
 Citizen Technologies: noble-curves
 Security Assessment

 March 7, 2023

 Prepared for:

 Ryan Shea

 Citizen Technologies

 Prepared by: Joop van de Pol and Opal Wright

 About Trail of Bits

 Founded in 2012 and headquartered in New York, Trail of Bits provides technical security
 assessment and advisory services to some of the world’s most targeted organizations. We
 combine high- end security research with a real -world attacker mentality to reduce risk and
 fortify code. With 100+ employees around the globe, we’ve helped secure critical software
 elements that support billions of end users, including Kubernetes and the Linux kernel.

 We maintain an exhaustive list of publications at https://github.com/trailofbits/publications ,
 with links to papers, presentations, public audit reports, and podcast appearances.

 In recent years, Trail of Bits consultants have showcased cutting-edge research through
 presentations at CanSecWest, HCSS, Devcon, Empire Hacking, GrrCon, LangSec, NorthSec,
 the O’Reilly Security Conference, PyCon, REcon, Security BSides, and SummerCon.

 We specialize in software testing and code review projects, supporting client organizations
 in the technology, defense, and finance industries, as well as government entities. Notable
 clients include HashiCorp, Google, Microsoft, Western Digital, and Zoom.

 Trail of Bits also operates a center of excellence with regard to blockchain security. Notable
 projects include audits of Algorand, Bitcoin SV, Chainlink, Compound, Ethereum 2.0,
 MakerDAO, Matic, Uniswap, Web3, and Zcash.

 To keep up to date with our latest news and announcements, please follow @trailofbits on
 Twitter and explore our public repositories at https://github.com/trailofbits . To engage us
 directly, visit our “Contact” page at https://www.trailofbits.com/contact , or email us at
 info@trailofbits.com .

 Trail of Bits, Inc.
 228 Park Ave S #80688
 New York, NY 10003
 https://www.trailofbits.com
 info@trailofbits.com

 Trail of Bits 1 noble-curves Security Assessment
 PUBLIC

https://github.com/trailofbits/publications
https://twitter.com/trailofbits
https://github.com/trailofbits
https://www.trailofbits.com/contact
mailto:info@trailofbits.com
mailto:info@trailofbits.com

 Notices and Remarks

 Copyright and Distribution
 © 2023 by Trail of Bits, Inc.

 All rights reserved. Trail of Bits hereby asserts its right to be identified as the creator of this
 report in the United Kingdom.

 This report is considered by Trail of Bits to be public information; it is licensed to Citizen
 Technologies under the terms of the project statement of work and has been made public
 at Citizen Technologies’ request. Material within this report may not be reproduced or
 distributed in part or in whole without the express written permission of Trail of Bits.

 The sole canonical source for Trail of Bits publications is the Trail of Bits Publications page .
 Reports accessed through any source other than that page may have been modified and
 should not be considered authentic.

 Test Coverage Disclaimer
 All activities undertaken by Trail of Bits in association with this project were performed in
 accordance with a statement of work and agreed upon project plan.

 Security assessment projects are time-boxed and often reliant on information that may be
 provided by a client, its affiliates, or its partners. As a result, the findings documented in
 this report should not be considered a comprehensive list of security issues, flaws, or
 defects in the target system or codebase.

 Trail of Bits uses automated testing techniques to rapidly test the controls and security
 properties of software. These techniques augment our manual security review work, but
 each has its limitations: for example, a tool may not generate a random edge case that
 violates a property or may not fully complete its analysis during the allotted time. Their use
 is also limited by the time and resource constraints of a project.

 Trail of Bits 2 noble-curves Security Assessment
 PUBLIC

https://github.com/trailofbits/publications

 Table of Contents

 About Trail of Bits 1

 Notices and Remarks 2

 Table of Contents 3

 Executive Summary 5

 Project Summary 6

 Project Goals 7

 Project Targets 8

 Project Coverage 9

 Automated Testing 10

 Codebase Maturity Evaluation 11

 Summary of Findings 13

 Detailed Findings 14

 1. Timing issues 14

 Summary of Recommendations 17

 A. Vulnerability Categories 18

 B. Code Maturity Categories 20

 C. Code Maturity Recommendations 22

 Arithmetic 22

 Complexity Management 22

 Cryptography and Key Management 22

 Documentation 23

 Testing and Verification 24

 D. Analyzing Codebase Evolution 25

 E. Automated Analysis Tool Configuration 26

 Trail of Bits 3 noble-curves Security Assessment
 PUBLIC

 E.1. Semgrep 26

 E.2. CodeQL 26

 F. Supply-Chain Analysis 27

 G. Fix Review Results 28

 Detailed Fix Review Results 29

 Trail of Bits 4 noble-curves Security Assessment
 PUBLIC

 Executive Summary

 Engagement Overview
 Citizen Technologies engaged Trail of Bits to review the security of the noble-curves
 library. From January 27 to February 6, 2023, a team of two consultants conducted a
 security review of the client-provided source code, with two person-weeks of effort. Details
 of the project’s timeline, test targets, and coverage are provided in subsequent sections of
 this report.

 Project Scope
 Our testing efforts were focused on the identification of flaws that could result in a
 compromise of confidentiality, integrity, or availability of the target system. We conducted
 this audit with full knowledge of the system. We had access to the source code and
 documentation. We performed a manual analysis of the source code, aided by static
 analysis tools. At the customer’s request, we also reviewed the noble-curves git repository
 to evaluate its speed of development and risk profile.

 Summary of Findings
 The audit uncovered some flaws that could impact system confidentiality, integrity, or
 availability. A summary of the findings is provided below.

 EXPOSURE ANALYSIS

 Severity Count

 Informational 1

 CATEGORY BREAKDOWN

 Category Count

 Cryptography 1

 Trail of Bits 5 noble-curves Security Assessment
 PUBLIC

 Project Summary

 Contact Information
 The following managers were associated with this project:

 Dan Guido , Account Manager Jeff Braswell , Project Manager
 dan@trailofbits.com jeff.braswell@trailofbits.com

 The following engineers were associated with this project:

 Joop van de Pol , Consultant Opal Wright , Consultant
 joop.vandepol@trailofbits.com opal.wright@trailofbits.com

 Project Timeline
 The significant events and milestones of the project are listed below.

 Date Event

 January 27, 2023 Project kickoff call

 February 7, 2023 Delivery of report draft

 February 8, 2023 Report readout meeting

 March 7, 2023 Delivery of final report

 Trail of Bits 6 noble-curves Security Assessment
 PUBLIC

mailto:dan@trailofbits.com

 Project Goals

 The engagement was scoped to provide a security assessment of the noble-curve library.
 Specifically, we sought to answer the following non-exhaustive list of questions:

 ● Is the integer and elliptic curve arithmetic implemented correctly?

 ○ In particular, is the secp256k1 implementation sound?

 ● Is there a risk that a user could create invalid/unusable elliptic curve keys?

 ● Are there any flaws that would compromise funds in stealth wallets?

 ● Are there any flaws that would compromise anonymity for stealth wallets?

 ● Does the API present serious misuse possibilities?

 ● Are there significant supply-chain risks associated with the library?

 ● Does the speed and recency of development present a security risk?

 ● Is the POSEIDON hash implemented securely?

 ● Are there “specific condition attacks” that could cause problems, such as timing
 attacks?

 Trail of Bits 7 noble-curves Security Assessment
 PUBLIC

 Project Targets

 The engagement involved a review and testing of the following target:

 noble-curves

 Repository https://github.com/paulmillr/noble-curves

 Version 7262b4219f8428dfa39ac4c81b25660ddc6a4614

 Type Typescript library

 Platform Web browser

 Trail of Bits 8 noble-curves Security Assessment
 PUBLIC

 Project Coverage

 This section provides an overview of the analysis coverage of the review, as determined by
 our high-level engagement goals. Our approaches include the following:

 ● Manual review of relevant portions of the codebase

 ● Use of static analysis tools to identify common errors

 ● Review of the GitHub repository commit history

 ● Dependency review

 Coverage Limitations
 Because of the time-boxed nature of testing work, it is common to encounter coverage
 limitations. The following list outlines the coverage limitations of the engagement and
 indicates system elements that may warrant further review:

 ● Curves other than secp256k1, including Montgomery and Edwards arithmetic

 ● Security of dependencies (large-integer arithmetic and random-number generation)

 ● Pairing functionality

 ● Hash-to-curve functions other than POSEIDON

 Trail of Bits 9 noble-curves Security Assessment
 PUBLIC

 Automated Testing

 Trail of Bits uses automated techniques to extensively test the security properties of
 software. We use both open-source static analysis and fuzzing utilities, along with tools
 developed in house, to perform automated testing of source code and compiled software.

 Test Harness Configuration
 We used the following tools in the automated testing phase of this project:

 Tool Description Policy

 Semgrep An open-source static analysis tool for finding bugs and
 enforcing code standards when editing or committing code
 and during build time

 Appendix E.1

 CodeQL A code analysis engine developed by GitHub to automate
 security checks

 Appendix E.2

 Trail of Bits 10 noble-curves Security Assessment
 PUBLIC

https://codeql.github.com/

 Codebase Maturity Evaluation

 Trail of Bits uses a traffic-light protocol to provide each client with a clear understanding of
 the areas in which its codebase is mature, immature, or underdeveloped. Deficiencies
 identified here often stem from root causes within the software development life cycle that
 should be addressed through standardization measures (e.g., the use of common libraries,
 functions, or frameworks) or training and awareness programs.

 Category Summary Result

 Arithmetic Finite field and elliptic curve arithmetic appears to be
 well implemented. We found some opportunities for
 speed-ups and timing mitigation discussed in Appendix
 C .

 Strong

 Auditing Logging is not part of this library. Not
 Applicable

 Authentication /
 Access Controls

 Authentication and access control are not parts of this
 library.

 Not
 Applicable

 Complexity
 Management

 The code is mostly well divided into separate modules
 with intuitive names and reasonable functionalities.
 There are some exceptions, as discussed in Appendix C .

 There are some instances of duplicated code, as
 discussed in Appendix C .

 Moderate

 Cryptography
 and Key
 Management

 Signature generation and validation appear to be
 correctly handled, including edge cases.

 Interpreted, garbage-collected languages like JavaScript
 and TypeScript make it difficult to clear private key data;
 see comments in Appendix C .

 Satisfactory

 Data Handling The codebase contains frequent calls to the
 assertValidity function to validate that points are
 correctly formed and on-curve, including in commonly

 Strong

 Trail of Bits 11 noble-curves Security Assessment
 PUBLIC

 used construction functions like fromHex . Specifically, all
 functions that convert library input data to curve points
 (and vice versa for output data) call assertValidity .

 Documentation The codebase contains significant inline documentation.
 Static analysis showed that some inline function
 documentation did not match the associated functions
 (for instance, variables were renamed). See Appendix C
 for details.

 Satisfactory

 Memory Safety
 and Error
 Handling

 There are 187 throw statements, but only eight catch
 statements. Most functions allow exceptions to
 propagate up, but some explicitly catch and convert
 lower-level exceptions. Consider designating a preferred
 exception handling method, then documenting
 exceptions when needed.

 Satisfactory

 Testing and
 Verification

 The library includes an extensive test suite covering all of
 its provided functionality. The test suite includes
 verification of standard test vectors (including but not
 limited to Wycheproof), both positive and negative test
 cases, and test cases targeting curve-specific
 functionality. The test coverage is high, but a few
 improvements can be made; see comments in Appendix
 C .

 Strong

 Trail of Bits 12 noble-curves Security Assessment
 PUBLIC

 Summary of Findings

 The table below summarizes the findings of the review, including type and severity details.

 ID Title Type Severity

 1 Timing issues Cryptography Informational

 Trail of Bits 13 noble-curves Security Assessment
 PUBLIC

 Detailed Findings

 1. Timing issues

 Severity: Informational Difficulty: Undetermined

 Type: Cryptography Finding ID: TOB-CTNC-1

 Target: src/abstract/curve.ts

 Description
 The library provides a scalar multiplication routine that aims to keep the number of
 BigInteger operations constant, in order to be (close to) constant-time. However, there
 are some locations in the implementation where timing differences can cause issues:

 ● Pre-computed point look-up during scalar multiplication (figure 1.1)
 ● Second part of signature generation
 ● Tonelli-Shanks square root computation

 // Check if we're onto Zero point.
 // Add random point inside current window to f.
 const offset1 = offset;
 const offset2 = offset + Math .abs(wbits) - 1 ; // -1 because we skip zero
 const cond1 = window % 2 !== 0 ;
 const cond2 = wbits < 0 ;
 if (wbits === 0) {
 // The most important part for const-time getPublicKey
 f = f.add(constTimeNegate(cond1, precomputes[offset1]));

 } else {
 p = p.add(constTimeNegate(cond2, precomputes[offset2]));

 }

 Figure 1.1: Pre-computed point lookup during scalar multiplication
 (noble-curves/src/abstract/curve.ts:117–128)

 The scalar multiplication routine comprises a loop, part of which is shown in Figure 1.1.
 Each iteration adds a selected pre-computed point to the accumulator p (or to the dummy
 accumulator f if relevant scalar bits are all zero). However, the array access to select the
 appropriate pre-computed point is not constant-time.

 Figure 1.2 shows how the implementation computes the second half of an ECDSA
 signature.

 Trail of Bits 14 noble-curves Security Assessment
 PUBLIC

https://github.com/paulmillr/noble-curves/blob/7262b4219f8428dfa39ac4c81b25660ddc6a4614/src/abstract/curve.ts#L117-L128

 const s = modN(ik * modN(m + modN(d * r))); // s = k^-1(m + rd) mod n

 Figure 1.2: Generation of the second part of the signature
 (noble-curves/src/abstract/weierstrass.ts:988)

 First, the private key is multiplied by the first half of the signature and reduced modulo the
 group order. Next, the message digest is added and the result is again reduced modulo the
 group order. If the modulo operation is not constant-time, and if an attacker can detect this
 timing difference, they can perform a lattice attack to recover the signing key. The details of
 this attack are described in the TCHES 2019 article by Ryan . Note that the article does not
 show that this timing difference attack can be practically exploited, but instead mounts a
 cache-timing attack to exploit it.

 FpSqrt is a function that computes square roots of quadratic residues over . Based on 𝐹
 𝑝

 the value of , this function chooses one of several sub-algorithms, including 𝑝
 Tonelli-Shanks. Some of these algorithms are constant-time with respect to , but some are 𝑝
 not. In particular, the implementation of the Tonelli-Shanks algorithm has a high degree of
 timing variability.

 The FpSqrt function is used to decode compressed point representations, so it can
 influence timing when handling potentially sensitive or adversarial data.

 Most texts consider Tonelli-Shanks the “fallback” algorithm when a faster or simpler
 algorithm is unavailable. However, Tonelli-Shanks can be used for any prime modulus . 𝑝
 Further, Tonelli-Shanks can be made constant time for a given value of . 𝑝

 Timing leakage threats can be reduced by modifying the Tonelli-Shanks code to run in
 constant time (see here), and making the constant-time implementation the default square
 root algorithm. Special-case algorithms can be broken out into separate functions (whether
 constant- or variable-time), for use when the modulus is known to work, or timing attacks
 are not a concern.

 Exploit Scenario
 An attacker interacts with a user of the library and measures the time it takes to execute
 signature generation or ECDH key exchange. In the case of static ECDH, the attacker may
 provide different public keys to be multiplied with the static private key of the library user.
 In the case of ECDSA, the attacker may get the user to repeatedly sign the same message,
 which results in scalar multiplications on the base point using the same deterministically
 generated nonce. The attacker can subsequently average the obtained execution times for
 operations with the same input to gain more precise timing estimates.

 Then, the attacker uses the obtained execution times to mount a timing attack:

 Trail of Bits 15 noble-curves Security Assessment
 PUBLIC

https://github.com/paulmillr/noble-curves/blob/7262b4219f8428dfa39ac4c81b25660ddc6a4614/src/abstract/weierstrass.ts#L988
https://tches.iacr.org/index.php/TCHES/article/view/7337/6509
https://eprint.iacr.org/2020/1497.pdf

 ● In the case of ECDSA, the attacker may attempt to mount the attack from the TCHES
 2019 article by Ryan . However, it is unknown whether this attack will work in
 practice when based purely on timing.

 ● In the case of static ECDH, the attacker may attempt to mount a recursive attack,
 similar to the attacks described in the Cardis 1998 article by Dhem et al. or the JoCE
 2013 article by Danger et al. Note that the timing differences caused by the
 precomputed point look-up may not be sufficient to mount such a timing attack. The
 attacker would need to find other timing differences, such as differences in the
 point addition routines based on one of the input points. The fact that the library
 uses a complete addition formula increases the difficulty, but there could still be
 timing differences caused by the underlying big integer arithmetic.

 Determining whether such timing attacks are practically applicable to the library (and how
 many executions they would need) requires a large number of measurements on a
 dedicated benchmarking system, which was not done as part of this engagement.

 Recommendations
 Short term, consider adding scalar randomization to primitives where the same private
 scalar can be used multiple times, such as ECDH and deterministic ECDSA. To mitigate the
 attack from the TCHES 2019 article by Ryan , consider either blinding the private scalar in 𝑑
 the signature computation or removing the modular reduction of , i.e., 𝑑 · 𝑟

 . 𝑠 = 𝑚𝑜𝑑𝑁 (𝑖𝑘 * 𝑚𝑜𝑑𝑁 (𝑚 + 𝑑 * 𝑟))

 Long term, ensure that all low-level operations are constant-time.

 References
 ● Return of the Hidden Number Problem, Ryan, TCHES 2019

 ● A Practical Implementation of the Timing Attack, Dhem et al., Cardis 1998

 ● A synthesis of side-channel attacks on elliptic curve cryptography in smart-cards,
 Danger et al., JoCE 2013

 Trail of Bits 16 noble-curves Security Assessment
 PUBLIC

https://tches.iacr.org/index.php/TCHES/article/view/7337/6509
https://tches.iacr.org/index.php/TCHES/article/view/7337/6509
https://link.springer.com/chapter/10.1007/10721064_15
https://link.springer.com/article/10.1007/s13389-013-0062-6
https://link.springer.com/article/10.1007/s13389-013-0062-6
https://tches.iacr.org/index.php/TCHES/article/view/7337/6509
https://tches.iacr.org/index.php/TCHES/article/view/7337/6509
https://link.springer.com/chapter/10.1007/10721064_15
https://link.springer.com/article/10.1007/s13389-013-0062-6
https://link.springer.com/article/10.1007/s13389-013-0062-6

 Summary of Recommendations

 The noble-curves library is a work in progress with multiple planned iterations. Trail of
 Bits recommends that the developers address the findings detailed in this report and take
 the following additional steps prior to deployment:

 ● Invest time in policy development. Documentation and test policies provide a useful
 layer of checks to see if a new function or module is ready to be integrated: is it
 documented properly, and does it have good tests that cover both happy and
 unhappy paths? Especially as more developers contribute to the development, it will
 be important to ensure that their contributions meet the project's high standards.

 ● Invest time in “tidying” tasks such as finding duplicated functions, separating
 unrelated functions into different modules, and cleaning up documentation. This
 will reduce attack surface, make analysis easier, and help prevent library misuse
 down the road.

 Trail of Bits 17 noble-curves Security Assessment
 PUBLIC

 A. Vulnerability Categories

 The following tables describe the vulnerability categories, severity levels, and difficulty
 levels used in this document.

 Vulnerability Categories

 Category Description

 Access Controls Insufficient authorization or assessment of rights

 Auditing and Logging Insufficient auditing of actions or logging of problems

 Authentication Improper identification of users

 Configuration Misconfigured servers, devices, or software components

 Cryptography A breach of system confidentiality or integrity

 Data Exposure Exposure of sensitive information

 Data Validation Improper reliance on the structure or values of data

 Denial of Service A system failure with an availability impact

 Error Reporting Insecure or insufficient reporting of error conditions

 Patching Use of an outdated software package or library

 Session Management Improper identification of authenticated users

 Testing Insufficient test methodology or test coverage

 Timing Race conditions or other order-of-operations flaws

 Undefined Behavior Undefined behavior triggered within the system

 Trail of Bits 18 noble-curves Security Assessment
 PUBLIC

 Severity Levels

 Severity Description

 Informational The issue does not pose an immediate risk but is relevant to security best
 practices.

 Undetermined The extent of the risk was not determined during this engagement.

 Low The risk is small or is not one the client has indicated is important.

 Medium User information is at risk; exploitation could pose reputational, legal, or
 moderate financial risks.

 High The flaw could affect numerous users and have serious reputational, legal,
 or financial implications.

 Difficulty Levels

 Difficulty Description

 Undetermined The difficulty of exploitation was not determined during this engagement.

 Low The flaw is well known; public tools for its exploitation exist or can be
 scripted.

 Medium An attacker must write an exploit or will need in-depth knowledge of the
 system.

 High An attacker must have privileged access to the system, may need to know
 complex technical details, or must discover other weaknesses to exploit this
 issue.

 Trail of Bits 19 noble-curves Security Assessment
 PUBLIC

 B. Code Maturity Categories

 The following tables describe the code maturity categories and rating criteria used in this
 document.

 Code Maturity Categories

 Category Description

 Arithmetic The proper use of mathematical operations and semantics

 Auditing The use of event auditing and logging to support monitoring

 Authentication /
 Access Controls

 The use of robust access controls to handle identification and
 authorization and to ensure safe interactions with the system

 Complexity
 Management

 The presence of clear structures designed to manage system complexity,
 including the separation of system logic into clearly defined functions

 Cryptography and
 Key Management

 The safe use of cryptographic primitives and functions, along with the
 presence of robust mechanisms for key generation and distribution

 Documentation The presence of comprehensive and readable codebase documentation

 Memory Safety
 and Error Handling

 The presence of memory safety and robust error-handling mechanisms

 Testing and
 Verification

 The presence of robust testing procedures (e.g., unit tests, integration
 tests, and verification methods) and sufficient test coverage

 Rating Criteria

 Rating Description

 Strong No issues were found, and the system exceeds industry standards.

 Satisfactory Minor issues were found, but the system is compliant with best practices.

 Moderate Some issues that may affect system safety were found.

 Weak Many issues that affect system safety were found.

 Missing A required component is missing, significantly affecting system safety.

 Not Applicable The category is not applicable to this review.

 Trail of Bits 20 noble-curves Security Assessment
 PUBLIC

 Not Considered The category was not considered in this review.

 Further
 Investigation
 Required

 Further investigation is required to reach a meaningful conclusion.

 Trail of Bits 21 noble-curves Security Assessment
 PUBLIC

 C. Code Maturity Recommendations

 Trail of Bits recommends the following steps to enhance code maturity.

 Arithmetic
 In FpIsSquare , the result is based on calculating the Legendre symbol of the input with
 respect to the modulus. The Jacobi symbol is faster to compute, and equivalent to the
 Legendre symbol when the modulus is prime.

 The advantage of the Legendre symbol is that it runs in constant time for a given modulus.
 The downside is that it is significantly slower than the Jacobi symbol. The standard
 algorithm for computing the Jacobi symbol does not run in constant time, but recent
 algorithmic improvements have made constant-time Jacobi symbol computations possible.

 If the FpIsSquare function turns out to be a bottleneck in practice, it may be worth
 implementing the constant-time Jacobi symbol algorithm for a speedup.

 Complexity Management
 As noted in the Code Maturity Evaluation, the functions modules are, in the main, cleanly
 and logically laid out. There are a few exceptions, however.

 First, in weierstrass.ts , there is an implementation of the HMAC-DRBG construction
 from NIST SP800-90. HMAC-DRBG is a high-quality random number generator, and its use
 for digital signatures is a good design choice. However, the implementation of the DRBG
 likely belongs elsewhere; it has no significant relationship to the elliptic curve arithmetic the
 weierstrass.ts file is meant to implement. It may be better in utils.ts or possibly
 even integrated into the noble-hashes library.

 Second, there are several places where square root functionality is duplicated throughout
 the code. FpSqrt is implemented in modular.ts , and square root functions are also
 present in bls12-381.ts and ed25519.ts .

 Cryptography and Key Management
 Private keys are formatted in different ways at different points throughout the codebase.
 Memory behavior in interpreted languages is never guaranteed, so zeroization is a hard
 problem in TypeScript/JavaScript.

 However, on some systems, the underlying memory of UInt8Array objects (which are one
 of the data types used to store keys) is effectively a thin layer on top of C-style data buffers.
 Consider zeroizing keys that are stored as UInt8Array objects.

 Trail of Bits 22 noble-curves Security Assessment
 PUBLIC

https://eprint.iacr.org/2021/1271.pdf
https://eprint.iacr.org/2021/1271.pdf

 Documentation
 The library contains many useful comments for users and developers. However, there are
 several instances where comments are outdated or incorrect. This section summarizes
 these instances.

 Most functions contain comments that describe the parameters and return values.
 However, the following functions (in the parts of the library covered by the audit) have
 comments listing parameters that have either been renamed or removed, or list only some
 but not all parameters:

 ● precompute , multiply , and sign in weierstrass.ts
 ● wNAF in curve.ts
 ● schnorrSign in secp256k1.ts

 In general, not all functions use the same structured approach to describe their parameters
 and return values. We recommend unifying the approach and using it consistently for all
 functions.

 Additionally, some comments appear to be incorrect. For example:

 ● For the function precomputeWindow in curve.ts , a comment states that for a
 window size of 8, the number of precomputed points is 65,536. This number
 depends on the curve size, and the actual formula corresponding to the
 implementation is , where is the ceiling function, is the 2 𝑊 − 1 · (𝑛 / 𝑊 [] + 1) .[] 𝑊
 window size, and is the bitlength of the curve order. Therefore, for a 256-bit curve 𝑛
 and window size 8, the number of precomputed points is . 128 · 33 = 4224

 ● For the function wNAF in curve.ts , a comment states that the function will fail if the
 scalar is larger than the group order. However, the precomputed windows should
 cover at least all scalars of bit lengths up to . For a 256-bit 𝑊 · (𝑛 / 𝑊 [] + 1) − 2
 curve with window size 8, this corresponds to bits. A 264-bit 8 · 33 − 2 = 262
 scalar with the most-significant bit set would fail, because there is no pre-computed
 window to process the carry. A 263-bit scalar with the most-significant bit set may
 fail in case a carry propagates, resulting in the same issue.

 ● The same function contains a comment regarding the accumulators f and p and the
 infinity point. The accumulator f is initialized to the base point, and for every
 window where the scalar is all-zero, the first precomputed point (i.e., not a random
 point, as stated in the comment) of this window is added to it or subtracted from it.
 Similarly, the accumulator p is initialized to the point at infinity, and for every
 window where the scalar is non-zero, the corresponding precomputed point of this
 window is added to it or subtracted from it. Because the windows do not overlap, it
 is not possible for a precomputed point in a window to cancel out (a sum of)
 precomputed points of earlier windows. Therefore, the only way to obtain the point
 at infinity is when the scalar processed so far corresponds to a multiple of the group
 order (including zero). In any case, the accumulator p is initialized to the point at

 Trail of Bits 23 noble-curves Security Assessment
 PUBLIC

 infinity, so the first addition into p will always need to deal with the point at infinity.
 This should not be a problem, because a complete addition formula is used.

 ● In general, the usage of wNAF to describe the implemented scalar multiplication
 algorithm is slightly confusing. In a usual wNAF implementation, only a single
 window is precomputed and the scalar is processed in a left-to-right manner, with
 corresponding doubling of the accumulator(s), where additional zeroes are skipped.
 In this implementation, fixed windows are used, and all fixed windows are
 precomputed (i.e., each [multiple of]-bit shift of the initial window). 𝑊

 We recommend clarifying these comments to prevent confusion.

 Testing and Verification
 The tests included in the library achieve a high test coverage. However, some functions are
 still not covered. The following list includes the untested functions in the parts of the library
 covered by the audit:

 ● addRecoveryBit , normalizeS , and toCompactRawBytes in weierstrass.ts
 ● FpDiv and FpSqrtOdd in modular.ts

 We recommend adding test cases for each function (both positive and negative test cases,
 if applicable).

 Automated testing also found that the pow method is defined twice for Field<T> in
 modular.ts , on lines 225 and 238.

 In addition, the library takes user input in the form of elliptic curve points and (potentially)
 DER-encoded signatures. We recommend adding fuzzing test cases for all functions taking
 such user input, in order to determine whether the library exhibits any unexpected
 behavior for particular edge cases.

 Trail of Bits 24 noble-curves Security Assessment
 PUBLIC

 D. Analyzing Codebase Evolution

 The noble-curves codebase has undergone consistent evolution since its initial commit
 on December 4, 2022. The commit history shows a consistent pattern of frequent, small
 changes. These changes are all made by Paul Miller, the library author and maintainer.

 Our analysis focused on commit hash 7262b4219f8428dfa39ac4c81b25660ddc6a4614 .
 Between that commit (made on January 26) and the time of this analysis (February 7), there
 have been an additional 19 commits to the noble-curves codebase. Most commits are
 small, and some deal with administrative tasks such as updating library versions for
 developer dependencies.

 Ignoring the commits related to the README files and administrative tasks, the median
 commit during this interval added 32 lines of code and removed 21. There are some
 outliers, like commit c75129e629c46c5bdc222be93af1e5943eac4ee3 , which added 179
 lines and deleted 207, but the vast majority of the changes made to the codebase are small
 and confined to two or fewer files.

 The small-but-frequent commit approach is a double-edged sword for security analysis.
 Tracking lots of commits can be tricky, especially in distributed development scenarios
 where changes can overlap, but smaller commits are easier to analyze. Larger, less
 frequent commits are easier to track, but require more effort to analyze.

 On the whole, we believe the small-but-frequent approach is best in this case. Only one
 developer is active on the project at the moment (so development is mostly linear), and the
 commits are centralized to a single place (so they are easy to track). Assuming the changes
 are appropriately tested before committing, this approach can be helpful to secure
 development and easier ongoing review.

 One example of this analysis-easing approach comes from commits
 dbb16b0e5ee86a660347f8527896cfd5c4f0623f and
 e57aec63d8fbbc32eea966c85bca9cc66df321e9 . In the first commit, an
 assertValidity function was added for Edwards curves. In the second commit—made
 the same day—a typo and a minor logical bug in the same function were fixed. The first
 commit was logical, legible, and well documented. The second commit was limited in its
 purpose, and obvious in its result.

 It is also worth noting that the noble-curves commit messages are concise and
 descriptive, giving good, high-level overviews of the associated changes. Good commit
 messages can help security reviewers with triage and analysis; good documentation helps
 with good security.

 Trail of Bits 25 noble-curves Security Assessment
 PUBLIC

 E. Automated Analysis Tool Configuration

 E.1. Semgrep
 We used Semgrep to identify known vulnerabilities in the codebase, but did not identify any
 issues. The command used to run Semgrep was semgrep --config auto .

 E.2. CodeQL
 We used CodeQL to identify known vulnerabilities in the TypeScript/JavaScript codebase,
 but we did not identify any security issues. The commands used to run this tool are shown
 in the figure below.

 # Create the TypeScript database
 codeql database create codeql --language=javascript --source-root=noble-curves-main
 # Run all JavaScript and TypeScript queries
 codeql database analyze codeql --format=sarif-latest
 --output=codeql_tob_javascript.sarif -- tob-javascript-all.qls

 Figure E.1: The commands used to run CodeQL on the noble-curves codebase

 Trail of Bits 26 noble-curves Security Assessment
 PUBLIC

 F. Supply-Chain Analysis

 noble-curves lists one main dependency: the noble-hashes library, a project led by the
 same developer as noble-curves . The noble-hashes library lists no non-development
 dependencies.

 noble-curves relies on some built-in functionality provided by the JavaScript
 environment, such as random number generation. However, we consider a compromised
 JavaScript interpreter to be outside the scope of a supply-chain attack.

 Assuming that noble-hashes is provided by a reliable source, noble-curves is
 well-protected from supply-chain attacks in production .

 Supply-chain attacks against the development environment are more difficult to analyze.
 There are several development dependencies for both libraries. Several of the
 dependencies (including micro-bmark and micro-should) are zero-dependency libraries
 maintained by the author of noble-curves .

 Some libraries, like prettier , are developed and maintained outside of the closed
 ecosystem in which noble-curves and noble-hashes are developed, and those libraries
 can have significant exposure to supply-chain attacks.

 A number of JavaScript package managers allow downloaded packages to run custom
 installation commands. It is possible that a malicious package could be downloaded while
 setting up development dependencies, allowing the attacker to modify files within the
 developer's local copy of the noble-curves repository. If the malicious modifications were
 then committed and pushed, the noble-curves library could be compromised.

 Several tools are available to help prevent supply-chain attacks. Tools like it-depends can
 help build a picture of the overall supply-chain exposure by tracing dependencies and
 providing a full list of packages associated with a dependency. If using npm , the npm audit
 command can alert developers that selected packages rely on known-vulnerable or
 known-malicious library versions.

 Trail of Bits 27 noble-curves Security Assessment
 PUBLIC

https://github.com/trailofbits/it-depends

 G. Fix Review Results

 When undertaking a fix review, Trail of Bits reviews the fixes implemented for issues
 identified in the original report. This work involves a review of specific areas of the source
 code and system configuration, not comprehensive analysis of the system.

 On February 17 2023, Trail of Bits reviewed the fixes and mitigations implemented by the
 noble-curves team for the issues identified in this report. We reviewed each fix to
 determine its effectiveness in resolving the associated issue.

 In summary, the noble-curves team partially resolved the timing issues described in this
 report, and fully resolved several code maturity considerations. For additional information,
 please see the Detailed Fix Review Results below.

 ID Title Severity Status

 1 Timing issues Informational Partially
 resolved

 Trail of Bits 28 noble-curves Security Assessment
 PUBLIC

 Detailed Fix Review Results
 TOB-CTNC-1: Timing issues
 Partially resolved.

 Blinding has been implemented to mitigate timing attacks during signature generation.
 Comments note that underlying large-arithmetic code may not be constant time, and thus
 may still leak some information.

 FpSqrt remains unchanged, but may be updated in the future. Per the development team:

 Wontfix for now. Square root works with public data: decompressing public keys, etc. It is
 not used with private data. Our Jacobi implementation increases speed by 8% while
 massively increasing complexity. We will leave this as-is.

 Access to pre-computed point lookup tables remains unchanged. Per the development
 team:

 Wontfix. True, however, every new window does not intersect the old one. So second
 window cannot hit cached item from first window. It’s only possible if some array items
 were cached long-term, but that seems unlikely judging from the enormous amounts of
 data that would overwrite the cache.

 Code maturity improvements:
 Jacobi symbol computations were investigated. As noted in the comments for TOB-CTNC-1 ,
 the increased complexity of the Jacobi symbol code was not worth the increase in speed.

 The HMAC-DRBG code has been moved to utils.js , improving code structure.

 Tests have been added to cover the functions addRecoveryBit , normalizeS ,
 toCompactRawBytes , FpDiv , and FpSqrtOdd . As a result, all functions within the scope of
 this code audit are now covered by tests.

 Developers have used the cryptofuzz tool to fuzz the library. We have not reviewed the
 results.

 Documentation for several of the functions we identified has been updated and clarified,
 addressing some outdated information and reducing the risk of user error.

 Other considerations
 The documentation for the library has been updated to include discussion of
 dependencies, including developer dependencies. The risks and mitigations are laid out
 clearly, giving contributors a clear understanding of the supply-chain risks.

 Trail of Bits 29 noble-curves Security Assessment
 PUBLIC

