docs updates

This commit is contained in:
Paul Miller 2023-02-26 18:05:40 +00:00
parent 6bc4b35cf4
commit 9ee694ae23
No known key found for this signature in database
GPG Key ID: 697079DA6878B89B
2 changed files with 27 additions and 23 deletions

@ -5,7 +5,7 @@ Audited & minimal JS implementation of elliptic curve cryptography.
- **noble** family, zero dependencies - **noble** family, zero dependencies
- Short Weierstrass, Edwards, Montgomery curves - Short Weierstrass, Edwards, Montgomery curves
- ECDSA, EdDSA, Schnorr, BLS signature schemes, ECDH key agreement - ECDSA, EdDSA, Schnorr, BLS signature schemes, ECDH key agreement
- #⃣ [hash to curve](https://datatracker.ietf.org/doc/draft-irtf-cfrg-hash-to-curve/) - #⃣ [hash to curve](#abstracthash-to-curve-hashing-strings-to-curve-points)
for encoding or hashing an arbitrary string to an elliptic curve point for encoding or hashing an arbitrary string to an elliptic curve point
- 🧜‍♂️ [Poseidon](https://www.poseidon-hash.info) ZK-friendly hash - 🧜‍♂️ [Poseidon](https://www.poseidon-hash.info) ZK-friendly hash
- 🏎 [Ultra-fast](#speed), hand-optimized for caveats of JS engines - 🏎 [Ultra-fast](#speed), hand-optimized for caveats of JS engines
@ -470,7 +470,7 @@ const x25519 = montgomery({
### abstract/hash-to-curve: Hashing strings to curve points ### abstract/hash-to-curve: Hashing strings to curve points
The module allows to hash arbitrary strings to elliptic curve points. Implements [hash-to-curve v11](https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-hash-to-curve-11). The module allows to hash arbitrary strings to elliptic curve points. Implements [hash-to-curve v16](https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-hash-to-curve-16).
Every curve has exported `hashToCurve` and `encodeToCurve` methods: Every curve has exported `hashToCurve` and `encodeToCurve` methods:
@ -481,7 +481,6 @@ hashToCurve('0102abcd');
console.log(hashToCurve(randomBytes())); console.log(hashToCurve(randomBytes()));
console.log(encodeToCurve(randomBytes())); console.log(encodeToCurve(randomBytes()));
import { bls12_381 } from '@noble/curves/bls12-381'; import { bls12_381 } from '@noble/curves/bls12-381';
bls12_381.G1.hashToCurve(randomBytes(), { DST: 'another' }); bls12_381.G1.hashToCurve(randomBytes(), { DST: 'another' });
bls12_381.G2.hashToCurve(randomBytes(), { DST: 'custom' }); bls12_381.G2.hashToCurve(randomBytes(), { DST: 'custom' });
@ -491,6 +490,8 @@ If you need low-level methods from spec:
`expand_message_xmd` [(spec)](https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-hash-to-curve-11#section-5.4.1) produces a uniformly random byte string using a cryptographic hash function H that outputs b bits. `expand_message_xmd` [(spec)](https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-hash-to-curve-11#section-5.4.1) produces a uniformly random byte string using a cryptographic hash function H that outputs b bits.
Hash must conform to `CHash` interface (see [weierstrass section](#abstractweierstrass-short-weierstrass-curve)).
```ts ```ts
function expand_message_xmd( function expand_message_xmd(
msg: Uint8Array, msg: Uint8Array,
@ -509,13 +510,18 @@ function expand_message_xof(
`hash_to_field(msg, count, options)` [(spec)](https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-hash-to-curve-11#section-5.3) `hash_to_field(msg, count, options)` [(spec)](https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-hash-to-curve-11#section-5.3)
hashes arbitrary-length byte strings to a list of one or more elements of a finite field F. hashes arbitrary-length byte strings to a list of one or more elements of a finite field F.
_ `msg` a byte string containing the message to hash
_ `count` the number of elements of F to output - `msg` a byte string containing the message to hash
_ `options` `{DST: string, p: bigint, m: number, k: number, expand: 'xmd' | 'xof', hash: H}` - `count` the number of elements of F to output
_ Returns `[u_0, ..., u_(count - 1)]`, a list of field elements. - `options` `{DST: string, p: bigint, m: number, k: number, expand: 'xmd' | 'xof', hash: H}`.
- `p` is field prime, m=field extension (1 for prime fields)
- `k` is security target in bits (e.g. 128).
- `expand` should be `xmd` for SHA2, SHA3, BLAKE; `xof` for SHAKE, BLAKE-XOF
- `hash` conforming to `utils.CHash` interface, with `outputLen` / `blockLen` props
- Returns `[u_0, ..., u_(count - 1)]`, a list of field elements.
```ts ```ts
function hash_to_field(msg: Uint8Array, count: number, options: htfOpts): bigint[][]; function hash_to_field(msg: Uint8Array, count: number, options: Opts): bigint[][];
``` ```
### abstract/poseidon: Poseidon hash ### abstract/poseidon: Poseidon hash
@ -586,7 +592,6 @@ const derived = hkdf(sha256, someKey, undefined, 'application', 40); // 40 bytes
const validPrivateKey = mod.hashToPrivateScalar(derived, p256.CURVE.n); const validPrivateKey = mod.hashToPrivateScalar(derived, p256.CURVE.n);
``` ```
### abstract/utils: General utilities ### abstract/utils: General utilities
```ts ```ts

@ -3,16 +3,20 @@ import type { Group, GroupConstructor, AffinePoint } from './curve.js';
import { mod, Field } from './modular.js'; import { mod, Field } from './modular.js';
import { bytesToNumberBE, CHash, concatBytes, utf8ToBytes, validateObject } from './utils.js'; import { bytesToNumberBE, CHash, concatBytes, utf8ToBytes, validateObject } from './utils.js';
/**
* * `DST` is a domain separation tag, defined in section 2.2.5
* * `p` characteristic of F, where F is a finite field of characteristic p and order q = p^m
* * `m` is extension degree (1 for prime fields)
* * `k` is the target security target in bits (e.g. 128), from section 5.1
* * `expand` is `xmd` (SHA2, SHA3, BLAKE) or `xof` (SHAKE, BLAKE-XOF)
* * `hash` conforming to `utils.CHash` interface, with `outputLen` / `blockLen` props
*/
export type Opts = { export type Opts = {
DST: string | Uint8Array; // DST: a domain separation tag, defined in section 2.2.5 DST: string | Uint8Array;
p: bigint; // characteristic of F, where F is a finite field of characteristic p and order q = p^m p: bigint;
m: number; // extension degree of F, m >= 1 m: number;
k: number; // k: the target security level for the suite in bits, defined in section 5.1 k: number;
expand?: 'xmd' | 'xof'; // use a message that has already been processed by expand_message_xmd expand?: 'xmd' | 'xof';
// Hash functions for: expand_message_xmd is appropriate for use with a
// wide range of hash functions, including SHA-2, SHA-3, BLAKE2, and others.
// BBS+ uses blake2: https://github.com/hyperledger/aries-framework-go/issues/2247
// TODO: verify that hash is shake if expand === 'xof' via types
hash: CHash; hash: CHash;
}; };
@ -115,11 +119,6 @@ export function expand_message_xof(
/** /**
* Hashes arbitrary-length byte strings to a list of one or more elements of a finite field F * Hashes arbitrary-length byte strings to a list of one or more elements of a finite field F
* https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-hash-to-curve-11#section-5.3 * https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-hash-to-curve-11#section-5.3
* As for options:
* * `p` is field prime, m=field extension (1 for prime fields)
* * `k` is security target in bits (e.g. 128).
* * `expand` should be `xmd` for SHA2, SHA3, BLAKE; `xof` for SHAKE, BLAKE-XOF
* * `hash` conforming to `utils.CHash` interface, with `outputLen` / `blockLen` props
* @param msg a byte string containing the message to hash * @param msg a byte string containing the message to hash
* @param count the number of elements of F to output * @param count the number of elements of F to output
* @param options `{DST: string, p: bigint, m: number, k: number, expand: 'xmd' | 'xof', hash: H}`, see above * @param options `{DST: string, p: bigint, m: number, k: number, expand: 'xmd' | 'xof', hash: H}`, see above