
{errBadPeer, true}, // Peer was deemed bad for some reason, drop it
{errStallingPeer, true}, // Peer was detected to be stalling, drop it
{errUnsyncedPeer, true}, // Peer was detected to be unsynced, drop it
{errNoPeers, false}, // No peers to download from, soft race, no issue
{errTimeout, true}, // No hashes received in due time, drop the peer
{errEmptyHeaderSet, true}, // No headers were returned as a response, drop as it's a dead end
{errPeersUnavailable, true}, // Nobody had the advertised blocks, drop the advertiser
{errInvalidAncestor, true}, // Agreed upon ancestor is not acceptable, drop the chain rewriter
{errInvalidChain, true}, // Hash chain was detected as invalid, definitely drop
{errInvalidBody, false}, // A bad peer was detected, but not the sync origin
{errInvalidReceipt, false}, // A bad peer was detected, but not the sync origin
{errCancelContentProcessing, false}, // Synchronisation was canceled, origin may be innocent, don't drop
}
// Run the tests and check disconnection status
tester := newTester(t)
defer tester.terminate()
chain := testChainBase.shorten(1)
for i, tt := range tests {
// Register a new peer and ensure its presence
id := fmt.Sprintf("test %d", i)
tester.newPeer(id, protocol, chain.blocks[1:])
if _, ok := tester.peers[id]; !ok {
t.Fatalf("test %d: registered peer not found", i)
}
// Simulate a synchronisation and check the required result
tester.downloader.synchroniseMock = func(string, common.Hash) error { return tt.result }
tester.downloader.LegacySync(id, tester.chain.Genesis().Hash(), big.NewInt(1000), nil, FullSync)
if _, ok := tester.peers[id]; !ok != tt.drop {
t.Errorf("test %d: peer drop mismatch for %v: have %v, want %v", i, tt.result, !ok, tt.drop)
}
}
}
// Tests that synchronisation progress (origin block number, current block number
// and highest block number) is tracked and updated correctly.
func TestSyncProgress66Full(t *testing.T) { testSyncProgress(t, eth.ETH66, FullSync) }
func TestSyncProgress66Snap(t *testing.T) { testSyncProgress(t, eth.ETH66, SnapSync) }
func TestSyncProgress66Light(t *testing.T) { testSyncProgress(t, eth.ETH66, LightSync) }
func TestSyncProgress67Full(t *testing.T) { testSyncProgress(t, eth.ETH67, FullSync) }
func TestSyncProgress67Snap(t *testing.T) { testSyncProgress(t, eth.ETH67, SnapSync) }
func TestSyncProgress67Light(t *testing.T) { testSyncProgress(t, eth.ETH67, LightSync) }
func testSyncProgress(t *testing.T, protocol uint, mode SyncMode) {
tester := newTester(t)
defer tester.terminate()
chain := testChainBase.shorten(blockCacheMaxItems - 15)
// Set a sync init hook to catch progress changes
starting := make(chan struct{})
progress := make(chan struct{})
tester.downloader.syncInitHook = func(origin, latest uint64) {
starting <- struct{}{}
<-progress
}
checkProgress(t, tester.downloader, "pristine", ethereum.SyncProgress{})
// Synchronise half the blocks and check initial progress
tester.newPeer("peer-half", protocol, chain.shorten(len(chain.blocks) / 2).blocks[1:])
pending := new(sync.WaitGroup)
pending.Add(1)
go func() {
defer pending.Done()
if err := tester.sync("peer-half", nil, mode); err != nil {
panic(fmt.Sprintf("failed to synchronise blocks: %v", err))
}
}()
<-starting
checkProgress(t, tester.downloader, "initial", ethereum.SyncProgress{
HighestBlock: uint64(len(chain.blocks)/2 - 1),
})
progress <- struct{}{}
pending.Wait()
// Synchronise all the blocks and check continuation progress
tester.newPeer("peer-full", protocol, chain.blocks[1:])
pending.Add(1)
go func() {
defer pending.Done()
if err := tester.sync("peer-full", nil, mode); err != nil {
panic(fmt.Sprintf("failed to synchronise blocks: %v", err))
}
}()
<-starting
checkProgress(t, tester.downloader, "completing", ethereum.SyncProgress{
StartingBlock: uint64(len(chain.blocks)/2 - 1),
CurrentBlock: uint64(len(chain.blocks)/2 - 1),
HighestBlock: uint64(len(chain.blocks) - 1),
})
// Check final progress after successful sync
progress <- struct{}{}
pending.Wait()
checkProgress(t, tester.downloader, "final", ethereum.SyncProgress{
StartingBlock: uint64(len(chain.blocks)/2 - 1),
CurrentBlock: uint64(len(chain.blocks) - 1),
HighestBlock: uint64(len(chain.blocks) - 1),
})
}
func checkProgress(t *testing.T, d *Downloader, stage string, want ethereum.SyncProgress) {
// Mark this method as a helper to report errors at callsite, not in here
t.Helper()
p := d.Progress()
if p.StartingBlock != want.StartingBlock || p.CurrentBlock != want.CurrentBlock || p.HighestBlock != want.HighestBlock {
t.Fatalf("%s progress mismatch:\nhave %+v\nwant %+v", stage, p, want)
}
}
// Tests that synchronisation progress (origin block number and highest block
// number) is tracked and updated correctly in case of a fork (or manual head
// revertal).
func TestForkedSyncProgress66Full(t *testing.T) { testForkedSyncProgress(t, eth.ETH66, FullSync) }
func TestForkedSyncProgress66Snap(t *testing.T) { testForkedSyncProgress(t, eth.ETH66, SnapSync) }
func TestForkedSyncProgress66Light(t *testing.T) { testForkedSyncProgress(t, eth.ETH66, LightSync) }
func TestForkedSyncProgress67Full(t *testing.T) { testForkedSyncProgress(t, eth.ETH67, FullSync) }
func TestForkedSyncProgress67Snap(t *testing.T) { testForkedSyncProgress(t, eth.ETH67, SnapSync) }
func TestForkedSyncProgress67Light(t *testing.T) { testForkedSyncProgress(t, eth.ETH67, LightSync) }
func testForkedSyncProgress(t *testing.T, protocol uint, mode SyncMode) {
tester := newTester(t)
defer tester.terminate()
chainA := testChainForkLightA.shorten(len(testChainBase.blocks) + MaxHeaderFetch)
chainB := testChainForkLightB.shorten(len(testChainBase.blocks) + MaxHeaderFetch)
// Set a sync init hook to catch progress changes
starting := make(chan struct{})
progress := make(chan struct{})
tester.downloader.syncInitHook = func(origin, latest uint64) {
starting <- struct{}{}
<-progress
}
checkProgress(t, tester.downloader, "pristine", ethereum.SyncProgress{})
// Synchronise with one of the forks and check progress
tester.newPeer("fork A", protocol, chainA.blocks[1:])
pending := new(sync.WaitGroup)
pending.Add(1)
go func() {
defer pending.Done()
if err := tester.sync("fork A", nil, mode); err != nil {
panic(fmt.Sprintf("failed to synchronise blocks: %v", err))
}
}()
<-starting
checkProgress(t, tester.downloader, "initial", ethereum.SyncProgress{
HighestBlock: uint64(len(chainA.blocks) - 1),
})
progress <- struct{}{}
pending.Wait()
// Simulate a successful sync above the fork
tester.downloader.syncStatsChainOrigin = tester.downloader.syncStatsChainHeight
// Synchronise with the second fork and check progress resets
tester.newPeer("fork B", protocol, chainB.blocks[1:])
pending.Add(1)
go func() {
defer pending.Done()
if err := tester.sync("fork B", nil, mode); err != nil {
panic(fmt.Sprintf("failed to synchronise blocks: %v", err))
}
}()
<-starting
checkProgress(t, tester.downloader, "forking", ethereum.SyncProgress{
StartingBlock: uint64(len(testChainBase.blocks)) - 1,
CurrentBlock: uint64(len(chainA.blocks) - 1),
HighestBlock: uint64(len(chainB.blocks) - 1),
})
// Check final progress after successful sync
progress <- struct{}{}
pending.Wait()
checkProgress(t, tester.downloader, "final", ethereum.SyncProgress{
StartingBlock: uint64(len(testChainBase.blocks)) - 1,
CurrentBlock: uint64(len(chainB.blocks) - 1),
HighestBlock: uint64(len(chainB.blocks) - 1),
})
}
// Tests that if synchronisation is aborted due to some failure, then the progress
// origin is not updated in the next sync cycle, as it should be considered the
// continuation of the previous sync and not a new instance.
func TestFailedSyncProgress66Full(t *testing.T) { testFailedSyncProgress(t, eth.ETH66, FullSync) }
func TestFailedSyncProgress66Snap(t *testing.T) { testFailedSyncProgress(t, eth.ETH66, SnapSync) }
func TestFailedSyncProgress66Light(t *testing.T) { testFailedSyncProgress(t, eth.ETH66, LightSync) }
func TestFailedSyncProgress67Full(t *testing.T) { testFailedSyncProgress(t, eth.ETH67, FullSync) }
func TestFailedSyncProgress67Snap(t *testing.T) { testFailedSyncProgress(t, eth.ETH67, SnapSync) }
func TestFailedSyncProgress67Light(t *testing.T) { testFailedSyncProgress(t, eth.ETH67, LightSync) }
func testFailedSyncProgress(t *testing.T, protocol uint, mode SyncMode) {
tester := newTester(t)
defer tester.terminate()
chain := testChainBase.shorten(blockCacheMaxItems - 15)
// Set a sync init hook to catch progress changes
starting := make(chan struct{})
progress := make(chan struct{})
tester.downloader.syncInitHook = func(origin, latest uint64) {
starting <- struct{}{}
<-progress
}
checkProgress(t, tester.downloader, "pristine", ethereum.SyncProgress{})
// Attempt a full sync with a faulty peer
missing := len(chain.blocks)/2 - 1
faulter := tester.newPeer("faulty", protocol, chain.blocks[1:])
faulter.withholdHeaders[chain.blocks[missing].Hash()] = struct{}{}
pending := new(sync.WaitGroup)
pending.Add(1)
go func() {
defer pending.Done()
if err := tester.sync("faulty", nil, mode); err == nil {
panic("succeeded faulty synchronisation")
}
}()
<-starting
checkProgress(t, tester.downloader, "initial", ethereum.SyncProgress{
HighestBlock: uint64(len(chain.blocks) - 1),
})
progress <- struct{}{}
pending.Wait()
afterFailedSync := tester.downloader.Progress()
// Synchronise with a good peer and check that the progress origin remind the same
// after a failure
tester.newPeer("valid", protocol, chain.blocks[1:])
pending.Add(1)
go func() {
defer pending.Done()
if err := tester.sync("valid", nil, mode); err != nil {
panic(fmt.Sprintf("failed to synchronise blocks: %v", err))
}
}()
<-starting
checkProgress(t, tester.downloader, "completing", afterFailedSync)
// Check final progress after successful sync
progress <- struct{}{}
pending.Wait()
checkProgress(t, tester.downloader, "final", ethereum.SyncProgress{
CurrentBlock: uint64(len(chain.blocks) - 1),
HighestBlock: uint64(len(chain.blocks) - 1),
})
}
// Tests that if an attacker fakes a chain height, after the attack is detected,
// the progress height is successfully reduced at the next sync invocation.
func TestFakedSyncProgress66Full(t *testing.T) { testFakedSyncProgress(t, eth.ETH66, FullSync) }
func TestFakedSyncProgress66Snap(t *testing.T) { testFakedSyncProgress(t, eth.ETH66, SnapSync) }
func TestFakedSyncProgress66Light(t *testing.T) { testFakedSyncProgress(t, eth.ETH66, LightSync) }
func TestFakedSyncProgress67Full(t *testing.T) { testFakedSyncProgress(t, eth.ETH67, FullSync) }
func TestFakedSyncProgress67Snap(t *testing.T) { testFakedSyncProgress(t, eth.ETH67, SnapSync) }
func TestFakedSyncProgress67Light(t *testing.T) { testFakedSyncProgress(t, eth.ETH67, LightSync) }
func testFakedSyncProgress(t *testing.T, protocol uint, mode SyncMode) {
tester := newTester(t)
defer tester.terminate()
chain := testChainBase.shorten(blockCacheMaxItems - 15)
// Set a sync init hook to catch progress changes
starting := make(chan struct{})
progress := make(chan struct{})
tester.downloader.syncInitHook = func(origin, latest uint64) {
starting <- struct{}{}
<-progress
}
checkProgress(t, tester.downloader, "pristine", ethereum.SyncProgress{})
// Create and sync with an attacker that promises a higher chain than available.
attacker := tester.newPeer("attack", protocol, chain.blocks[1:])
numMissing := 5
for i := len(chain.blocks) - 2; i > len(chain.blocks)-numMissing; i-- {
attacker.withholdHeaders[chain.blocks[i].Hash()] = struct{}{}
}
pending := new(sync.WaitGroup)
pending.Add(1)
go func() {
defer pending.Done()
if err := tester.sync("attack", nil, mode); err == nil {
panic("succeeded attacker synchronisation")
}
}()
<-starting
checkProgress(t, tester.downloader, "initial", ethereum.SyncProgress{
HighestBlock: uint64(len(chain.blocks) - 1),
})
progress <- struct{}{}
pending.Wait()
afterFailedSync := tester.downloader.Progress()
// Synchronise with a good peer and check that the progress height has been reduced to
// the true value.
validChain := chain.shorten(len(chain.blocks) - numMissing)
tester.newPeer("valid", protocol, validChain.blocks[1:])
pending.Add(1)
go func() {
defer pending.Done()
if err := tester.sync("valid", nil, mode); err != nil {
panic(fmt.Sprintf("failed to synchronise blocks: %v", err))
}
}()
<-starting
checkProgress(t, tester.downloader, "completing", ethereum.SyncProgress{
CurrentBlock: afterFailedSync.CurrentBlock,
HighestBlock: uint64(len(validChain.blocks) - 1),
})
// Check final progress after successful sync.
progress <- struct{}{}
pending.Wait()
checkProgress(t, tester.downloader, "final", ethereum.SyncProgress{
CurrentBlock: uint64(len(validChain.blocks) - 1),
HighestBlock: uint64(len(validChain.blocks) - 1),
})
}
func TestRemoteHeaderRequestSpan(t *testing.T) {
testCases := []struct {
remoteHeight uint64
localHeight uint64
expected []int
}{
// Remote is way higher. We should ask for the remote head and go backwards
{1500, 1000,
[]int{1323, 1339, 1355, 1371, 1387, 1403, 1419, 1435, 1451, 1467, 1483, 1499},
},
{15000, 13006,
[]int{14823, 14839, 14855, 14871, 14887, 14903, 14919, 14935, 14951, 14967, 14983, 14999},
},
// Remote is pretty close to us. We don't have to fetch as many
{1200, 1150,
[]int{1149, 1154, 1159, 1164, 1169, 1174, 1179, 1184, 1189, 1194, 1199},
},
// Remote is equal to us (so on a fork with higher td)
// We should get the closest couple of ancestors
{1500, 1500,
[]int{1497, 1499},
},
// We're higher than the remote! Odd
{1000, 1500,
[]int{997, 999},
},
// Check some weird edgecases that it behaves somewhat rationally
{0, 1500,
[]int{0, 2},
},
{6000000, 0,
[]int{5999823, 5999839, 5999855, 5999871, 5999887, 5999903, 5999919, 5999935, 5999951, 5999967, 5999983, 5999999},
},
{0, 0,
[]int{0, 2},
},
}
reqs := func(from, count, span int) []int {
var r []int
num := from
for len(r) < count {
r = append(r, num)
num += span + 1
}
return r
}
for i, tt := range testCases {
from, count, span, max := calculateRequestSpan(tt.remoteHeight, tt.localHeight)
data := reqs(int(from), count, span)
if max != uint64(data[len(data)-1]) {
t.Errorf("test %d: wrong last value %d != %d", i, data[len(data)-1], max)
}
failed := false
if len(data) != len(tt.expected) {
failed = true
t.Errorf("test %d: length wrong, expected %d got %d", i, len(tt.expected), len(data))
} else {
for j, n := range data {
if n != tt.expected[j] {
failed = true
break
}
}
}
if failed {
res := strings.ReplaceAll(fmt.Sprint(data), " ", ",")
exp := strings.ReplaceAll(fmt.Sprint(tt.expected), " ", ",")
t.Logf("got: %v\n", res)
t.Logf("exp: %v\n", exp)
t.Errorf("test %d: wrong values", i)
}
}
}
// Tests that peers below a pre-configured checkpoint block are prevented from
// being fast-synced from, avoiding potential cheap eclipse attacks.
func TestCheckpointEnforcement66Full(t *testing.T) { testCheckpointEnforcement(t, eth.ETH66, FullSync) }
func TestCheckpointEnforcement66Snap(t *testing.T) { testCheckpointEnforcement(t, eth.ETH66, SnapSync) }
func TestCheckpointEnforcement66Light(t *testing.T) {
testCheckpointEnforcement(t, eth.ETH66, LightSync)
}
func TestCheckpointEnforcement67Full(t *testing.T) { testCheckpointEnforcement(t, eth.ETH67, FullSync) }
func TestCheckpointEnforcement67Snap(t *testing.T) { testCheckpointEnforcement(t, eth.ETH67, SnapSync) }
func TestCheckpointEnforcement67Light(t *testing.T) {
testCheckpointEnforcement(t, eth.ETH67, LightSync)
}
func testCheckpointEnforcement(t *testing.T, protocol uint, mode SyncMode) {
// Create a new tester with a particular hard coded checkpoint block
tester := newTester(t)
defer tester.terminate()
tester.downloader.checkpoint = uint64(fsMinFullBlocks) + 256
chain := testChainBase.shorten(int(tester.downloader.checkpoint) - 1)
// Attempt to sync with the peer and validate the result
tester.newPeer("peer", protocol, chain.blocks[1:])
var expect error
if mode == SnapSync || mode == LightSync {
expect = errUnsyncedPeer
}
if err := tester.sync("peer", nil, mode); !errors.Is(err, expect) {
t.Fatalf("block sync error mismatch: have %v, want %v", err, expect)
}
if mode == SnapSync || mode == LightSync {
assertOwnChain(t, tester, 1)
} else {
assertOwnChain(t, tester, len(chain.blocks))
}
}
// Tests that peers below a pre-configured checkpoint block are prevented from
// being fast-synced from, avoiding potential cheap eclipse attacks.
func TestBeaconSync66Full(t *testing.T) { testBeaconSync(t, eth.ETH66, FullSync) }
func TestBeaconSync66Snap(t *testing.T) { testBeaconSync(t, eth.ETH66, SnapSync) }
func testBeaconSync(t *testing.T, protocol uint, mode SyncMode) {
//log.Root().SetHandler(log.LvlFilterHandler(log.LvlInfo, log.StreamHandler(os.Stderr, log.TerminalFormat(true))))
var cases = []struct {
name string // The name of testing scenario
local int // The length of local chain(canonical chain assumed), 0 means genesis is the head
}{
{name: "Beacon sync since genesis", local: 0},
{name: "Beacon sync with short local chain", local: 1},
{name: "Beacon sync with long local chain", local: blockCacheMaxItems - 15 - fsMinFullBlocks/2},
{name: "Beacon sync with full local chain", local: blockCacheMaxItems - 15 - 1},
}
for _, c := range cases {
t.Run(c.name, func(t *testing.T) {
success := make(chan struct{})
tester := newTesterWithNotification(t, func() {
close(success)
})
defer tester.terminate()
chain := testChainBase.shorten(blockCacheMaxItems - 15)
tester.newPeer("peer", protocol, chain.blocks[1:])
// Build the local chain segment if it's required
if c.local > 0 {
tester.chain.InsertChain(chain.blocks[1 : c.local+1])
}
if err := tester.downloader.BeaconSync(mode, chain.blocks[len(chain.blocks)-1].Header(), nil); err != nil {
t.Fatalf("Failed to beacon sync chain %v %v", c.name, err)
}
select {
case <-success:
// Ok, downloader fully cancelled after sync cycle
if bs := int(tester.chain.CurrentBlock().Number.Uint64()) + 1; bs != len(chain.blocks) {
t.Fatalf("synchronised blocks mismatch: have %v, want %v", bs, len(chain.blocks))
}
case <-time.NewTimer(time.Second * 3).C:
t.Fatalf("Failed to sync chain in three seconds")
}
})
}
}