forked from tornado-packages/noble-curves
abstract/modular: add more comments everywhere
This commit is contained in:
parent
d92c9d14ad
commit
e8b9509c16
@ -75,9 +75,14 @@ export function invert(number: bigint, modulo: bigint): bigint {
|
||||
return mod(x, modulo);
|
||||
}
|
||||
|
||||
// Tonelli-Shanks algorithm
|
||||
// Paper 1: https://eprint.iacr.org/2012/685.pdf (page 12)
|
||||
// Paper 2: Square Roots from 1; 24, 51, 10 to Dan Shanks
|
||||
/**
|
||||
* Tonelli-Shanks square root search algorithm.
|
||||
* 1. https://eprint.iacr.org/2012/685.pdf (page 12)
|
||||
* 2. Square Roots from 1; 24, 51, 10 to Dan Shanks
|
||||
* Will start an infinite loop if field order P is not prime.
|
||||
* @param P field order
|
||||
* @returns function that takes field Fp (created from P) and number n
|
||||
*/
|
||||
export function tonelliShanks(P: bigint) {
|
||||
// Legendre constant: used to calculate Legendre symbol (a | p),
|
||||
// which denotes the value of a^((p-1)/2) (mod p).
|
||||
@ -198,7 +203,7 @@ export function FpSqrt(P: bigint) {
|
||||
// Little-endian check for first LE bit (last BE bit);
|
||||
export const isNegativeLE = (num: bigint, modulo: bigint) => (mod(num, modulo) & _1n) === _1n;
|
||||
|
||||
// Field is not always over prime, Fp2 for example has ORDER(q)=p^m
|
||||
// Field is not always over prime: for example, Fp2 has ORDER(q)=p^m
|
||||
export interface IField<T> {
|
||||
ORDER: bigint;
|
||||
BYTES: number;
|
||||
@ -276,7 +281,10 @@ export function FpPow<T>(f: IField<T>, num: T, power: bigint): T {
|
||||
return p;
|
||||
}
|
||||
|
||||
// 0 is non-invertible: non-batched version will throw on 0
|
||||
/**
|
||||
* Efficiently invert an array of Field elements.
|
||||
* `inv(0)` will return `undefined` here: make sure to throw an error.
|
||||
*/
|
||||
export function FpInvertBatch<T>(f: IField<T>, nums: T[]): T[] {
|
||||
const tmp = new Array(nums.length);
|
||||
// Walk from first to last, multiply them by each other MOD p
|
||||
@ -319,12 +327,12 @@ export function nLength(n: bigint, nBitLength?: number) {
|
||||
|
||||
type FpField = IField<bigint> & Required<Pick<IField<bigint>, 'isOdd'>>;
|
||||
/**
|
||||
* Initializes a galois field over prime. Non-primes are not supported for now.
|
||||
* Do not init in loop: slow. Very fragile: always run a benchmark on change.
|
||||
* Major performance gains:
|
||||
* a) non-normalized operations like mulN instead of mul
|
||||
* b) `Object.freeze`
|
||||
* c) Same object shape: never add or remove keys
|
||||
* Initializes a finite field over prime. **Non-primes are not supported.**
|
||||
* Do not init in loop: slow. Very fragile: always run a benchmark on a change.
|
||||
* Major performance optimizations:
|
||||
* * a) denormalized operations like mulN instead of mul
|
||||
* * b) same object shape: never add or remove keys
|
||||
* * c) Object.freeze
|
||||
* @param ORDER prime positive bigint
|
||||
* @param bitLen how many bits the field consumes
|
||||
* @param isLE (def: false) if encoding / decoding should be in little-endian
|
||||
@ -336,7 +344,7 @@ export function Field(
|
||||
isLE = false,
|
||||
redef: Partial<IField<bigint>> = {}
|
||||
): Readonly<FpField> {
|
||||
if (ORDER <= _0n) throw new Error(`Expected Fp ORDER > 0, got ${ORDER}`);
|
||||
if (ORDER <= _0n) throw new Error(`Expected Field ORDER > 0, got ${ORDER}`);
|
||||
const { nBitLength: BITS, nByteLength: BYTES } = nLength(ORDER, bitLen);
|
||||
if (BYTES > 2048) throw new Error('Field lengths over 2048 bytes are not supported');
|
||||
const sqrtP = FpSqrt(ORDER);
|
||||
@ -400,13 +408,15 @@ export function FpSqrtEven<T>(Fp: IField<T>, elm: T) {
|
||||
}
|
||||
|
||||
/**
|
||||
* FIPS 186 B.4.1-compliant "constant-time" private key generation utility.
|
||||
* Can take (n+8) or more bytes of uniform input e.g. from CSPRNG or KDF
|
||||
* "Constant-time" private key generation utility.
|
||||
* Can take (n + 8) or more bytes of uniform input e.g. from CSPRNG or KDF
|
||||
* and convert them into private scalar, with the modulo bias being negligible.
|
||||
* Needs at least 40 bytes of input for 32-byte private key.
|
||||
* https://research.kudelskisecurity.com/2020/07/28/the-definitive-guide-to-modulo-bias-and-how-to-avoid-it/
|
||||
* FIPS 186-5, A.2 https://csrc.nist.gov/publications/detail/fips/186/5/final
|
||||
* hash-to-curve, https://www.ietf.org/archive/id/draft-irtf-cfrg-hash-to-curve-16.html#name-hashing-to-a-finite-field
|
||||
* @param hash hash output from SHA3 or a similar function
|
||||
* @param groupOrder size of subgroup - (e.g. curveFn.CURVE.n)
|
||||
* @param groupOrder size of subgroup - (e.g. secp256k1.CURVE.n)
|
||||
* @param isLE interpret hash bytes as LE num
|
||||
* @returns valid private scalar
|
||||
*/
|
||||
@ -417,9 +427,12 @@ export function hashToPrivateScalar(
|
||||
): bigint {
|
||||
hash = ensureBytes('privateHash', hash);
|
||||
const hashLen = hash.length;
|
||||
const minLen = nLength(groupOrder).nByteLength + 8;
|
||||
const minLen = nLength(groupOrder).nByteLength + 8; // 8b (64 bits) gives 2^-64 bias
|
||||
// Small numbers aren't supported: need to understand their security / bias story first.
|
||||
// Huge numbers aren't supported for security: it's easier to detect timings of their ops in JS.
|
||||
if (minLen < 24 || hashLen < minLen || hashLen > 1024)
|
||||
throw new Error(`hashToPrivateScalar: expected ${minLen}-1024 bytes of input, got ${hashLen}`);
|
||||
throw new Error(`expected ${minLen}-1024 bytes of input, got ${hashLen}`);
|
||||
const num = isLE ? bytesToNumberLE(hash) : bytesToNumberBE(hash);
|
||||
// `mod(x, 11)` can sometimes produce 0. `mod(x, 10) + 1` is the same, but no 0
|
||||
return mod(num, groupOrder - _1n) + _1n;
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user