
Audit of Micro-Starknet

Starkware

04 septembre 2023

Version: 1

Presented by:

Kudelski Security Research Team

Kudelski Security - Nagravision Sàrl

Corporate Headquarters

Route de Genève, 22-24

1033 Cheseaux-sur-Lausanne

Switzerland

For public release

Starkware | Audit of Micro-Starknet

04 septembre 2023

TABLE OF CONTENTS

1 EXECUTIVE SUMMARY 4

1.1 Engagement Scope . 4

1.2 Engagement Analysis . 5

1.3 Issue Summary List . 5

2 TECHNICAL DETAILS OF SECURITY FINDINGS 7

2.1 KS-SBCF-F-01: Hash function is not second image resistant 7

2.2 KS-SBCF-F-02: No check on Poseidon MDS matrix generation 8

2.3 KS-SBCF-F-03: Hardcoded power map for undefined inputs 10

2.4 KS-SBCF-F-04: Possible infinite loop in Tonelli-Shanks implementation . . 12

2.5 KS-SBCF-F-05: Pedersen hash is not time constant 15

2.6 KS-SBCF-F-06: The Poseidon round constant generation is not following

the specifications . 15

2.7 KS-SBCF-F-07: reversePartialPowIdx can be used to apply the non-linear

layer to the first element of the state and to the last one 17

2.8 KS-SBCF-F-08: weierstrass: Bias in random private key generation 19

3 OTHER OBSERVATIONS 21

3.1 KS-SBCF-O-01: Missing security policy 21

3.2 KS-SBCF-O-02: Lack of parameters generation documentation. 21

3.3 KS-SBCF-O-03: Invalid signature test are commented 22

3.4 KS-SBCF-O-04: Undefined and unused field Fp253 in Poseidon hash . . . 23

3.5 KS-SBCF-O-05: Improvement: Add support for domain separation in Po-

seidon . 23

3.6 KS-SBCF-O-06: Improvement: Poseidon permutation optmization 24

3.7 KS-SBCF-O-07: The Poseidon implementation doesn’t abort when the

number of full rounds is odd . 24

3.8 KS-SBCF-O-08: Not constant-time arithmetic methods in noble-curves . . 25

3.9 KS-SBCF-O-09: Inconsistent results from batch inversion 27

4 APPENDIX A: ABOUT KUDELSKI SECURITY 29

5 APPENDIX B: METHODOLOGY 30

5.1 Kickoff . 30

5.2 Ramp-up . 30

© 2023 Nagravision Sàrl / All rights reserved.

For public release

Page 2 of 35

Starkware | Audit of Micro-Starknet

04 septembre 2023

5.3 Review . 31

5.4 Reporting . 32

5.5 Verify . 33

5.6 Additional Note . 33

6 APPENDIX C: SEVERITY RATING DEFINITIONS 34

REFERENCES 35

© 2023 Nagravision Sàrl / All rights reserved.

For public release

Page 3 of 35

Starkware | Audit of Micro-Starknet

04 septembre 2023

1 EXECUTIVE SUMMARY

Kudelski Security (“Kudelski”, “we”), the cybersecurity division of the Kudelski Group,

was engaged by Starkware (“the Client”) to conduct an external security assessment in

the form of a code audit of the cryptographic library Micro-Starknet (“the Product”). The

assessment was conducted remotely by the Kudelski Security Team and coordinated by

Sylvain Pelissier, Cryptography Expert and Antonio De La Piedra, Senior Cybersecurity

Engineer. The audit took place from July 11, 2023 to July 25, 2023 and involved 10

person-days of work. The audit focused on the following objectives:

• To provide a professional opinion on the maturity, adequacy, and efficiency of

the software solution in exam.

• To check compliance with existing standards.

• To identify potential security or interoperability issues and include improvement

recommendations based on the result of our analysis.

This report summarizes the analysis performed and findings. It also contains detailed

descriptions of the discovered vulnerabilities and recommendations for remediation.

1.1 Engagement Scope

The scope of the audit was a code audit of Micro-Starknet written in Typescript. Starknet

provides Zero-knowledge rollups built on top of the Ethereum blockchain. It allows to

optimize changes on the layer 1 blockchain by providing a summary of the changes

and a proof that the changes were valid. Micro-Starknet is a library implementing

the Starknet cryptography used for key generation, signature verification, and hash

computation. The audit was done with particular attention to the safe implementation

of hashing, randomness generation, protocol verification, and the potential for misuse

and leakage of secrets.

The target of the audit was the cryptographic code located in the micro-starknet Github

repository: https://github.com/paulmillr/micro-starknet. We audited the commit

number: 07b25e9997b45a0c0d83ced2c0272306143f0660. Particular attention was

given to side-channel attacks and in particular constant timeness.

© 2023 Nagravision Sàrl / All rights reserved.

For public release

Page 4 of 35

https://github.com/paulmillr/micro-starknet

Starkware | Audit of Micro-Starknet

04 septembre 2023

1.2 Engagement Analysis

The engagement consisted of a ramp-up phase where the necessary documentation

about the technological standards and design of the solution in exam was acquired,

followed by a manual inspection of the code provided by the Client and the drafting of

this report.

As a result of ourwork, we have identified 1High, 3Medium, 4 Low and 9 Informational

findings.

High Medium Low Informational
Severity

N
um

be
r o

f i
ss

ue
s

1

3

4

9
Issue severity distribution

1.3 Issue Summary List

The following security issues were found:

ID Severity Finding Status

KS-SBCF-F-01 High Hash function is not second image

resistant

Remediated

KS-SBCF-F-02 Medium No check on Poseidon MDS matrix

generation

Acknowl-

edged

KS-SBCF-F-03 Medium Hardcoded power map for undefined

inputs

Remediated

© 2023 Nagravision Sàrl / All rights reserved.

For public release

Page 5 of 35

Starkware | Audit of Micro-Starknet

04 septembre 2023

ID Severity Finding Status

KS-SBCF-F-04 Medium Possible infinite loop in Tonelli-Shanks

implementation

Remediated

KS-SBCF-F-05 Low Pedersen hash is not time constant Acknowl-

edged

KS-SBCF-F-06 Low The Poseidon round constant generation is

not following the specifications

Acknowl-

edged

KS-SBCF-F-07 Low reversePartialPowIdx can be used to apply

the non-linear layer to the first element of

the state and to the last one

Acknowl-

edged

KS-SBCF-F-08 Low weierstrass: Bias in random private key

generation

Remediated

The following are observations related to general design and improvements:

ID Severity Finding

KS-SBCF-O-01 Informational Missing security policy

KS-SBCF-O-02 Informational Lack of parameters generation documentation.

KS-SBCF-O-03 Informational Invalid signature test are commented

KS-SBCF-O-04 Informational Undefined and unused field Fp253 in Poseidon

hash

KS-SBCF-O-05 Informational Improvement: Add support for domain separation

in Poseidon

KS-SBCF-O-06 Informational Improvement: Poseidon permutation optmization

KS-SBCF-O-07 Informational The Poseidon implementation doesn’t abort when

the number of full rounds is odd

KS-SBCF-O-08 Informational Not constant-time arithmetic methods in

noble-curves

KS-SBCF-O-09 Informational Inconsistent results from batch inversion

© 2023 Nagravision Sàrl / All rights reserved.

For public release

Page 6 of 35

Starkware | Audit of Micro-Starknet

04 septembre 2023

2 TECHNICAL DETAILS OF SECURITY FINDINGS

This section contains the technical details of our findings as well as recommendations

for mitigation.

2.1 KS-SBCF-F-01: Hash function is not second image resistant

Severity: High

Status: Remediated

Location: micro-starknet/index.ts:165

Description

The function hashChain is built upon the Pedersen hash function and used to hash an

array of values. According to the documentation [4], the hash chain is used to compute

the contract storage address of a variable. However, the hashChain function does not

include the length of the data neither the starting value in the hash computation. Thus,

is prone to second pre-image attack. Here is a proof of concept:

> var starknet = require('micro-starknet');

undefined

> h1 = starknet.hashChain([1, 2, 3])

'0x5d9d62d4040b977c3f8d2389d494e4e89a96a8b45c44b1368f1cc6ec541891 ⌋

5'↪

> h3 = starknet.hashChain([1, "0x5774fa77b3d843ae9167abd61cf80365 ⌋

a9b2b02218fc2f628494b5bdc9b33b8"])↪

'0x5d9d62d4040b977c3f8d2389d494e4e89a96a8b45c44b1368f1cc6ec541891 ⌋

5'↪

> h1 === h2

true

We added the resulting hash of the array [2,3] in the the second array and we obtain

a second pre-image of for the array [1,2,3]. Even though the malleability is limited, it

allows an attacker to compute the same storage address for two different variables.

This property is undesirable for this feature.

© 2023 Nagravision Sàrl / All rights reserved.

For public release

Page 7 of 35

Starkware | Audit of Micro-Starknet

04 septembre 2023

Recommendation

Implement the Array hashing method as define in the Hash functions documentation

[5] and how it is done with computeHashOnElements function. The previous example

can also be added to the tests to avoid regressions.

Status details

The function was removed from the library in version 0.3.0.

2.2 KS-SBCF-F-02: No check on Poseidon MDS matrix generation

Severity: Medium

Status: Acknowledged

Location: micro-starknet/index.ts:245

Description

The current implementation of Poseidon does not rely on the methods and validation

checks provided by the authors of Poseidon [7] for creating the MDS matrix utilized in

the linear layer. Further, the following method is provided for creating alternative MDS

matrices:

// NOTE : doesn't check eiginvalues and possible can create unsafe

matrix. But any filtration here will break compatibility with

starknet

↪

↪

// Please use only if you really know what you doing.

// https://eprint.iacr.org/2019/458.pdf Section 2.3 (Avoiding

Insecure Matrices)↪

export function _poseidonMDS(Fp: IField<bigint>, name: string, m:

number, attempt = 0) {↪

const x_values: bigint[] = [];

const y_values: bigint[] = [];

for (let i = 0; i < m; i++) {

x_values.push(poseidonRoundConstant(Fp, `x`, attempt * m +

i));↪

y_values.push(poseidonRoundConstant(Fp, `y`, attempt * m +

i));↪

© 2023 Nagravision Sàrl / All rights reserved.

For public release

Page 8 of 35

https://github.com/paulmillr/scure-starknet/releases/tag/0.3.0

Starkware | Audit of Micro-Starknet

04 septembre 2023

}

if (new Set([...x_values, ...y_values]).size !== 2 * m)

throw new Error('X and Y values are not distinct');

return x_values.map((x) => y_values.map((y) => Fp.inv(Fp.sub(x,

y))));↪

}

The MDS matrix is part of the linear layer of the Poseidon permutation. The different

checks described in [7] are not performed during the generation, it is possible to end

up using insecure MDS matrices. Moreover, this could result in an implementation of

the Poseidon hash that is vulnerable to cryptanalytic attacks.

The _poseidonMDS function is utilized every time poseidonCreate is called:

export function poseidonCreate(opts: PoseidonOpts, mdsAttempt = 0)

{↪

const m = opts.rate + opts.capacity;

if (!Number.isSafeInteger(mdsAttempt)) throw new Error(`Wrong

mdsAttempt=`);↪

return poseidonBasic(opts, _poseidonMDS(opts.Fp, 'HadesMDS', m,

mdsAttempt));↪

}

Recommendation

We recommend the Client to rely on the recommendations in the papers for generating

safe MDS matrices as well as using the scripts created by the authors of Poseidon,

available at https://extgit.iaik.tugraz.at/krypto/hadeshash/-/blob/master/code/ge

nerate_params_poseidon.sage. That would mean to implement the algorithm_1,

algorithm_2 and algorithm_3methods utilized in the generate_matrix function

of the script.

Status details

Not fixed.

© 2023 Nagravision Sàrl / All rights reserved.

For public release

Page 9 of 35

https://extgit.iaik.tugraz.at/krypto/hadeshash/-/blob/master/code/generate_params_poseidon.sage
https://extgit.iaik.tugraz.at/krypto/hadeshash/-/blob/master/code/generate_params_poseidon.sage

Starkware | Audit of Micro-Starknet

04 septembre 2023

2.3 KS-SBCF-F-03: Hardcoded power map for undefined inputs

Severity: Medium

Status: Remediated

Location: noble-curves/src/abstract/poseidon.ts:28

Description

The option validation function validateOpts defined in the noble-curves implementa-

tion for Poseidon choses a power map 𝛼 = 5 when the exponent is not defined.

let sboxPower = opts.sboxPower;

if (sboxPower === undefined) sboxPower = 5;

if (typeof sboxPower !== 'number' ||

!Number.isSafeInteger(sboxPower))↪

throw new Error(`Poseidon wrong sboxPower=`);

const _sboxPower = BigInt(sboxPower);

let sboxFn = (n: bigint) => FpPow(Fp, n, _sboxPower);

// Unwrapped sbox power for common cases (195->142μs)

if (sboxPower === 3) sboxFn = (n: bigint) => Fp.mul(Fp.sqrN(n),

n);↪

else if (sboxPower === 5) sboxFn = (n: bigint) =>

Fp.mul(Fp.sqrN(Fp.sqrN(n)), n);↪

However, arithmetization-oriented constructions such as Poseidon [7], which relies on

power maps, require that the exponent 𝛼 satisfies gcd(𝛼, 𝑝 − 1) = 1. For that reason,
the validation function must not create a non-linear layer for a parameter 𝛼 = 5 that is

not suitable for a field 𝑝. That would mean using a parameter that doesn’t guarantee

invertibility and that might not provide non-linearity.

Particularly, for the Starkware curve field 𝑝 = 2251 + 17 ⋅ 2192 + 1, a value of 5 for

the exponent would be an invalid exponent, since gcd(5, 𝑝 − 1) = 5. For instance, in
Python:

>>> import math

>>> p = 2**251+17*2**192+1

>>> math.gcd(5, p-1)

© 2023 Nagravision Sàrl / All rights reserved.

For public release

Page 10 of 35

Starkware | Audit of Micro-Starknet

04 septembre 2023

5

Further, for clarity, we also recommend the Client to elaborate on the following com-

ment:

// Default is 5, but by some reasons stark uses 3

Recommendation

We recommend the client to perform an exhaustive parameter validation procedure

to instantiate the Poseidon hash function, abort in case of incorrect and/or undefined

parameters and never default to a power map.

Further, the reference implementation of Poseidon (available at https://extgit.iaik.tugr

az.at/krypto/zkfriendlyhashzoo/-/blob/master/plain_impls/src/poseidon/poseidon.rs),

prohibits values for 𝛼 different from [3, 5, 7]. We recommend the client to restrict the

values the power map exponent can take:

fn sbox_p(&self, input: &S) -> S {

let mut input2 = *input;

input2.square();

match self.params.d {

3 => {

let mut out = input2;

out.mul_assign(input);

out

}

5 => {

let mut out = input2;

out.square();

out.mul_assign(input);

out

}

7 => {

let mut out = input2;

out.square();

© 2023 Nagravision Sàrl / All rights reserved.

For public release

Page 11 of 35

https://extgit.iaik.tugraz.at/krypto/zkfriendlyhashzoo/-/blob/master/plain_impls/src/poseidon/poseidon.rs
https://extgit.iaik.tugraz.at/krypto/zkfriendlyhashzoo/-/blob/master/plain_impls/src/poseidon/poseidon.rs

Starkware | Audit of Micro-Starknet

04 septembre 2023

out.mul_assign(&input2);

out.mul_assign(input);

out

}

_ => {

panic!()

}

}

}

Status details

Fixed, sboxPower is limited to 3, 5, 7 and the default value 5was removed in noble-curves

1.2.0

2.4 KS-SBCF-F-04: Possible infinite loop in Tonelli-Shanks imple-

mentation

Severity: Medium

Status: Remediated

Location: noble-curves/src/abstract/modular.ts:121

Description

The Tonneli-Shanks algorithm assumed that 𝑝 is a prime number to be able to finish

the computation. However, if 𝑝 is not prime, the algorithm may enter in an infinite loop.

The current implementation can enter into an infinite loop for certain parameters e.g.

> mod = await import('@noble/curves/abstract/modular')

> mod.FpSqrt(BigInt(1), BigInt(0))

[Infinite loop]

In addition the finite field constructor does not check that 𝑝 is prime thus this problem

can be trigger through this interface:

© 2023 Nagravision Sàrl / All rights reserved.

For public release

Page 12 of 35

https://github.com/paulmillr/noble-curves/releases/tag/1.2.0
https://github.com/paulmillr/noble-curves/releases/tag/1.2.0

Starkware | Audit of Micro-Starknet

04 septembre 2023

> Fp = mod.Field(12n)

> Fp.sqrt(7n)

[Infinite loop]

Since the code doesn’t validate if the parameter P is not prime nor odd and the following

while loop is executed for ever:

© 2023 Nagravision Sàrl / All rights reserved.

For public release

Page 13 of 35

Starkware | Audit of Micro-Starknet

04 septembre 2023

while (!Fp.eql(b, Fp.ONE)) {

if (Fp.eql(b, Fp.ZERO)) return Fp.ZERO; //

https://en.wikipedia.org/wiki/Tonelli%E2%80%93Shanks_

algorithm (4. If t = 0, return r = 0)

↪

↪

// Find m such b^(2^m)==1

let m = 1;

for (let t2 = Fp.sqr(b); m < r; m++) {

if (Fp.eql(t2, Fp.ONE)) break;

t2 = Fp.sqr(t2); // t2 *= t2

}

// NOTE : r-m-1 can be bigger than 32, need to convert to

bigint before shift, otherwise there will be overflow↪

const ge = Fp.pow(g, _1n << BigInt(r - m - 1)); // ge =

2^(r-m-1)↪

g = Fp.sqr(ge); // g = ge * ge

x = Fp.mul(x, ge); // x *= ge

b = Fp.mul(b, g); // b *= g

r = m;

}

This problem which leads to a denial of service in Tonneli-Shanks implementations, is

known and has been first detected in OpenSSL https://www.openssl.org/news/secadv/

20220315.txt and in the Go cryptography library https://github.com/golang/go/issues/

51747.

Recommendation

We recommend the Client to catch invalid parameters P to avoid an infinite loop situation

in critical code depending on noble-curves.

Status details

The issue has been documented and library mentions the input must be a prime. The

primeness check is not done in the library for performance since provable primally test

is slow.

© 2023 Nagravision Sàrl / All rights reserved.

For public release

Page 14 of 35

https://www.openssl.org/news/secadv/20220315.txt
https://www.openssl.org/news/secadv/20220315.txt
https://github.com/golang/go/issues/51747
https://github.com/golang/go/issues/51747

Starkware | Audit of Micro-Starknet

04 septembre 2023

2.5 KS-SBCF-F-05: Pedersen hash is not time constant

Severity: Low

Status: Acknowledged

Location: micro-starknet/index.ts:202

Description

The function pedersenSingle implements a double and add scalar multiplication

with precomputed value. Each time the value bit is one an additional point addition is

performed. This is not time constant and the time difference depends directly on the

input value.

let x = pedersenArg(value);

let x = pedersenArg(value);

for (let j = 0; j < 252; j++) {

const pt = constants[j];

if (pt.equals(point)) throw new Error('Same point');

if ((x & 1n) !== 0n) point = point.add(pt);

x >>= 1n;

}

Even though we did not find any usage where the input of the Pedersen hash is secret

if this library is used in this way, a timing attack may be done to recover the input value.

Recommendation

To have a time constant function, a fake point addition may be added. At least the time

sensitivity of the function should be documented to avoid misusage in the future.

Status details

A comment was added that mentions it’s not constant time.

2.6 KS-SBCF-F-06: The Poseidon round constant generation is not

following the specifications

Severity: Low

© 2023 Nagravision Sàrl / All rights reserved.

For public release

Page 15 of 35

Starkware | Audit of Micro-Starknet

04 septembre 2023

Status: Acknowledged

Location: micro-starknet/index.ts:240

Description

According to [7], the Poseidon round constants are generated using the Grain LFSR

taking as parameters, the number of rounds, the type and the size of the field and the

SBox number. It makes the round constants unique per Poseidon instances.

In the repository, the Poseidon round constants are generated via theposeidonRoundConstant

function as the SHA256 hash of a string and the S-Box index:

function poseidonRoundConstant(Fp: IField<bigint>, name: string,

idx: number) {↪

const val = Fp.fromBytes(sha256(utf8ToBytes(`${name}${idx}`)));

return Fp.create(val);

}

This function is called inside poseidonBasic with the string "Hades":

for (let i = 0; i < rounds; i++) {

const row = [];

for (let j = 0; j < m; j++)

row.push(poseidonRoundConstant(opts.Fp, 'Hades', m * i +

j));

↪

↪

roundConstants.push(row);

}

This leads to deviation of the hash function which does not follow the paper specification

and generate constants which stay the same between different instances of the hash

function. It also makes harder for independent implementations to be compatible with

Starknet.

Recommendation

The round constants and matrices should be generated using the Grain LFSR. The

authors of Poseidon have made available the implementation of the Grain LFSR and of

© 2023 Nagravision Sàrl / All rights reserved.

For public release

Page 16 of 35

Starkware | Audit of Micro-Starknet

04 septembre 2023

the methods for generating round constants at https://extgit.iaik.tugraz.at/krypto/h

adeshash/-/blob/master/code/generate_params_poseidon.sage. Consequently,

the correct manner of generating the round constants for Poseidon relies on the Grain

LFSR, defined in the script. We recommend the Client to follow the recommendations

of the authors of the Poseidon paper for generating the round constants as the authors

claimed in the paper: “Indeed, letting the attacker freely choose round constants and/or

matrices can lead to attacks”

Status details

Not fixed.

2.7 KS-SBCF-F-07: reversePartialPowIdx can be used to apply the

non-linear layer to the first element of the state and to the last

one

Severity: Low

Status: Acknowledged

Location: micro-starknet/index.ts:292 and noble-curves/src/abstract/poseidon.ts:24

and 82

Description

In order to select the the position of the state where the sbox is applied in a partial

round, the parameter reversePartialPowIdx is used, being the position t-1 for a

value true, that is, for Poseidon using the starkware curve, and the position 0 otherwise.

export function poseidon(opts: PoseidonOpts) {

const { t, Fp, rounds, sboxFn, reversePartialPowIdx } =

validateOpts(opts);↪

const halfRoundsFull = Math.floor(opts.roundsFull / 2);

const partialIdx = reversePartialPowIdx ? t - 1 : 0;

const poseidonRound = (values: bigint[], isFull: boolean, idx:

number) => {↪

values = values.map((i, j) => Fp.add(i,

opts.roundConstants[idx][j]));↪

© 2023 Nagravision Sàrl / All rights reserved.

For public release

Page 17 of 35

https://extgit.iaik.tugraz.at/krypto/hadeshash/-/blob/master/code/generate_params_poseidon.sage
https://extgit.iaik.tugraz.at/krypto/hadeshash/-/blob/master/code/generate_params_poseidon.sage

Starkware | Audit of Micro-Starknet

04 septembre 2023

if (isFull) values = values.map((i) => sboxFn(i));

else values[partialIdx] = sboxFn(values[partialIdx]);

The parameter reversePartialPowIdx is set to true for Poseidon in index.ts:292:

const res: Partial<PoseidonFn> = poseidon({

...opts,

t: m,

sboxPower: 3,

reversePartialPowIdx: true, // Why?!

mds,

roundConstants,

});

However, the first element of the state is used instead in the reference imple-

mentation of Poseidon at https://extgit.iaik.tugraz.at/krypto/zkfriendlyhashzoo/-

/blob/master/plain_impls/src/poseidon/poseidon.rs:

pub fn permutation_not_opt(&self, input: &[S]) -> Vec<S> {

let t = self.params.t;

assert_eq!(input.len(), t);

let mut current_state = input.to_owned();

for r in 0..self.params.rounds_f_beginning {

current_state = self.add_rc(¤t_state,

&self.params.round_constants[r]);↪

current_state = self.sbox(¤t_state);

current_state = self.matmul(¤t_state,

&self.params.mds);↪

}

let p_end = self.params.rounds_f_beginning +

self.params.rounds_p;↪

for r in self.params.rounds_f_beginning..p_end {

current_state = self.add_rc(¤t_state,

&self.params.round_constants[r]);↪

© 2023 Nagravision Sàrl / All rights reserved.

For public release

Page 18 of 35

https://extgit.iaik.tugraz.at/krypto/zkfriendlyhashzoo/-/blob/master/plain_impls/src/poseidon/poseidon.rs#L37
https://extgit.iaik.tugraz.at/krypto/zkfriendlyhashzoo/-/blob/master/plain_impls/src/poseidon/poseidon.rs#L37

Starkware | Audit of Micro-Starknet

04 septembre 2023

current_state[0] = self.sbox_p(¤t_state[0]);

current_state = self.matmul(¤t_state,

&self.params.mds);↪

}

for r in p_end..self.params.rounds {

current_state = self.add_rc(¤t_state,

&self.params.round_constants[r]);↪

current_state = self.sbox(¤t_state);

current_state = self.matmul(¤t_state,

&self.params.mds);↪

}

current_state

}

It is not clear why Starkware allows to apply the non-linear layer in internal rounds to

the first element of the state and to the last one.

Recommendation

• Clarify in the source code and documentation why the reversePartialPowIdx

is required in the Poseidon implementation.

• Add more information to the following comment:

reversePartialPowIdx: true, // Why?!

Status details

Not fixed.

2.8 KS-SBCF-F-08: weierstrass: Bias in random private key genera-

tion

Severity: Low

Status: Remediated

Location: noble/curves/src/abstract/weierstrass.ts:848

© 2023 Nagravision Sàrl / All rights reserved.

For public release

Page 19 of 35

Starkware | Audit of Micro-Starknet

04 septembre 2023

Description

The function randomPrivateKey generates a random number between 0 and the

curve order. To achieve that, a random number in [0, 2(log2(𝑝))+64)[is generated and

then reduced modulus the order of the curve.

randomPrivateKey: (): Uint8Array => {

const rand = CURVE.randomBytes(Fp.BYTES + 8);

const num = mod.hashToPrivateScalar(rand, CURVE_ORDER);

return ut.numberToBytesBE(num, CURVE.nByteLength);

},

According to [6] this gives give a number with a bias of about 1
264 . The implementation

is based on the FIPS 186-4 [1] Appendix B.4.1 called “Key Pair Generation Using Extra

Random Bits”. However this algorithm has been replaced in FIPS 186-5 [3] in Appendix

A.2.1. The new algorithm define the extra bits to add before the modular reduction

only for specific curves and it does not apply for the Starknet curve. The function is

not currently used by the micro-starknet library but may be used by a user to generate

their keys and thus would lead to value generated non-uniformly with a bias bigger

than the level of security requires.

Recommendation

Use a larger number of random bytes like Fp.BYTES + Fp.BYTES/2 before the mod-

ular reduction to keep the same level of security as the curve.

Status details

The issue have been reported to themaintainer of noble-curves and corrected in version

1.2.0. The bias is now 2−128 and matches curve security level.

© 2023 Nagravision Sàrl / All rights reserved.

For public release

Page 20 of 35

Starkware | Audit of Micro-Starknet

04 septembre 2023

3 OTHER OBSERVATIONS

This section contains additional observations that are not directly related to the security

of the code, and as such have no severity rating or remediation status summary. These

observations are either minor remarks regarding good practice or design choices or

related to implementation and performance. These items do not need to be remediated

for what concerns security, but where applicable we include recommendations.

3.1 KS-SBCF-O-01: Missing security policy

Description

Currently there is no instructions for how to report a security vulnerability nor security

contacts regarding the repository .

Recommendation

Create a SECURITY.md file in the root directory with all the necessary information.

See for example: https://docs.github.com/en/code-security/getting-started/adding-a-

security-policy-to-your-repository or the SECURITY.md file of https://github.com/paul-

millr/noble-curves

Status details

A SECURITY.md have been added.

3.2 KS-SBCF-O-02: Lack of parameters generation documentation.

Location: https://docs.starkware.co/starkex/pedersen-hash-function.html

Description

The Pedersen hash uses five different points on the curve. This is critical to ensure that

they have been generated in a way that nobody knows the discrete logarithm of one

point regarding another [2]. The documentation gives only the point values without

any further explanation.

© 2023 Nagravision Sàrl / All rights reserved.

For public release

Page 21 of 35

Starkware | Audit of Micro-Starknet

04 septembre 2023

Recommendation

According to the script https://github.com/starkware-libs/starkex-for-spot-

trading/blob/master/src/starkware/crypto/starkware/crypto/signature/noth-

ing_up_my_sleeve_gen.py, the parameters of the Pedersen hash are generated from

the constant 𝜋. The x-coordinate of each point is a chunk of 76 decimal digit of 𝜋
modulo 𝑝. If it is a quadratic residue then the point is valid else the x-coordinate

coordinate is incremented by one.

This method of generated points should be described in the documentation and ex-

plained how it avoid to know the discrete logarithm between each points.

Status details

The generated points have been commented.

3.3 KS-SBCF-O-03: Invalid signature test are commented

Location: src/test/stark.test.js:66

Description

A lot of test regarding invalid rejection signature are commented in the test file

stark.test.js. For example, there is a test with a message bigger that the curve order:

// Test invalid message length.

expect(() =>

starkwareCrypto.verify(maxStarkKey,

maxMsgHash.add(oneBn).toString(16), {↪

r: maxR,

s: maxS

})

Recommendation

Those tests make sense and should be added back to the test suite to avoid regression.

© 2023 Nagravision Sàrl / All rights reserved.

For public release

Page 22 of 35

Starkware | Audit of Micro-Starknet

04 septembre 2023

Status details

Test have been brought back and allowed to spot invalid signature verification cases

which have been fixed as well.

3.4 KS-SBCF-O-04: Undefined and unused field Fp253 in Poseidon

hash

Location: src/index.ts:233

Description

The Poseidon hash parameters also include an alternative field Fp253:

// Poseidon hash

export const Fp253 = Field(

BigInt('1447401115466452523141539525558112625263979425378637176 ⌋

6033694892385558855681')↪

); // 2^253 + 2^199 + 1

which is not defined and not used in the current implementation.

Recommendation

Since the current provided parameters for the default field, Fp251 could be different

for the Fp253 field, we recommend the Client to provided specific parameters and

documentation for this field too.

Status details

The field has been removed.

3.5 KS-SBCF-O-05: Improvement: Add support for domain separa-

tion in Poseidon

Description

The Client could support a domain separation parameter in the Poseidon implementa-

tion. The authors of [7] suggest the support of a domain separation in Poseidon hash

© 2023 Nagravision Sàrl / All rights reserved.

For public release

Page 23 of 35

Starkware | Audit of Micro-Starknet

04 septembre 2023

implementation for applications that require different instances of the hashing function.

They propose to encode it in the capacity element in Section 4.2.

3.6 KS-SBCF-O-06: Improvement: Poseidon permutation optmiza-

tion

Description

The authors of [7] proposed an efficient implementation of the permutation in Appendix

B that the client could adopt. The approach is based on reducing the size of the round

constants utilized in each partial round. The Client could rely on the permutation

function of the Poseidon reference implementation available at https://extgit.iaik.tugr

az.at/krypto/zkfriendlyhashzoo/-/blob/master/plain_impls/src/poseidon/poseidon.rs,

line 22.

3.7 KS-SBCF-O-07: The Poseidon implementation doesn’t abort

when the number of full rounds is odd

Location: noble-curves/src/abstract/poseidon.ts:82

Description

The Poseidon implementation performs the Math.floor operator on the division by 2

of the number of full rounds (opts.roundsFull).

export function poseidon(opts: PoseidonOpts) {

const { t, Fp, rounds, sboxFn, reversePartialPowIdx } =

validateOpts(opts);↪

const halfRoundsFull = Math.floor(opts.roundsFull / 2);

Then:

let round = 0;

// Apply r_f/2 full rounds.

for (let i = 0; i < halfRoundsFull; i++) values =

poseidonRound(values, true, round++);↪

// Apply r_p partial rounds.

for (let i = 0; i < opts.roundsPartial; i++) values =

poseidonRound(values, false, round++);↪

© 2023 Nagravision Sàrl / All rights reserved.

For public release

Page 24 of 35

https://extgit.iaik.tugraz.at/krypto/zkfriendlyhashzoo/-/blob/master/plain_impls/src/poseidon/poseidon.rs
https://extgit.iaik.tugraz.at/krypto/zkfriendlyhashzoo/-/blob/master/plain_impls/src/poseidon/poseidon.rs

Starkware | Audit of Micro-Starknet

04 septembre 2023

// Apply r_f/2 full rounds.

for (let i = 0; i < halfRoundsFull; i++) values =

poseidonRound(values, true, round++);↪

On the other hand, the reference implementation enforces that the number of full

rounds is even when validating the parameters at https://extgit.iaik.tugraz.at/krypto/zkf

riendlyhashzoo/-/blob/master/plain_impls/src/poseidon/poseidon_params.rs at line 35:

impl<S: PrimeField> PoseidonParams<S> {

#[allow(clippy::too_many_arguments)]

pub fn new(

t: usize,

d: usize,

rounds_f: usize,

rounds_p: usize,

mds: &[Vec<S>],

round_constants: &[Vec<S>],

) -> Self {

assert!(d == 3 || d == 5 || d == 7);

assert_eq!(mds.len(), t);

assert_eq!(rounds_f % 2, 0);

let r = rounds_f / 2;

Since having an odd number of full rounds couldmean that the parameters for Poseidon

are wrong, we recommend the Client to warn the user and/or abort in this case.

Status details

validateOpts is now checked.

3.8 KS-SBCF-O-08: Not constant-time arithmetic methods in noble-

curves

Location: noble-curves/src/abstract/modular.ts:24

© 2023 Nagravision Sàrl / All rights reserved.

For public release

Page 25 of 35

https://extgit.iaik.tugraz.at/krypto/zkfriendlyhashzoo/-/blob/master/plain_impls/src/poseidon/poseidon_params.rs
https://extgit.iaik.tugraz.at/krypto/zkfriendlyhashzoo/-/blob/master/plain_impls/src/poseidon/poseidon_params.rs

Starkware | Audit of Micro-Starknet

04 septembre 2023

Description

There are several methods at modular.ts that are not constant time:

• Modular exponentiation:

/**

* Efficiently raise num to power and do modular division.

* Unsafe in some contexts: uses ladder, so can expose bigint

bits.↪

* @example

* pow(2n, 6n, 11n) // 64n % 11n == 9n

*/

// TODO : use field version && remove

export function pow(num: bigint, power: bigint, modulo: bigint):

bigint {↪

if (modulo <= _0n || power < _0n) throw new Error('Expected

power/modulo > 0');↪

if (modulo === _1n) return _0n;

let res = _1n;

while (power > _0n) {

if (power & _1n) res = (res * num) % modulo;

num = (num * num) % modulo;

power >>= _1n;

}

return res;

}

• Field exponentiation:

// Generic field functions

export function FpPow<T>(f: IField<T>, num: T, power: bigint): T {

// Should have same speed as pow for bigints

// TODO : benchmark!

if (power < _0n) throw new Error('Expected power > 0');

if (power === _0n) return f.ONE;

if (power === _1n) return num;

© 2023 Nagravision Sàrl / All rights reserved.

For public release

Page 26 of 35

Starkware | Audit of Micro-Starknet

04 septembre 2023

let p = f.ONE;

let d = num;

while (power > _0n) {

if (power & _1n) p = f.mul(p, d);

d = f.sqr(d);

power >>= _1n;

}

return p;

}

Status details

The issue was documented.

3.9 KS-SBCF-O-09: Inconsistent results from batch inversion

Location: src/abstract/modular.ts:280

Description

Modular library implements the batch modular inversion to speed up the modular

inversion of element lists. However the handling of error seems inconsistent with the

inv function which invert a single element. For example, the inversion of 0 gives an

exception with inv:

> starknet.Fp251.inv(0n)

Uncaught:

Error: invert: expected positive integers, got n=0 mod=36185027...

Whereas with invertBatch it gives a list containing an empty item without raising any

exception:

> starknet.Fp251.invertBatch([1n,0n,2n])

[

1n,

<1 empty item>,

© 2023 Nagravision Sàrl / All rights reserved.

For public release

Page 27 of 35

Starkware | Audit of Micro-Starknet

04 septembre 2023

18092513...936010241n

]

But inverting a multpiple of the prime raise an exception:

> starknet.Fp251.invertBatch([1n, 36185027...72020481n])

Uncaught:

Error: invert: expected positive integers, got n=0 mod=36185027...

The behavior of the function seems confusing and is prone to further error when

implementing elliptic curve arithmetic.

Recommendation

The invertBatch function should behave like the inv function to avoid confusion.

Status details

The issue was documented but not fixed. It is left to the user to throw an error for

incorrect values.

© 2023 Nagravision Sàrl / All rights reserved.

For public release

Page 28 of 35

Starkware | Audit of Micro-Starknet

04 septembre 2023

4 APPENDIX A: ABOUT KUDELSKI SECURITY

Kudelski Security is an innovative, independent Swiss provider of tailored cyber and

media security solutions to enterprises and public sector institutions. Our team of

security experts delivers end-to-end consulting, technology, managed services, and

threat intelligence to help organizations build and run successful security programs. Our

global reach and cyber solutions focus is reinforced by key international partnerships.

Kudelski Security is a division of Kudelski Group. For more information, please visit

https://www.kudelskisecurity.com.

Kudelski Security

Route de Genève, 22-24

1033 Cheseaux-sur-Lausanne

Switzerland

Kudelski Security

5090 North 40th Street

Suite 450

Phoenix, Arizona 85018

This report and its content is copyright (c) Nagravision Sàrl, all rights reserved.

© 2023 Nagravision Sàrl / All rights reserved.

For public release

Page 29 of 35

https://www.kudelskisecurity.com

Starkware | Audit of Micro-Starknet

04 septembre 2023

5 APPENDIX B: METHODOLOGY

For this engagement, Kudelski used a methodology that is described at high-level in

this section. This is broken up into the following phases.

Figure 1: Methodology flow

5.1 Kickoff

The project was kicked off when all of the sales activities had been concluded. We set

up a kickoff meeting where project stakeholders were gathered to discuss the project

as well as the responsibilities of participants. During this meeting we verified the scope

of the engagement and discussed the project activities. It was an opportunity for both

sides to ask questions and get to know each other. By the end of the kickoff there was

an understanding of the following:

• Designated points of contact

• Communication methods and frequency

• Shared documentation

• Code and/or any other artifacts necessary for project success

• Follow-up meeting schedule, such as a technical walkthrough

• Understanding of timeline and duration

5.2 Ramp-up

Ramp-up consisted of the activities necessary to gain proficiency on the particular

project. This included the steps needed for gaining familiarity with the codebase and

technological innovations utilized, such as:

• Reviewing previous work in the area including academic papers

• Reviewing programming language constructs for the languages used in the code

• Researching common flaws and recent technological advancements

© 2023 Nagravision Sàrl / All rights reserved.

For public release

Page 30 of 35

Starkware | Audit of Micro-Starknet

04 septembre 2023

5.3 Review

The review phase is where a majority of the work on the engagement was performed.

In this phase we analyzed the project for flaws and issues that could impact the security

posture. This included an analysis of the architecture, a review of the code, and a

specification matching to match the architecture to the implemented code.

In this code audit, we performed the following tasks:

1. Security analysis and architecture review of the original protocol

2. Review of the code written for the project

3. Assessment of the cryptographic primitives used

4. Compliance of the code with the provided technical documentation

The review for this project was performed using manual methods and utilizing the

experience of the reviewer. No dynamic testing was performed, only the use of custom-

built scripts and tools were used to assist the reviewer during the testing. We discuss

our methodology in more detail in the following subsections.

Code Safety

We analyzed the provided code, checking for issues related to the following categories:

• General code safety and susceptibility to known issues

• Poor coding practices and unsafe behavior

• Leakage of secrets or other sensitive data through memory mismanagement

• Susceptibility to misuse and system errors

• Error management and logging

This is a general and not comprehensive list, meant only to give an understanding of

the issues we have been looking for.

Cryptography

We analyzed the cryptographic primitives and components as well as their implementa-

tion. We checked in particular:

• Matching of the proper cryptographic primitives to the desired cryptographic

functionality needed

• Security level of cryptographic primitives and their respective parameters (key

lengths, etc.)

© 2023 Nagravision Sàrl / All rights reserved.

For public release

Page 31 of 35

Starkware | Audit of Micro-Starknet

04 septembre 2023

• Safety of the randomness generation in general as well as in the case of failure

• Safety of key management

• Assessment of proper security definitions and compliance to use cases

• Checking for known vulnerabilities in the primitives used

Technical Specification Matching

We analyzed the provided documentation and checked that the code matches the

specification. We checked for things such as:

• Proper implementation of the documented protocol phases

• Proper error handling

• Adherence to the protocol logical description

5.4 Reporting

Kudelski delivered to the Client a preliminary report in PDF format that contained an

executive summary, technical details, and observations about the project, which is also

the general structure of the current final report.

The executive summary contains an overview of the engagement, including the number

of findings as well as a statement about our general risk assessment of the project as a

whole.

In the report we not only point out security issues identified but also informational

findings for improvement categorized into several buckets:

• High

• Medium

• Low

• Informational

The technical details are aimed more at developers, describing the issues, the severity

ranking and recommendations for mitigation.

As we performed the audit, we also identified issues that are not security related, but

are general best practices and steps, that can be taken to lower the attack surface of

the project.

As an optional step, we can agree on the creation of a public report that can be shared

and distributed with a larger audience.

© 2023 Nagravision Sàrl / All rights reserved.

For public release

Page 32 of 35

Starkware | Audit of Micro-Starknet

04 septembre 2023

5.5 Verify

After the preliminary findings have been delivered, we verified the fixes applied by the

Client. After these fixes were verified, we updated the status of the finding in the report.

The output of this phase was the current, final report with any mitigated findings noted.

5.6 Additional Note

It is important to notice that, although we did our best in our analysis, no code audit

assessment is per se guarantee of absence of vulnerabilities. Our effort was constrained

by resource and time limits, along with the scope of the agreement.

In assessing the severity of some of the findings we identified, we kept in mind both

the ease of exploitability and the potential damage caused by an exploit. Since this

is a library, we ranked some of these vulnerabilities potentially higher than usual, as

we expect the code to be reused across different applications with different input

sanitization and parameters.

Correct memory management is left to Typescript and was therefore not in scope.

Zeroization of secret values from memory is also not enforceable at a low level in a

language such as Typescript.

While assessment the severity of the findings, we considered the impact, ease of ex-

ploitability, and the probability of attack. This is a solid baseline for severity deter-

mination. Information about the severity ratings can be found in Appendix C of this

document.

© 2023 Nagravision Sàrl / All rights reserved.

For public release

Page 33 of 35

Starkware | Audit of Micro-Starknet

04 septembre 2023

6 APPENDIX C: SEVERITY RATING DEFINITIONS

Kudelski Security uses a custom approach when determining criticality of identified

issues. This is meant to be simple and fast, providing customers with a quick at a

glance view of the risk an issue poses to the system. As with anything risk related, these

findings are situational. We consider multiple factors when assigning a severity level to

an identified vulnerability. A few of these include:

• Impact of exploitation

• Ease of exploitation

• Likelihood of attack

• Exposure of attack surface

• Number of instances of identified vulnerability

• Availability of tools and exploits

Severity Definition

High The identified issue may be directly exploitable causing an immediate

negative impact on the users, data, and availability of the system for

multiple users.

Medium The identified issue is not directly exploitable but combined with

other vulnerabilities may allow for exploitation of the system or

exploitation may affect singular users. These findings may also

increase in severity in the future as techniques evolve.

Low The identified issue is not directly exploitable but raises the attack

surface of the system. This may be through leaking information that

an attacker can use to increase the accuracy of their attacks.

Informational Informational findings are best practice steps that can be used to

harden the application and improve processes.

© 2023 Nagravision Sàrl / All rights reserved.

For public release

Page 34 of 35

Starkware | Audit of Micro-Starknet

04 septembre 2023

REFERENCES

[1] Elaine Barker. 2013. Digital signature standard (DSS). DOI:https://doi.org/https:

//doi.org/10.6028/NIST.FIPS.186-4

[2] Paul Bottinelli. 2023. Breaking pedersen hashes in practice. InNCC group research

blog.

[3] Lily Chen, Dustin Moody, Andrew Regenscheid, and Angela Robinson. 2023.

Digital signature standard (DSS). DOI:https://doi.org/https://doi.org/10.6028/NI

ST.FIPS.186-5

[4] Starknet community. 2023. Starknet documentation: Contract storage. Retrieved

from https://docs.starknet.io/documentation/architecture_and_concepts/Contr

acts/contract-storage/

[5] Starknet community. 2023. Starknet documentation: Hash functions. Retrieved

from https://docs.starknet.io/documentation/architecture_and_concepts/Hashi

ng/hash-functions/

[6] Armando Faz-Hernandez, SamScott, Nick Sullivan, Riad S.Wahby, andChristopher

A.Wood. 2022. Hashing to Elliptic Curves. Internet Engineering Task Force; Internet

Engineering Task Force. Retrieved from https://datatracker.ietf.org/doc/draft-irtf-

cfrg-hash-to-curve/16/

[7] Lorenzo Grassi, Dmitry Khovratovich, Christian Rechberger, Arnab Roy, and

Markus Schofnegger. 2019. Poseidon: A new hash function for zero-knowledge

proof systems. Retrieved from https://eprint.iacr.org/2019/458

© 2023 Nagravision Sàrl / All rights reserved.

For public release

Page 35 of 35

https://doi.org/10.6028/NIST.FIPS.186-4
https://doi.org/10.6028/NIST.FIPS.186-4
https://doi.org/10.6028/NIST.FIPS.186-5
https://doi.org/10.6028/NIST.FIPS.186-5
https://docs.starknet.io/documentation/architecture_and_concepts/Contracts/contract-storage/
https://docs.starknet.io/documentation/architecture_and_concepts/Contracts/contract-storage/
https://docs.starknet.io/documentation/architecture_and_concepts/Hashing/hash-functions/
https://docs.starknet.io/documentation/architecture_and_concepts/Hashing/hash-functions/
https://datatracker.ietf.org/doc/draft-irtf-cfrg-hash-to-curve/16/
https://datatracker.ietf.org/doc/draft-irtf-cfrg-hash-to-curve/16/
https://eprint.iacr.org/2019/458

	EXECUTIVE SUMMARY
	Engagement Scope
	Engagement Analysis
	Issue Summary List

	TECHNICAL DETAILS OF SECURITY FINDINGS
	KS-SBCF-F-01: Hash function is not second image resistant
	KS-SBCF-F-02: No check on Poseidon MDS matrix generation
	KS-SBCF-F-03: Hardcoded power map for undefined inputs
	KS-SBCF-F-04: Possible infinite loop in Tonelli-Shanks implementation
	KS-SBCF-F-05: Pedersen hash is not time constant
	KS-SBCF-F-06: The Poseidon round constant generation is not following the specifications
	KS-SBCF-F-07: reversePartialPowIdx can be used to apply the non-linear layer to the first element of the state and to the last one
	KS-SBCF-F-08: weierstrass: Bias in random private key generation

	OTHER OBSERVATIONS
	KS-SBCF-O-01: Missing security policy
	KS-SBCF-O-02: Lack of parameters generation documentation.
	KS-SBCF-O-03: Invalid signature test are commented
	KS-SBCF-O-04: Undefined and unused field Fp253 in Poseidon hash
	KS-SBCF-O-05: Improvement: Add support for domain separation in Poseidon
	KS-SBCF-O-06: Improvement: Poseidon permutation optmization
	KS-SBCF-O-07: The Poseidon implementation doesn’t abort when the number of full rounds is odd
	KS-SBCF-O-08: Not constant-time arithmetic methods in noble-curves
	KS-SBCF-O-09: Inconsistent results from batch inversion

	APPENDIX A: ABOUT KUDELSKI SECURITY
	APPENDIX B: METHODOLOGY
	Kickoff
	Ramp-up
	Review
	Reporting
	Verify
	Additional Note

	APPENDIX C: SEVERITY RATING DEFINITIONS
	REFERENCES

