ab49f228ad
Since Go 1.22 has deprecated certain elliptic curve operations, this PR removes references to the affected functions and replaces them with a custom implementation in package crypto. This causes backwards-incompatible changes in some places. --------- Co-authored-by: Marius van der Wijden <m.vanderwijden@live.de> Co-authored-by: Felix Lange <fjl@twurst.com>
679 lines
19 KiB
Go
679 lines
19 KiB
Go
// Copyright 2020 The go-ethereum Authors
|
|
// This file is part of the go-ethereum library.
|
|
//
|
|
// The go-ethereum library is free software: you can redistribute it and/or modify
|
|
// it under the terms of the GNU Lesser General Public License as published by
|
|
// the Free Software Foundation, either version 3 of the License, or
|
|
// (at your option) any later version.
|
|
//
|
|
// The go-ethereum library is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
// GNU Lesser General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public License
|
|
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
// Package rlpx implements the RLPx transport protocol.
|
|
package rlpx
|
|
|
|
import (
|
|
"bytes"
|
|
"crypto/aes"
|
|
"crypto/cipher"
|
|
"crypto/ecdsa"
|
|
"crypto/hmac"
|
|
"crypto/rand"
|
|
"encoding/binary"
|
|
"errors"
|
|
"fmt"
|
|
"hash"
|
|
"io"
|
|
mrand "math/rand"
|
|
"net"
|
|
"time"
|
|
|
|
"github.com/ethereum/go-ethereum/crypto"
|
|
"github.com/ethereum/go-ethereum/crypto/ecies"
|
|
"github.com/ethereum/go-ethereum/rlp"
|
|
"github.com/golang/snappy"
|
|
"golang.org/x/crypto/sha3"
|
|
)
|
|
|
|
// Conn is an RLPx network connection. It wraps a low-level network connection. The
|
|
// underlying connection should not be used for other activity when it is wrapped by Conn.
|
|
//
|
|
// Before sending messages, a handshake must be performed by calling the Handshake method.
|
|
// This type is not generally safe for concurrent use, but reading and writing of messages
|
|
// may happen concurrently after the handshake.
|
|
type Conn struct {
|
|
dialDest *ecdsa.PublicKey
|
|
conn net.Conn
|
|
session *sessionState
|
|
|
|
// These are the buffers for snappy compression.
|
|
// Compression is enabled if they are non-nil.
|
|
snappyReadBuffer []byte
|
|
snappyWriteBuffer []byte
|
|
}
|
|
|
|
// sessionState contains the session keys.
|
|
type sessionState struct {
|
|
enc cipher.Stream
|
|
dec cipher.Stream
|
|
|
|
egressMAC hashMAC
|
|
ingressMAC hashMAC
|
|
rbuf readBuffer
|
|
wbuf writeBuffer
|
|
}
|
|
|
|
// hashMAC holds the state of the RLPx v4 MAC contraption.
|
|
type hashMAC struct {
|
|
cipher cipher.Block
|
|
hash hash.Hash
|
|
aesBuffer [16]byte
|
|
hashBuffer [32]byte
|
|
seedBuffer [32]byte
|
|
}
|
|
|
|
func newHashMAC(cipher cipher.Block, h hash.Hash) hashMAC {
|
|
m := hashMAC{cipher: cipher, hash: h}
|
|
if cipher.BlockSize() != len(m.aesBuffer) {
|
|
panic(fmt.Errorf("invalid MAC cipher block size %d", cipher.BlockSize()))
|
|
}
|
|
if h.Size() != len(m.hashBuffer) {
|
|
panic(fmt.Errorf("invalid MAC digest size %d", h.Size()))
|
|
}
|
|
return m
|
|
}
|
|
|
|
// NewConn wraps the given network connection. If dialDest is non-nil, the connection
|
|
// behaves as the initiator during the handshake.
|
|
func NewConn(conn net.Conn, dialDest *ecdsa.PublicKey) *Conn {
|
|
return &Conn{
|
|
dialDest: dialDest,
|
|
conn: conn,
|
|
}
|
|
}
|
|
|
|
// SetSnappy enables or disables snappy compression of messages. This is usually called
|
|
// after the devp2p Hello message exchange when the negotiated version indicates that
|
|
// compression is available on both ends of the connection.
|
|
func (c *Conn) SetSnappy(snappy bool) {
|
|
if snappy {
|
|
c.snappyReadBuffer = []byte{}
|
|
c.snappyWriteBuffer = []byte{}
|
|
} else {
|
|
c.snappyReadBuffer = nil
|
|
c.snappyWriteBuffer = nil
|
|
}
|
|
}
|
|
|
|
// SetReadDeadline sets the deadline for all future read operations.
|
|
func (c *Conn) SetReadDeadline(time time.Time) error {
|
|
return c.conn.SetReadDeadline(time)
|
|
}
|
|
|
|
// SetWriteDeadline sets the deadline for all future write operations.
|
|
func (c *Conn) SetWriteDeadline(time time.Time) error {
|
|
return c.conn.SetWriteDeadline(time)
|
|
}
|
|
|
|
// SetDeadline sets the deadline for all future read and write operations.
|
|
func (c *Conn) SetDeadline(time time.Time) error {
|
|
return c.conn.SetDeadline(time)
|
|
}
|
|
|
|
// Read reads a message from the connection.
|
|
// The returned data buffer is valid until the next call to Read.
|
|
func (c *Conn) Read() (code uint64, data []byte, wireSize int, err error) {
|
|
if c.session == nil {
|
|
panic("can't ReadMsg before handshake")
|
|
}
|
|
|
|
frame, err := c.session.readFrame(c.conn)
|
|
if err != nil {
|
|
return 0, nil, 0, err
|
|
}
|
|
code, data, err = rlp.SplitUint64(frame)
|
|
if err != nil {
|
|
return 0, nil, 0, fmt.Errorf("invalid message code: %v", err)
|
|
}
|
|
wireSize = len(data)
|
|
|
|
// If snappy is enabled, verify and decompress message.
|
|
if c.snappyReadBuffer != nil {
|
|
var actualSize int
|
|
actualSize, err = snappy.DecodedLen(data)
|
|
if err != nil {
|
|
return code, nil, 0, err
|
|
}
|
|
if actualSize > maxUint24 {
|
|
return code, nil, 0, errPlainMessageTooLarge
|
|
}
|
|
c.snappyReadBuffer = growslice(c.snappyReadBuffer, actualSize)
|
|
data, err = snappy.Decode(c.snappyReadBuffer, data)
|
|
}
|
|
return code, data, wireSize, err
|
|
}
|
|
|
|
func (h *sessionState) readFrame(conn io.Reader) ([]byte, error) {
|
|
h.rbuf.reset()
|
|
|
|
// Read the frame header.
|
|
header, err := h.rbuf.read(conn, 32)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
// Verify header MAC.
|
|
wantHeaderMAC := h.ingressMAC.computeHeader(header[:16])
|
|
if !hmac.Equal(wantHeaderMAC, header[16:]) {
|
|
return nil, errors.New("bad header MAC")
|
|
}
|
|
|
|
// Decrypt the frame header to get the frame size.
|
|
h.dec.XORKeyStream(header[:16], header[:16])
|
|
fsize := readUint24(header[:16])
|
|
// Frame size rounded up to 16 byte boundary for padding.
|
|
rsize := fsize
|
|
if padding := fsize % 16; padding > 0 {
|
|
rsize += 16 - padding
|
|
}
|
|
|
|
// Read the frame content.
|
|
frame, err := h.rbuf.read(conn, int(rsize))
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
// Validate frame MAC.
|
|
frameMAC, err := h.rbuf.read(conn, 16)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
wantFrameMAC := h.ingressMAC.computeFrame(frame)
|
|
if !hmac.Equal(wantFrameMAC, frameMAC) {
|
|
return nil, errors.New("bad frame MAC")
|
|
}
|
|
|
|
// Decrypt the frame data.
|
|
h.dec.XORKeyStream(frame, frame)
|
|
return frame[:fsize], nil
|
|
}
|
|
|
|
// Write writes a message to the connection.
|
|
//
|
|
// Write returns the written size of the message data. This may be less than or equal to
|
|
// len(data) depending on whether snappy compression is enabled.
|
|
func (c *Conn) Write(code uint64, data []byte) (uint32, error) {
|
|
if c.session == nil {
|
|
panic("can't WriteMsg before handshake")
|
|
}
|
|
if len(data) > maxUint24 {
|
|
return 0, errPlainMessageTooLarge
|
|
}
|
|
if c.snappyWriteBuffer != nil {
|
|
// Ensure the buffer has sufficient size.
|
|
// Package snappy will allocate its own buffer if the provided
|
|
// one is smaller than MaxEncodedLen.
|
|
c.snappyWriteBuffer = growslice(c.snappyWriteBuffer, snappy.MaxEncodedLen(len(data)))
|
|
data = snappy.Encode(c.snappyWriteBuffer, data)
|
|
}
|
|
|
|
wireSize := uint32(len(data))
|
|
err := c.session.writeFrame(c.conn, code, data)
|
|
return wireSize, err
|
|
}
|
|
|
|
func (h *sessionState) writeFrame(conn io.Writer, code uint64, data []byte) error {
|
|
h.wbuf.reset()
|
|
|
|
// Write header.
|
|
fsize := rlp.IntSize(code) + len(data)
|
|
if fsize > maxUint24 {
|
|
return errPlainMessageTooLarge
|
|
}
|
|
header := h.wbuf.appendZero(16)
|
|
putUint24(uint32(fsize), header)
|
|
copy(header[3:], zeroHeader)
|
|
h.enc.XORKeyStream(header, header)
|
|
|
|
// Write header MAC.
|
|
h.wbuf.Write(h.egressMAC.computeHeader(header))
|
|
|
|
// Encode and encrypt the frame data.
|
|
offset := len(h.wbuf.data)
|
|
h.wbuf.data = rlp.AppendUint64(h.wbuf.data, code)
|
|
h.wbuf.Write(data)
|
|
if padding := fsize % 16; padding > 0 {
|
|
h.wbuf.appendZero(16 - padding)
|
|
}
|
|
framedata := h.wbuf.data[offset:]
|
|
h.enc.XORKeyStream(framedata, framedata)
|
|
|
|
// Write frame MAC.
|
|
h.wbuf.Write(h.egressMAC.computeFrame(framedata))
|
|
|
|
_, err := conn.Write(h.wbuf.data)
|
|
return err
|
|
}
|
|
|
|
// computeHeader computes the MAC of a frame header.
|
|
func (m *hashMAC) computeHeader(header []byte) []byte {
|
|
sum1 := m.hash.Sum(m.hashBuffer[:0])
|
|
return m.compute(sum1, header)
|
|
}
|
|
|
|
// computeFrame computes the MAC of framedata.
|
|
func (m *hashMAC) computeFrame(framedata []byte) []byte {
|
|
m.hash.Write(framedata)
|
|
seed := m.hash.Sum(m.seedBuffer[:0])
|
|
return m.compute(seed, seed[:16])
|
|
}
|
|
|
|
// compute computes the MAC of a 16-byte 'seed'.
|
|
//
|
|
// To do this, it encrypts the current value of the hash state, then XORs the ciphertext
|
|
// with seed. The obtained value is written back into the hash state and hash output is
|
|
// taken again. The first 16 bytes of the resulting sum are the MAC value.
|
|
//
|
|
// This MAC construction is a horrible, legacy thing.
|
|
func (m *hashMAC) compute(sum1, seed []byte) []byte {
|
|
if len(seed) != len(m.aesBuffer) {
|
|
panic("invalid MAC seed")
|
|
}
|
|
|
|
m.cipher.Encrypt(m.aesBuffer[:], sum1)
|
|
for i := range m.aesBuffer {
|
|
m.aesBuffer[i] ^= seed[i]
|
|
}
|
|
m.hash.Write(m.aesBuffer[:])
|
|
sum2 := m.hash.Sum(m.hashBuffer[:0])
|
|
return sum2[:16]
|
|
}
|
|
|
|
// Handshake performs the handshake. This must be called before any data is written
|
|
// or read from the connection.
|
|
func (c *Conn) Handshake(prv *ecdsa.PrivateKey) (*ecdsa.PublicKey, error) {
|
|
var (
|
|
sec Secrets
|
|
err error
|
|
h handshakeState
|
|
)
|
|
if c.dialDest != nil {
|
|
sec, err = h.runInitiator(c.conn, prv, c.dialDest)
|
|
} else {
|
|
sec, err = h.runRecipient(c.conn, prv)
|
|
}
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
c.InitWithSecrets(sec)
|
|
c.session.rbuf = h.rbuf
|
|
c.session.wbuf = h.wbuf
|
|
return sec.remote, err
|
|
}
|
|
|
|
// InitWithSecrets injects connection secrets as if a handshake had
|
|
// been performed. This cannot be called after the handshake.
|
|
func (c *Conn) InitWithSecrets(sec Secrets) {
|
|
if c.session != nil {
|
|
panic("can't handshake twice")
|
|
}
|
|
macc, err := aes.NewCipher(sec.MAC)
|
|
if err != nil {
|
|
panic("invalid MAC secret: " + err.Error())
|
|
}
|
|
encc, err := aes.NewCipher(sec.AES)
|
|
if err != nil {
|
|
panic("invalid AES secret: " + err.Error())
|
|
}
|
|
// we use an all-zeroes IV for AES because the key used
|
|
// for encryption is ephemeral.
|
|
iv := make([]byte, encc.BlockSize())
|
|
c.session = &sessionState{
|
|
enc: cipher.NewCTR(encc, iv),
|
|
dec: cipher.NewCTR(encc, iv),
|
|
egressMAC: newHashMAC(macc, sec.EgressMAC),
|
|
ingressMAC: newHashMAC(macc, sec.IngressMAC),
|
|
}
|
|
}
|
|
|
|
// Close closes the underlying network connection.
|
|
func (c *Conn) Close() error {
|
|
return c.conn.Close()
|
|
}
|
|
|
|
// Constants for the handshake.
|
|
const (
|
|
sskLen = 16 // ecies.MaxSharedKeyLength(pubKey) / 2
|
|
sigLen = crypto.SignatureLength // elliptic S256
|
|
pubLen = 64 // 512 bit pubkey in uncompressed representation without format byte
|
|
shaLen = 32 // hash length (for nonce etc)
|
|
|
|
eciesOverhead = 65 /* pubkey */ + 16 /* IV */ + 32 /* MAC */
|
|
)
|
|
|
|
var (
|
|
// this is used in place of actual frame header data.
|
|
// TODO: replace this when Msg contains the protocol type code.
|
|
zeroHeader = []byte{0xC2, 0x80, 0x80}
|
|
|
|
// errPlainMessageTooLarge is returned if a decompressed message length exceeds
|
|
// the allowed 24 bits (i.e. length >= 16MB).
|
|
errPlainMessageTooLarge = errors.New("message length >= 16MB")
|
|
)
|
|
|
|
// Secrets represents the connection secrets which are negotiated during the handshake.
|
|
type Secrets struct {
|
|
AES, MAC []byte
|
|
EgressMAC, IngressMAC hash.Hash
|
|
remote *ecdsa.PublicKey
|
|
}
|
|
|
|
// handshakeState contains the state of the encryption handshake.
|
|
type handshakeState struct {
|
|
initiator bool
|
|
remote *ecies.PublicKey // remote-pubk
|
|
initNonce, respNonce []byte // nonce
|
|
randomPrivKey *ecies.PrivateKey // ecdhe-random
|
|
remoteRandomPub *ecies.PublicKey // ecdhe-random-pubk
|
|
|
|
rbuf readBuffer
|
|
wbuf writeBuffer
|
|
}
|
|
|
|
// RLPx v4 handshake auth (defined in EIP-8).
|
|
type authMsgV4 struct {
|
|
Signature [sigLen]byte
|
|
InitiatorPubkey [pubLen]byte
|
|
Nonce [shaLen]byte
|
|
Version uint
|
|
|
|
// Ignore additional fields (forward-compatibility)
|
|
Rest []rlp.RawValue `rlp:"tail"`
|
|
}
|
|
|
|
// RLPx v4 handshake response (defined in EIP-8).
|
|
type authRespV4 struct {
|
|
RandomPubkey [pubLen]byte
|
|
Nonce [shaLen]byte
|
|
Version uint
|
|
|
|
// Ignore additional fields (forward-compatibility)
|
|
Rest []rlp.RawValue `rlp:"tail"`
|
|
}
|
|
|
|
// runRecipient negotiates a session token on conn.
|
|
// it should be called on the listening side of the connection.
|
|
//
|
|
// prv is the local client's private key.
|
|
func (h *handshakeState) runRecipient(conn io.ReadWriter, prv *ecdsa.PrivateKey) (s Secrets, err error) {
|
|
authMsg := new(authMsgV4)
|
|
authPacket, err := h.readMsg(authMsg, prv, conn)
|
|
if err != nil {
|
|
return s, err
|
|
}
|
|
if err := h.handleAuthMsg(authMsg, prv); err != nil {
|
|
return s, err
|
|
}
|
|
|
|
authRespMsg, err := h.makeAuthResp()
|
|
if err != nil {
|
|
return s, err
|
|
}
|
|
authRespPacket, err := h.sealEIP8(authRespMsg)
|
|
if err != nil {
|
|
return s, err
|
|
}
|
|
if _, err = conn.Write(authRespPacket); err != nil {
|
|
return s, err
|
|
}
|
|
|
|
return h.secrets(authPacket, authRespPacket)
|
|
}
|
|
|
|
func (h *handshakeState) handleAuthMsg(msg *authMsgV4, prv *ecdsa.PrivateKey) error {
|
|
// Import the remote identity.
|
|
rpub, err := importPublicKey(msg.InitiatorPubkey[:])
|
|
if err != nil {
|
|
return err
|
|
}
|
|
h.initNonce = msg.Nonce[:]
|
|
h.remote = rpub
|
|
|
|
// Generate random keypair for ECDH.
|
|
// If a private key is already set, use it instead of generating one (for testing).
|
|
if h.randomPrivKey == nil {
|
|
h.randomPrivKey, err = ecies.GenerateKey(rand.Reader, crypto.S256(), nil)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
}
|
|
|
|
// Check the signature.
|
|
token, err := h.staticSharedSecret(prv)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
signedMsg := xor(token, h.initNonce)
|
|
remoteRandomPub, err := crypto.Ecrecover(signedMsg, msg.Signature[:])
|
|
if err != nil {
|
|
return err
|
|
}
|
|
h.remoteRandomPub, _ = importPublicKey(remoteRandomPub)
|
|
return nil
|
|
}
|
|
|
|
// secrets is called after the handshake is completed.
|
|
// It extracts the connection secrets from the handshake values.
|
|
func (h *handshakeState) secrets(auth, authResp []byte) (Secrets, error) {
|
|
ecdheSecret, err := h.randomPrivKey.GenerateShared(h.remoteRandomPub, sskLen, sskLen)
|
|
if err != nil {
|
|
return Secrets{}, err
|
|
}
|
|
|
|
// derive base secrets from ephemeral key agreement
|
|
sharedSecret := crypto.Keccak256(ecdheSecret, crypto.Keccak256(h.respNonce, h.initNonce))
|
|
aesSecret := crypto.Keccak256(ecdheSecret, sharedSecret)
|
|
s := Secrets{
|
|
remote: h.remote.ExportECDSA(),
|
|
AES: aesSecret,
|
|
MAC: crypto.Keccak256(ecdheSecret, aesSecret),
|
|
}
|
|
|
|
// setup sha3 instances for the MACs
|
|
mac1 := sha3.NewLegacyKeccak256()
|
|
mac1.Write(xor(s.MAC, h.respNonce))
|
|
mac1.Write(auth)
|
|
mac2 := sha3.NewLegacyKeccak256()
|
|
mac2.Write(xor(s.MAC, h.initNonce))
|
|
mac2.Write(authResp)
|
|
if h.initiator {
|
|
s.EgressMAC, s.IngressMAC = mac1, mac2
|
|
} else {
|
|
s.EgressMAC, s.IngressMAC = mac2, mac1
|
|
}
|
|
|
|
return s, nil
|
|
}
|
|
|
|
// staticSharedSecret returns the static shared secret, the result
|
|
// of key agreement between the local and remote static node key.
|
|
func (h *handshakeState) staticSharedSecret(prv *ecdsa.PrivateKey) ([]byte, error) {
|
|
return ecies.ImportECDSA(prv).GenerateShared(h.remote, sskLen, sskLen)
|
|
}
|
|
|
|
// runInitiator negotiates a session token on conn.
|
|
// it should be called on the dialing side of the connection.
|
|
//
|
|
// prv is the local client's private key.
|
|
func (h *handshakeState) runInitiator(conn io.ReadWriter, prv *ecdsa.PrivateKey, remote *ecdsa.PublicKey) (s Secrets, err error) {
|
|
h.initiator = true
|
|
h.remote = ecies.ImportECDSAPublic(remote)
|
|
|
|
authMsg, err := h.makeAuthMsg(prv)
|
|
if err != nil {
|
|
return s, err
|
|
}
|
|
authPacket, err := h.sealEIP8(authMsg)
|
|
if err != nil {
|
|
return s, err
|
|
}
|
|
|
|
if _, err = conn.Write(authPacket); err != nil {
|
|
return s, err
|
|
}
|
|
|
|
authRespMsg := new(authRespV4)
|
|
authRespPacket, err := h.readMsg(authRespMsg, prv, conn)
|
|
if err != nil {
|
|
return s, err
|
|
}
|
|
if err := h.handleAuthResp(authRespMsg); err != nil {
|
|
return s, err
|
|
}
|
|
|
|
return h.secrets(authPacket, authRespPacket)
|
|
}
|
|
|
|
// makeAuthMsg creates the initiator handshake message.
|
|
func (h *handshakeState) makeAuthMsg(prv *ecdsa.PrivateKey) (*authMsgV4, error) {
|
|
// Generate random initiator nonce.
|
|
h.initNonce = make([]byte, shaLen)
|
|
_, err := rand.Read(h.initNonce)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
// Generate random keypair to for ECDH.
|
|
h.randomPrivKey, err = ecies.GenerateKey(rand.Reader, crypto.S256(), nil)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
// Sign known message: static-shared-secret ^ nonce
|
|
token, err := h.staticSharedSecret(prv)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
signed := xor(token, h.initNonce)
|
|
signature, err := crypto.Sign(signed, h.randomPrivKey.ExportECDSA())
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
msg := new(authMsgV4)
|
|
copy(msg.Signature[:], signature)
|
|
copy(msg.InitiatorPubkey[:], crypto.FromECDSAPub(&prv.PublicKey)[1:])
|
|
copy(msg.Nonce[:], h.initNonce)
|
|
msg.Version = 4
|
|
return msg, nil
|
|
}
|
|
|
|
func (h *handshakeState) handleAuthResp(msg *authRespV4) (err error) {
|
|
h.respNonce = msg.Nonce[:]
|
|
h.remoteRandomPub, err = importPublicKey(msg.RandomPubkey[:])
|
|
return err
|
|
}
|
|
|
|
func (h *handshakeState) makeAuthResp() (msg *authRespV4, err error) {
|
|
// Generate random nonce.
|
|
h.respNonce = make([]byte, shaLen)
|
|
if _, err = rand.Read(h.respNonce); err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
msg = new(authRespV4)
|
|
copy(msg.Nonce[:], h.respNonce)
|
|
copy(msg.RandomPubkey[:], exportPubkey(&h.randomPrivKey.PublicKey))
|
|
msg.Version = 4
|
|
return msg, nil
|
|
}
|
|
|
|
// readMsg reads an encrypted handshake message, decoding it into msg.
|
|
func (h *handshakeState) readMsg(msg interface{}, prv *ecdsa.PrivateKey, r io.Reader) ([]byte, error) {
|
|
h.rbuf.reset()
|
|
h.rbuf.grow(512)
|
|
|
|
// Read the size prefix.
|
|
prefix, err := h.rbuf.read(r, 2)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
size := binary.BigEndian.Uint16(prefix)
|
|
|
|
// Read the handshake packet.
|
|
packet, err := h.rbuf.read(r, int(size))
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
dec, err := ecies.ImportECDSA(prv).Decrypt(packet, nil, prefix)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
// Can't use rlp.DecodeBytes here because it rejects
|
|
// trailing data (forward-compatibility).
|
|
s := rlp.NewStream(bytes.NewReader(dec), 0)
|
|
err = s.Decode(msg)
|
|
return h.rbuf.data[:len(prefix)+len(packet)], err
|
|
}
|
|
|
|
// sealEIP8 encrypts a handshake message.
|
|
func (h *handshakeState) sealEIP8(msg interface{}) ([]byte, error) {
|
|
h.wbuf.reset()
|
|
|
|
// Write the message plaintext.
|
|
if err := rlp.Encode(&h.wbuf, msg); err != nil {
|
|
return nil, err
|
|
}
|
|
// Pad with random amount of data. the amount needs to be at least 100 bytes to make
|
|
// the message distinguishable from pre-EIP-8 handshakes.
|
|
h.wbuf.appendZero(mrand.Intn(100) + 100)
|
|
|
|
prefix := make([]byte, 2)
|
|
binary.BigEndian.PutUint16(prefix, uint16(len(h.wbuf.data)+eciesOverhead))
|
|
|
|
enc, err := ecies.Encrypt(rand.Reader, h.remote, h.wbuf.data, nil, prefix)
|
|
return append(prefix, enc...), err
|
|
}
|
|
|
|
// importPublicKey unmarshals 512 bit public keys.
|
|
func importPublicKey(pubKey []byte) (*ecies.PublicKey, error) {
|
|
var pubKey65 []byte
|
|
switch len(pubKey) {
|
|
case 64:
|
|
// add 'uncompressed key' flag
|
|
pubKey65 = append([]byte{0x04}, pubKey...)
|
|
case 65:
|
|
pubKey65 = pubKey
|
|
default:
|
|
return nil, fmt.Errorf("invalid public key length %v (expect 64/65)", len(pubKey))
|
|
}
|
|
// TODO: fewer pointless conversions
|
|
pub, err := crypto.UnmarshalPubkey(pubKey65)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
return ecies.ImportECDSAPublic(pub), nil
|
|
}
|
|
|
|
func exportPubkey(pub *ecies.PublicKey) []byte {
|
|
if pub == nil {
|
|
panic("nil pubkey")
|
|
}
|
|
if curve, ok := pub.Curve.(crypto.EllipticCurve); ok {
|
|
return curve.Marshal(pub.X, pub.Y)[1:]
|
|
}
|
|
return []byte{}
|
|
}
|
|
|
|
func xor(one, other []byte) (xor []byte) {
|
|
xor = make([]byte, len(one))
|
|
for i := 0; i < len(one); i++ {
|
|
xor[i] = one[i] ^ other[i]
|
|
}
|
|
return xor
|
|
}
|