go-ethereum/accounts/usbwallet/ledger_wallet.go

671 lines
24 KiB
Go

// Copyright 2017 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
// This file contains the implementation for interacting with the Ledger hardware
// wallets. The wire protocol spec can be found in the Ledger Blue GitHub repo:
// https://raw.githubusercontent.com/LedgerHQ/blue-app-eth/master/doc/ethapp.asc
// +build !ios
package usbwallet
import (
"encoding/binary"
"encoding/hex"
"errors"
"fmt"
"io"
"math/big"
"strconv"
"strings"
"sync"
"time"
"github.com/ethereum/go-ethereum/accounts"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/core/types"
"github.com/ethereum/go-ethereum/logger"
"github.com/ethereum/go-ethereum/logger/glog"
"github.com/ethereum/go-ethereum/rlp"
"github.com/karalabe/gousb/usb"
)
// ledgerDerivationPath is the base derivation parameters used by the wallet.
var ledgerDerivationPath = []uint32{0x80000000 + 44, 0x80000000 + 60, 0x80000000 + 0, 0}
// ledgerOpcode is an enumeration encoding the supported Ledger opcodes.
type ledgerOpcode byte
// ledgerParam1 is an enumeration encoding the supported Ledger parameters for
// specific opcodes. The same parameter values may be reused between opcodes.
type ledgerParam1 byte
// ledgerParam2 is an enumeration encoding the supported Ledger parameters for
// specific opcodes. The same parameter values may be reused between opcodes.
type ledgerParam2 byte
const (
ledgerOpRetrieveAddress ledgerOpcode = 0x02 // Returns the public key and Ethereum address for a given BIP 32 path
ledgerOpSignTransaction ledgerOpcode = 0x04 // Signs an Ethereum transaction after having the user validate the parameters
ledgerOpGetConfiguration ledgerOpcode = 0x06 // Returns specific wallet application configuration
ledgerP1DirectlyFetchAddress ledgerParam1 = 0x00 // Return address directly from the wallet
ledgerP1ConfirmFetchAddress ledgerParam1 = 0x01 // Require a user confirmation before returning the address
ledgerP1InitTransactionData ledgerParam1 = 0x00 // First transaction data block for signing
ledgerP1ContTransactionData ledgerParam1 = 0x80 // Subsequent transaction data block for signing
ledgerP2DiscardAddressChainCode ledgerParam2 = 0x00 // Do not return the chain code along with the address
ledgerP2ReturnAddressChainCode ledgerParam2 = 0x01 // Require a user confirmation before returning the address
)
// ledgerWallet represents a live USB Ledger hardware wallet.
type ledgerWallet struct {
context *usb.Context // USB context to interface libusb through
hardwareID deviceID // USB identifiers to identify this device type
locationID uint16 // USB bus and address to identify this device instance
url string // Textual URL uniquely identifying this wallet
device *usb.Device // USB device advertising itself as a Ledger wallet
input usb.Endpoint // Input endpoint to send data to this device
output usb.Endpoint // Output endpoint to receive data from this device
failure error // Any failure that would make the device unusable
version [3]byte // Current version of the Ledger Ethereum app (zero if app is offline)
accounts []accounts.Account // List of derive accounts pinned on the Ledger
paths map[common.Address][]uint32 // Known derivation paths for signing operations
quit chan chan error
lock sync.RWMutex
}
// Type implements accounts.Wallet, returning the textual type of the wallet.
func (w *ledgerWallet) Type() string {
return "ledger"
}
// URL implements accounts.Wallet, returning the URL of the Ledger device.
func (w *ledgerWallet) URL() string {
return w.url
}
// Status implements accounts.Wallet, always whether the Ledger is opened, closed
// or whether the Ethereum app was not started on it.
func (w *ledgerWallet) Status() string {
w.lock.RLock()
defer w.lock.RUnlock()
if w.failure != nil {
return fmt.Sprintf("Failed: %v", w.failure)
}
if w.device == nil {
return "Closed"
}
if w.version == [3]byte{0, 0, 0} {
return "Ethereum app not started"
}
return fmt.Sprintf("Ethereum app v%d.%d.%d", w.version[0], w.version[1], w.version[2])
}
// Open implements accounts.Wallet, attempting to open a USB connection to the
// Ledger hardware wallet. The Ledger does not require a user passphrase so that
// is silently discarded.
func (w *ledgerWallet) Open(passphrase string) error {
w.lock.Lock()
defer w.lock.Unlock()
// If the wallet was already opened, don't try to open again
if w.device != nil {
return accounts.ErrWalletAlreadyOpen
}
// Otherwise iterate over all USB devices and find this again (no way to directly do this)
// Iterate over all attached devices and fetch those seemingly Ledger
devices, err := w.context.ListDevices(func(desc *usb.Descriptor) bool {
// Only open this single specific device
return desc.Vendor == w.hardwareID.Vendor && desc.Product == w.hardwareID.Product &&
uint16(desc.Bus)<<8+uint16(desc.Address) == w.locationID
})
if err != nil {
return err
}
// Device opened, attach to the input and output endpoints
device := devices[0]
var invalid string
switch {
case len(device.Descriptor.Configs) == 0:
invalid = "no endpoint config available"
case len(device.Descriptor.Configs[0].Interfaces) == 0:
invalid = "no endpoint interface available"
case len(device.Descriptor.Configs[0].Interfaces[0].Setups) == 0:
invalid = "no endpoint setup available"
case len(device.Descriptor.Configs[0].Interfaces[0].Setups[0].Endpoints) < 2:
invalid = "not enough IO endpoints available"
}
if invalid != "" {
device.Close()
return fmt.Errorf("ledger wallet [%s] invalid: %s", w.url, invalid)
}
// Open the input and output endpoints to the device
input, err := device.OpenEndpoint(
device.Descriptor.Configs[0].Config,
device.Descriptor.Configs[0].Interfaces[0].Number,
device.Descriptor.Configs[0].Interfaces[0].Setups[0].Number,
device.Descriptor.Configs[0].Interfaces[0].Setups[0].Endpoints[1].Address,
)
if err != nil {
device.Close()
return fmt.Errorf("ledger wallet [%s] input open failed: %v", w.url, err)
}
output, err := device.OpenEndpoint(
device.Descriptor.Configs[0].Config,
device.Descriptor.Configs[0].Interfaces[0].Number,
device.Descriptor.Configs[0].Interfaces[0].Setups[0].Number,
device.Descriptor.Configs[0].Interfaces[0].Setups[0].Endpoints[0].Address,
)
if err != nil {
device.Close()
return fmt.Errorf("ledger wallet [%s] output open failed: %v", w.url, err)
}
// Wallet seems to be successfully opened, guess if the Ethereum app is running
w.device, w.input, w.output = device, input, output
w.paths = make(map[common.Address][]uint32)
w.quit = make(chan chan error)
defer func() {
go w.heartbeat()
}()
if _, err := w.deriveAddress(ledgerDerivationPath); err != nil {
// Ethereum app is not running, nothing more to do, return
return nil
}
// Try to resolve the Ethereum app's version, will fail prior to v1.0.2
if w.resolveVersion() != nil {
w.version = [3]byte{1, 0, 0} // Assume worst case, can't verify if v1.0.0 or v1.0.1
}
return nil
}
// heartbeat is a health check loop for the Ledger wallets to periodically verify
// whether they are still present or if they malfunctioned. It is needed because:
// - libusb on Windows doesn't support hotplug, so we can't detect USB unplugs
// - communication timeout on the Ledger requires a device power cycle to fix
func (w *ledgerWallet) heartbeat() {
// Execute heartbeat checks until termination or error
var (
errc chan error
fail error
)
for errc == nil && fail == nil {
// Wait until termination is requested or the heartbeat cycle arrives
select {
case errc = <-w.quit:
// Termination requested
continue
case <-time.After(time.Second):
// Heartbeat time
}
// Execute a tiny data exchange to see responsiveness
w.lock.Lock()
if err := w.resolveVersion(); err == usb.ERROR_IO || err == usb.ERROR_NO_DEVICE {
w.failure = err
fail = err
}
w.lock.Unlock()
}
// In case of error, wait for termination
if fail != nil {
errc = <-w.quit
}
errc <- fail
}
// Close implements accounts.Wallet, closing the USB connection to the Ledger.
func (w *ledgerWallet) Close() error {
// Terminate the health checks
errc := make(chan error)
w.quit <- errc
herr := <-errc // Save for later, we *must* close the USB
// Terminate the device connection
w.lock.Lock()
defer w.lock.Unlock()
if err := w.device.Close(); err != nil {
return err
}
w.device, w.input, w.output, w.paths, w.quit = nil, nil, nil, nil, nil
return herr // If all went well, return any health-check errors
}
// Accounts implements accounts.Wallet, returning the list of accounts pinned to
// the Ledger hardware wallet.
func (w *ledgerWallet) Accounts() []accounts.Account {
w.lock.RLock()
defer w.lock.RUnlock()
cpy := make([]accounts.Account, len(w.accounts))
copy(cpy, w.accounts)
return cpy
}
// Contains implements accounts.Wallet, returning whether a particular account is
// or is not pinned into this Ledger instance. Although we could attempt to resolve
// unpinned accounts, that would be an non-negligible hardware operation.
func (w *ledgerWallet) Contains(account accounts.Account) bool {
w.lock.RLock()
defer w.lock.RUnlock()
_, exists := w.paths[account.Address]
return exists
}
// Derive implements accounts.Wallet, deriving a new account at the specific
// derivation path. If pin is set to true, the account will be added to the list
// of tracked accounts.
func (w *ledgerWallet) Derive(path string, pin bool) (accounts.Account, error) {
w.lock.Lock()
defer w.lock.Unlock()
// If the wallet is closed, or the Ethereum app doesn't run, abort
if w.device == nil || w.version == [3]byte{0, 0, 0} {
return accounts.Account{}, accounts.ErrWalletClosed
}
// All seems fine, convert the user derivation path to Ledger representation
path = strings.TrimPrefix(path, "/")
parts := strings.Split(path, "/")
lpath := make([]uint32, len(parts))
for i, part := range parts {
// Handle hardened paths
if strings.HasSuffix(part, "'") {
lpath[i] = 0x80000000
part = strings.TrimSuffix(part, "'")
}
// Handle the non hardened component
val, err := strconv.Atoi(part)
if err != nil {
return accounts.Account{}, fmt.Errorf("path element %d: %v", i, err)
}
lpath[i] += uint32(val)
}
// Try to derive the actual account and update it's URL if succeeful
address, err := w.deriveAddress(lpath)
if err != nil {
return accounts.Account{}, err
}
account := accounts.Account{
Address: address,
URL: fmt.Sprintf("%s/%s", w.url, path),
}
// If pinning was requested, track the account
if pin {
if _, ok := w.paths[address]; !ok {
w.accounts = append(w.accounts, account)
w.paths[address] = lpath
}
}
return account, nil
}
// SignHash implements accounts.Wallet, however signing arbitrary data is not
// supported for Ledger wallets, so this method will always return an error.
func (w *ledgerWallet) SignHash(acc accounts.Account, hash []byte) ([]byte, error) {
return nil, accounts.ErrNotSupported
}
// SignTx implements accounts.Wallet. It sends the transaction over to the Ledger
// wallet to request a confirmation from the user. It returns either the signed
// transaction or a failure if the user denied the transaction.
//
// Note, if the version of the Ethereum application running on the Ledger wallet is
// too old to sign EIP-155 transactions, but such is requested nonetheless, an error
// will be returned opposed to silently signing in Homestead mode.
func (w *ledgerWallet) SignTx(account accounts.Account, tx *types.Transaction, chainID *big.Int) (*types.Transaction, error) {
w.lock.Lock()
defer w.lock.Unlock()
// Make sure the requested account is contained within
path, ok := w.paths[account.Address]
if !ok {
return nil, accounts.ErrUnknownAccount
}
// Ensure the wallet is capable of signing the given transaction
if chainID != nil && w.version[0] <= 1 && w.version[1] <= 0 && w.version[2] <= 2 {
return nil, fmt.Errorf("Ledger v%d.%d.%d doesn't support signing this transaction, please update to v1.0.3 at least",
w.version[0], w.version[1], w.version[2])
}
return w.sign(path, account.Address, tx, chainID)
}
// SignHashWithPassphrase implements accounts.Wallet, however signing arbitrary
// data is not supported for Ledger wallets, so this method will always return
// an error.
func (w *ledgerWallet) SignHashWithPassphrase(account accounts.Account, passphrase string, hash []byte) ([]byte, error) {
return nil, accounts.ErrNotSupported
}
// SignTxWithPassphrase implements accounts.Wallet, attempting to sign the given
// transaction with the given account using passphrase as extra authentication.
// Since the Ledger does not support extra passphrases, it is silently ignored.
func (w *ledgerWallet) SignTxWithPassphrase(account accounts.Account, passphrase string, tx *types.Transaction, chainID *big.Int) (*types.Transaction, error) {
return w.SignTx(account, tx, chainID)
}
// resolveVersion retrieves the current version of the Ethereum wallet app running
// on the Ledger wallet and caches it for future reference.
//
// The version retrieval protocol is defined as follows:
//
// CLA | INS | P1 | P2 | Lc | Le
// ----+-----+----+----+----+---
// E0 | 06 | 00 | 00 | 00 | 04
//
// With no input data, and the output data being:
//
// Description | Length
// ---------------------------------------------------+--------
// Flags 01: arbitrary data signature enabled by user | 1 byte
// Application major version | 1 byte
// Application minor version | 1 byte
// Application patch version | 1 byte
func (wallet *ledgerWallet) resolveVersion() error {
// Send the request and wait for the response
reply, err := wallet.exchange(ledgerOpGetConfiguration, 0, 0, nil)
if err != nil {
return err
}
if len(reply) != 4 {
return errors.New("reply not of correct size")
}
// Cache the version for future reference
copy(wallet.version[:], reply[1:])
return nil
}
// deriveAddress retrieves the currently active Ethereum address from a Ledger
// wallet at the specified derivation path.
//
// The address derivation protocol is defined as follows:
//
// CLA | INS | P1 | P2 | Lc | Le
// ----+-----+----+----+-----+---
// E0 | 02 | 00 return address
// 01 display address and confirm before returning
// | 00: do not return the chain code
// | 01: return the chain code
// | var | 00
//
// Where the input data is:
//
// Description | Length
// -------------------------------------------------+--------
// Number of BIP 32 derivations to perform (max 10) | 1 byte
// First derivation index (big endian) | 4 bytes
// ... | 4 bytes
// Last derivation index (big endian) | 4 bytes
//
// And the output data is:
//
// Description | Length
// ------------------------+-------------------
// Public Key length | 1 byte
// Uncompressed Public Key | arbitrary
// Ethereum address length | 1 byte
// Ethereum address | 40 bytes hex ascii
// Chain code if requested | 32 bytes
func (w *ledgerWallet) deriveAddress(derivationPath []uint32) (common.Address, error) {
// Flatten the derivation path into the Ledger request
path := make([]byte, 1+4*len(derivationPath))
path[0] = byte(len(derivationPath))
for i, component := range derivationPath {
binary.BigEndian.PutUint32(path[1+4*i:], component)
}
// Send the request and wait for the response
reply, err := w.exchange(ledgerOpRetrieveAddress, ledgerP1DirectlyFetchAddress, ledgerP2DiscardAddressChainCode, path)
if err != nil {
return common.Address{}, err
}
// Discard the public key, we don't need that for now
if len(reply) < 1 || len(reply) < 1+int(reply[0]) {
return common.Address{}, errors.New("reply lacks public key entry")
}
reply = reply[1+int(reply[0]):]
// Extract the Ethereum hex address string
if len(reply) < 1 || len(reply) < 1+int(reply[0]) {
return common.Address{}, errors.New("reply lacks address entry")
}
hexstr := reply[1 : 1+int(reply[0])]
// Decode the hex sting into an Ethereum address and return
var address common.Address
hex.Decode(address[:], hexstr)
return address, nil
}
// sign sends the transaction to the Ledger wallet, and waits for the user to
// confirm or deny the transaction.
//
// The transaction signing protocol is defined as follows:
//
// CLA | INS | P1 | P2 | Lc | Le
// ----+-----+----+----+-----+---
// E0 | 04 | 00: first transaction data block
// 80: subsequent transaction data block
// | 00 | variable | variable
//
// Where the input for the first transaction block (first 255 bytes) is:
//
// Description | Length
// -------------------------------------------------+----------
// Number of BIP 32 derivations to perform (max 10) | 1 byte
// First derivation index (big endian) | 4 bytes
// ... | 4 bytes
// Last derivation index (big endian) | 4 bytes
// RLP transaction chunk | arbitrary
//
// And the input for subsequent transaction blocks (first 255 bytes) are:
//
// Description | Length
// ----------------------+----------
// RLP transaction chunk | arbitrary
//
// And the output data is:
//
// Description | Length
// ------------+---------
// signature V | 1 byte
// signature R | 32 bytes
// signature S | 32 bytes
func (w *ledgerWallet) sign(derivationPath []uint32, address common.Address, tx *types.Transaction, chainID *big.Int) (*types.Transaction, error) {
// We need to modify the timeouts to account for user feedback
defer func(old time.Duration) { w.device.ReadTimeout = old }(w.device.ReadTimeout)
w.device.ReadTimeout = time.Minute
// Flatten the derivation path into the Ledger request
path := make([]byte, 1+4*len(derivationPath))
path[0] = byte(len(derivationPath))
for i, component := range derivationPath {
binary.BigEndian.PutUint32(path[1+4*i:], component)
}
// Create the transaction RLP based on whether legacy or EIP155 signing was requeste
var (
txrlp []byte
err error
)
if chainID == nil {
if txrlp, err = rlp.EncodeToBytes([]interface{}{tx.Nonce(), tx.GasPrice(), tx.Gas(), tx.To(), tx.Value(), tx.Data()}); err != nil {
return nil, err
}
} else {
if txrlp, err = rlp.EncodeToBytes([]interface{}{tx.Nonce(), tx.GasPrice(), tx.Gas(), tx.To(), tx.Value(), tx.Data(), chainID, big.NewInt(0), big.NewInt(0)}); err != nil {
return nil, err
}
}
payload := append(path, txrlp...)
// Send the request and wait for the response
var (
op = ledgerP1InitTransactionData
reply []byte
)
for len(payload) > 0 {
// Calculate the size of the next data chunk
chunk := 255
if chunk > len(payload) {
chunk = len(payload)
}
// Send the chunk over, ensuring it's processed correctly
reply, err = w.exchange(ledgerOpSignTransaction, op, 0, payload[:chunk])
if err != nil {
return nil, err
}
// Shift the payload and ensure subsequent chunks are marked as such
payload = payload[chunk:]
op = ledgerP1ContTransactionData
}
// Extract the Ethereum signature and do a sanity validation
if len(reply) != 65 {
return nil, errors.New("reply lacks signature")
}
signature := append(reply[1:], reply[0])
// Create the correct signer and signature transform based on the chain ID
var signer types.Signer
if chainID == nil {
signer = new(types.HomesteadSigner)
} else {
signer = types.NewEIP155Signer(chainID)
signature[64] = (signature[64]-34)/2 - byte(chainID.Uint64())
}
// Inject the final signature into the transaction and sanity check the sender
signed, err := tx.WithSignature(signer, signature)
if err != nil {
return nil, err
}
sender, err := types.Sender(signer, signed)
if err != nil {
return nil, err
}
if sender != address {
return nil, fmt.Errorf("signer mismatch: expected %s, got %s", address.Hex(), sender.Hex())
}
return signed, nil
}
// exchange performs a data exchange with the Ledger wallet, sending it a message
// and retrieving the response.
//
// The common transport header is defined as follows:
//
// Description | Length
// --------------------------------------+----------
// Communication channel ID (big endian) | 2 bytes
// Command tag | 1 byte
// Packet sequence index (big endian) | 2 bytes
// Payload | arbitrary
//
// The Communication channel ID allows commands multiplexing over the same
// physical link. It is not used for the time being, and should be set to 0101
// to avoid compatibility issues with implementations ignoring a leading 00 byte.
//
// The Command tag describes the message content. Use TAG_APDU (0x05) for standard
// APDU payloads, or TAG_PING (0x02) for a simple link test.
//
// The Packet sequence index describes the current sequence for fragmented payloads.
// The first fragment index is 0x00.
//
// APDU Command payloads are encoded as follows:
//
// Description | Length
// -----------------------------------
// APDU length (big endian) | 2 bytes
// APDU CLA | 1 byte
// APDU INS | 1 byte
// APDU P1 | 1 byte
// APDU P2 | 1 byte
// APDU length | 1 byte
// Optional APDU data | arbitrary
func (w *ledgerWallet) exchange(opcode ledgerOpcode, p1 ledgerParam1, p2 ledgerParam2, data []byte) ([]byte, error) {
// Construct the message payload, possibly split into multiple chunks
var chunks [][]byte
for left := data; len(left) > 0 || len(chunks) == 0; {
// Create the chunk header
var chunk []byte
if len(chunks) == 0 {
// The first chunk encodes the length and all the opcodes
chunk = []byte{0x00, 0x00, 0xe0, byte(opcode), byte(p1), byte(p2), byte(len(data))}
binary.BigEndian.PutUint16(chunk, uint16(5+len(data)))
}
// Append the data blob to the end of the chunk
space := 64 - len(chunk) - 5 // 5 == header size
if len(left) > space {
chunks, left = append(chunks, append(chunk, left[:space]...)), left[space:]
continue
}
chunks, left = append(chunks, append(chunk, left...)), nil
}
// Stream all the chunks to the device
for i, chunk := range chunks {
// Construct the new message to stream
header := []byte{0x01, 0x01, 0x05, 0x00, 0x00} // Channel ID and command tag appended
binary.BigEndian.PutUint16(header[3:], uint16(i))
msg := append(header, chunk...)
// Send over to the device
if glog.V(logger.Core) {
glog.Infof("-> %03d.%03d: %x", w.device.Bus, w.device.Address, msg)
}
if _, err := w.input.Write(msg); err != nil {
return nil, err
}
}
// Stream the reply back from the wallet in 64 byte chunks
var reply []byte
for {
// Read the next chunk from the Ledger wallet
chunk := make([]byte, 64)
if _, err := io.ReadFull(w.output, chunk); err != nil {
return nil, err
}
if glog.V(logger.Core) {
glog.Infof("<- %03d.%03d: %x", w.device.Bus, w.device.Address, chunk)
}
// Make sure the transport header matches
if chunk[0] != 0x01 || chunk[1] != 0x01 || chunk[2] != 0x05 {
return nil, fmt.Errorf("invalid reply header: %x", chunk[:3])
}
// If it's the first chunk, retrieve the total message length
if chunk[3] == 0x00 && chunk[4] == 0x00 {
reply = make([]byte, 0, int(binary.BigEndian.Uint16(chunk[5:7])))
chunk = chunk[7:]
} else {
chunk = chunk[5:]
}
// Append to the reply and stop when filled up
if left := cap(reply) - len(reply); left > len(chunk) {
reply = append(reply, chunk...)
} else {
reply = append(reply, chunk[:left]...)
break
}
}
return reply[:len(reply)-2], nil
}