Audit of Micro-Starknet

Starkware

04 septembre 2023
Version: 1

Presented by:
Kudelski Security Research Team
Kudelski Security - Nagravision Sarl

Corporate Headquarters
Route de Geneéve, 22-24

1033 Cheseaux-sur-Lausanne
Switzerland

For public release

KUDELSKI
SECURITY

o

KUDELSKI gy

Starkware | Audit of Micro-Starknet
04 septembre 2023 SEBURITY

TABLE OF CONTENTS

1 EXECUTIVE SUMMARY 4
1.1 EngagementScope s 4
1.2 Engagement Analysis L 5
1.3 Issue SummaryList 5

2 TECHNICAL DETAILS OF SECURITY FINDINGS 7
2.1 KS-SBCF-F-01: Hash function is not second image resistant 7
2.2 KS-SBCF-F-02: No check on Poseidon MDS matrix generation 8
2.3 KS-SBCF-F-03: Hardcoded power map for undefined inputs 10
2.4 KS-SBCF-F-04: Possible infinite loop in Tonelli-Shanks implementation . . 12
2.5 KS-SBCF-F-05: Pedersen hash is nottime constant 15
2.6 KS-SBCF-F-06: The Poseidon round constant generation is not following

the specifications L 15
2.7 KS-SBCF-F-07: reversePartialPowldx can be used to apply the non-linear

layer to the first element of the state and to the lastone 17
2.8 KS-SBCF-F-08: weierstrass: Bias in random private key generation 19

3 OTHER OBSERVATIONS 21
3.1 KS-SBCF-O-01: Missing security policy 21
3.2 KS-SBCF-0-02: Lack of parameters generation documentation. 21
3.3 KS-SBCF-0-03: Invalid signature test arecommented 22
3.4 KS-SBCF-0-04: Undefined and unused field Fp253 in Poseidon hash . . . 23
3.5 KS-SBCF-O-05: Improvement: Add support for domain separation in Po-

seidono 23
3.6 KS-SBCF-0-06: Improvement: Poseidon permutation optmization . 24
3.7 KS-SBCF-0-07: The Poseidon implementation doesn’t abort when the

number of fullroundsisodd oL 24
3.8 KS-SBCF-0-08: Not constant-time arithmetic methods in noble-curves . . 25
3.9 KS-SBCF-0-09: Inconsistent results from batch inversion 27

4 APPENDIX A: ABOUT KUDELSKI SECURITY 29

5 APPENDIX B: METHODOLOGY 30
51 Kickoff 30
52 Ramp-Up e e e e e e 30

© 2023 Nagravision Sarl / All rights reserved. Page 2 of 35

For public release

Starkware | Audit of Micro-Starknet
04 septembre 2023

KUDELSKI
SECURITY Q

53 Review. oo
54 Reporting
55 Verify
5.6 AdditionalNote

6 APPENDIX C: SEVERITY RATING DEFINITIONS

REFERENCES

© 2023 Nagravision Sarl / All rights reserved.
For public release

Page 3 of 35

KUDELSKI gy

Starkware | Audit of Micro-Starknet
04 septembre 2023 SEBURITY

1 EXECUTIVE SUMMARY

Kudelski Security (“Kudelski”, “we"), the cybersecurity division of the Kudelski Group,
was engaged by Starkware (“the Client”) to conduct an external security assessment in
the form of a code audit of the cryptographic library Micro-Starknet (“the Product”). The
assessment was conducted remotely by the Kudelski Security Team and coordinated by
Sylvain Pelissier, Cryptography Expert and Antonio De La Piedra, Senior Cybersecurity
Engineer. The audit took place from July 11, 2023 to July 25, 2023 and involved 10
person-days of work. The audit focused on the following objectives:

+ To provide a professional opinion on the maturity, adequacy, and efficiency of
the software solution in exam.

 To check compliance with existing standards.

+ To identify potential security or interoperability issues and include improvement
recommendations based on the result of our analysis.

This report summarizes the analysis performed and findings. It also contains detailed
descriptions of the discovered vulnerabilities and recommendations for remediation.

1.1 Engagement Scope

The scope of the audit was a code audit of Micro-Starknet written in Typescript. Starknet
provides Zero-knowledge rollups built on top of the Ethereum blockchain. It allows to
optimize changes on the layer 1 blockchain by providing a summary of the changes
and a proof that the changes were valid. Micro-Starknet is a library implementing
the Starknet cryptography used for key generation, signature verification, and hash
computation. The audit was done with particular attention to the safe implementation
of hashing, randomness generation, protocol verification, and the potential for misuse
and leakage of secrets.

The target of the audit was the cryptographic code located in the micro-starknet Github
repository: https://github.com/paulmillr/micro-starknet. We audited the commit
number: 07b25e9997b45a0c@d83ced2c0272306143T0660. Particular attention was
given to side-channel attacks and in particular constant timeness.

© 2023 Nagravision Sarl / All rights reserved. Page 4 of 35
For public release

https://github.com/paulmillr/micro-starknet

Audit of Micro-Starknet KUDEI-SKI
Starkware | Audit of Stark SEBURITY Q

04 septembre 2023

1.2 Engagement Analysis

The engagement consisted of a ramp-up phase where the necessary documentation
about the technological standards and design of the solution in exam was acquired,
followed by a manual inspection of the code provided by the Client and the drafting of
this report.

As aresult of our work, we have identified 1 High, 3 Medium, 4 Low and 9 Informational
findings.

Issue severity distribution

Number of issues

1

High Medium Low Informational
Severity

1.3 Issue Summary List

The following security issues were found:

ID Severity Finding Status

KS-SBCF-F-01 High Hash function is not second image Remediated
resistant

KS-SBCF-F-02 Medium No check on Poseidon MDS matrix Acknowl-
generation edged

KS-SBCF-F-03 Medium Hardcoded power map for undefined Remediated
inputs

© 2023 Nagravision Sarl / All rights reserved. Page 5 of 35

For public release

Starkware | Audit of Micro-Starknet

04 septembre 2023

KUDELSKI
SECURITY Q

ID Severity Finding Status
KS-SBCF-F-04 Possible infinite loop in Tonelli-Shanks Remediated
implementation
KS-SBCF-F-05 Low Pedersen hash is not time constant Acknowl-
edged
KS-SBCF-F-06 Low The Poseidon round constant generation is Acknowl-
not following the specifications edged
KS-SBCF-F-07 Low reversePartialPowldx can be used to apply Acknowl-
the non-linear layer to the first element of edged
the state and to the last one
KS-SBCF-F-08 Low weierstrass: Bias in random private key Remediated

generation

The following are observations related to general design and improvements:

ID Severity Finding

KS-SBCF-O-01 Informational Missing security policy

KS-SBCF-0-02 Informational Lack of parameters generation documentation.

KS-SBCF-O-03 Informational Invalid signature test are commented

KS-SBCF-O-04 Informational Undefined and unused field Fp253 in Poseidon
hash

KS-SBCF-O-05 Informational Improvement: Add support for domain separation
in Poseidon

KS-SBCF-O-06 Informational Improvement: Poseidon permutation optmization

KS-SBCF-0O-07 Informational The Poseidon implementation doesn't abort when
the number of full rounds is odd

KS-SBCF-0-08 Informational Not constant-time arithmetic methods in
noble-curves

KS-SBCF-0-09 Informational Inconsistent results from batch inversion

© 2023 Nagravision Sarl / All rights reserved.

For public release

Page 6 of 35

Starkware | Audit of Micro-Starknet KUDEI-SKI A
04 septembre 2023 SEGURITY ‘

2 TECHNICAL DETAILS OF SECURITY FINDINGS

This section contains the technical details of our findings as well as recommendations
for mitigation.

2.1 KS-SBCF-F-01: Hash function is not second image resistant
Severity: High
Status: Remediated

Location: micro-starknet/index.ts:165

Description

The function hashChain is built upon the Pedersen hash function and used to hash an
array of values. According to the documentation [4], the hash chain is used to compute
the contract storage address of a variable. However, the hashChain function does not
include the length of the data neither the starting value in the hash computation. Thus,
is prone to second pre-image attack. Here is a proof of concept:

> var starknet =
undefined
> hl starknet.

starknet.

We added the resulting hash of the array [2, 3] in the the second array and we obtain
a second pre-image of for the array [1,2,3]. Even though the malleability is limited, it
allows an attacker to compute the same storage address for two different variables.
This property is undesirable for this feature.

© 2023 Nagravision Sarl / All rights reserved. Page 7 of 35
For public release

Audit of Micro-Starknet KUDEI-SKI
Starkware | Audit of Stark SEGURITY Q

04 septembre 2023

Recommendation

Implement the Array hashing method as define in the Hash functions documentation
[5] and how it is done with computeHashOnElements function. The previous example
can also be added to the tests to avoid regressions.

Status details

The function was removed from the library in version 0.3.0.

2.2 KS-SBCF-F-02: No check on Poseidon MDS matrix generation
Severity:
Status: Acknowledged

Location: micro-starknet/index.ts:245

Description

The current implementation of Poseidon does not rely on the methods and validation
checks provided by the authors of Poseidon [7] for creating the MDS matrix utilized in
the linear layer. Further, the following method is provided for creating alternative MDS
matrices:

function (Fp: IField<bigint>, name: string, m:
number, attempt = 0) {
const : bigint[] = [1;
const : bigint[] = [1;
for (let i = 0; 1 < m; i++) {

X_values. (, attempt * m +
i));

y_values. , attempt * m +

=y

© 2023 Nagravision Sarl / All rights reserved. Page 8 of 35
For public release

https://github.com/paulmillr/scure-starknet/releases/tag/0.3.0

Audit of Micro-Starknet KUDEI-SKI
Starkware | Audit of Stark SEGURITY Q

04 septembre 2023

}
if (new ([...x_values, ...y_values]).
throw new (
return x_values. ((x) => y_values. ((y) => Fp.

y)))).

The MDS matrix is part of the linear layer of the Poseidon permutation. The different
checks described in [7] are not performed during the generation, it is possible to end
up using insecure MDS matrices. Moreover, this could result in an implementation of
the Poseidon hash that is vulnerable to cryptanalytic attacks.

The _poseidonMDS function is utilized every time poseidonCreate is called:

function (opts: PoseidonOpts, mdsAttempt
{
const m = opts. + opts. ;
if (! . (mdsAttempt)) throw new

)
return (opts, (opts.Fp,
mdsAttempt));

Recommendation

We recommend the Client to rely on the recommendations in the papers for generating
safe MDS matrices as well as using the scripts created by the authors of Poseidon,
available at https://extgit.iaik.tugraz.at/krypto/hadeshash/-/blob/master/code/ge
nerate_params_poseidon.sage. That would mean to implement the algorithm_1,
algorithm_2 and algorithm_3 methods utilized in the generate_matrix function
of the script.

Status details

Not fixed.

© 2023 Nagravision Sarl / All rights reserved. Page 9 of 35
For public release

https://extgit.iaik.tugraz.at/krypto/hadeshash/-/blob/master/code/generate_params_poseidon.sage
https://extgit.iaik.tugraz.at/krypto/hadeshash/-/blob/master/code/generate_params_poseidon.sage

Audit of Micro-Starknet KUDEI-SKI
Starkware | Audit of Stark SEGURITY Q

04 septembre 2023

2.3 KS-SBCF-F-03: Hardcoded power map for undefined inputs
Severity:
Status: Remediated

Location: noble-curves/src/abstract/poseidon.ts:28

Description

The option validation function validateOpts defined in the noble-curves implementa-
tion for Poseidon choses a power map @ = 5 when the exponent is not defined.

let sboxPower = opts. ;

if (sboxPower === undefined) sboxPower
if (typeof sboxPower !== I
! : (sboxPower))
throw new

const _sboxPower = (sboxPower) ;
let sboxFn = (n: bigint) => (Fp, n, _sboxPower);

if (sboxPower === 3) sboxFn = (n: bigint) => Fp. (Fp. (n),
nj;

else if (sboxPower === 5) sboxFn = (n: bigint) =>
Fp.mul(Fp. (Fp. (n)), n);

However, arithmetization-oriented constructions such as Poseidon [7], which relies on
power maps, require that the exponent « satisfies gcd(a, p — 1) = 1. For that reason,
the validation function must not create a non-linear layer for a parameter = 5 that is
not suitable for a field p. That would mean using a parameter that doesn't guarantee
invertibility and that might not provide non-linearity

Particularly, for the Starkware curve field p = 22°1 + 17 - 2192 4~ 1, a value of 5 for
the exponent would be an invalid exponent, since gcd(5,p — 1) = 5. For instance, in
Python:

>>> math

>>> p - *%* B *)**

>>> math.gcd(5, p-1)

© 2023 Nagravision Sarl / All rights reserved. Page 10 of 35
For public release

Starkware | Audit of Micro-Starknet KUDEI-SKI
04 septembre 2023 SEGURITY ¢

Further, for clarity, we also recommend the Client to elaborate on the following com-
ment:

Recommendation

We recommend the client to perform an exhaustive parameter validation procedure
to instantiate the Poseidon hash function, abort in case of incorrect and/or undefined
parameters and never default to a power map.

Further, the reference implementation of Poseidon (available at https://extgit.iaik.tugr
az.at/krypto/zkfriendlyhashzoo/-/blob/master/plain_impls/src/poseidon/poseidon.rs),
prohibits values for « different from [3, 5, 7]. We recommend the client to restrict the
values the power map exponent can take:

fn sbox_p(&self, input: &S) -> S {
let mut input2 = *input;
input2.square();

match self.params.d {
=>{
let mut out = input2;
out.mul_assign(input);

mut out = input2;
.square();
.mul_assign(input);

mut out = input2;
.square();

© 2023 Nagravision Sarl / All rights reserved. Page 11 of 35
For public release

https://extgit.iaik.tugraz.at/krypto/zkfriendlyhashzoo/-/blob/master/plain_impls/src/poseidon/poseidon.rs
https://extgit.iaik.tugraz.at/krypto/zkfriendlyhashzoo/-/blob/master/plain_impls/src/poseidon/poseidon.rs

Audit of Micro-Starknet KUDEI-SKI
Starkware | Audit of Stark SEGURITY Q

04 septembre 2023

out.mul_assign(&input2);
out.mul_assign(input);

Status details

Fixed, sboxPower is limited to 3, 5, 7 and the default value 5 was removed in noble-curves
1.2.0

2.4 KS-SBCF-F-04: Possible infinite loop in Tonelli-Shanks imple-
mentation

Severity:
Status: Remediated

Location: noble-curves/src/abstract/modular.ts:121

Description

The Tonneli-Shanks algorithm assumed that p is a prime number to be able to finish
the computation. However, if p is not prime, the algorithm may enter in an infinite loop.
The current implementation can enter into an infinite loop for certain parameters e.g.

> mod = await

> mod. (
[Infinite loop]

In addition the finite field constructor does not check that p is prime thus this problem
can be trigger through this interface:

© 2023 Nagravision Sarl / All rights reserved. Page 12 of 35
For public release

https://github.com/paulmillr/noble-curves/releases/tag/1.2.0
https://github.com/paulmillr/noble-curves/releases/tag/1.2.0

Audit of Micro-Starknet KUDEI-SKI
Starkware | Audit of Stark SEGURITY @

04 septembre 2023

> Fp = mod.

> Fp. (7n)
[Infinite loop]

Since the code doesn't validate if the parameter P is not prime nor odd and the following
while loop is executed for ever:

© 2023 Nagravision Sarl / All rights reserved. Page 13 of 35
For public release

Starkware | Audit of Micro-Starknet KUDEI-SKI A
04 septembre 2023 SEGURITY ‘

while (!Fp. (b, Fp.)) A
if (Fp. (b, Fp.)) return Fp.

let m = 1;

for (let t2 = Fp. (b); m < x; m++) {
if (Fp. (t2, Fp.)) break;
t2 = Fp. (t2);

NOTE

const ge = Fp. (g, _1In <<

Fp.sqr(ge);
Fp.mul(x, ge);
Fp.mul(b, g);
m;

This problem which leads to a denial of service in Tonneli-Shanks implementations, is
known and has been first detected in OpenSSL https://www.openssl.org/news/secadv/
20220315.txt and in the Go cryptography library https://github.com/golang/go/issues/

51747.

Recommendation

We recommend the Client to catch invalid parameters P to avoid an infinite loop situation
in critical code depending on noble-curves.

Status details

The issue has been documented and library mentions the input must be a prime. The
primeness check is not done in the library for performance since provable primally test
is slow.

© 2023 Nagravision Sarl / All rights reserved. Page 14 of 35
For public release

https://www.openssl.org/news/secadv/20220315.txt
https://www.openssl.org/news/secadv/20220315.txt
https://github.com/golang/go/issues/51747
https://github.com/golang/go/issues/51747

Audit of Micro-Starknet KUDEI-SKI
Starkware | Audit of Stark SEGURITY @

04 septembre 2023

2.5 KS-SBCF-F-05: Pedersen hash is not time constant

Severity: Low
Status: Acknowledged

Location: micro-starknet/index.ts:202

Description

The function pedersenSingle implements a double and add scalar multiplication
with precomputed value. Each time the value bit is one an additional point addition is
performed. This is not time constant and the time difference depends directly on the
input value.

let x (value);
let x (value);
for (let j = 0; j < v J++) A
const pt = constants[j];
if (pt. (point)) throw new (

if ((x & 1n) !== 0n) point = point. (pt);

x >>= 1n;

Even though we did not find any usage where the input of the Pedersen hash is secret
if this library is used in this way, a timing attack may be done to recover the input value.
Recommendation

To have a time constant function, a fake point addition may be added. At least the time
sensitivity of the function should be documented to avoid misusage in the future.
Status details

A comment was added that mentions it's not constant time.

2.6 KS-SBCF-F-06: The Poseidon round constant generation is not
following the specifications

Severity: Low

© 2023 Nagravision Sarl / All rights reserved. Page 15 of 35
For public release

Starkware | Audit of Micro-Starknet KUDEI-SKI A
04 septembre 2023 SEGURITY ‘

Status: Acknowledged

Location: micro-starknet/index.ts:240

Description

According to [7], the Poseidon round constants are generated using the Grain LFSR
taking as parameters, the number of rounds, the type and the size of the field and the
SBox number. It makes the round constants unique per Poseidon instances.

Inthe repository, the Poseidon round constants are generated via the poseidonRoundConstant
function as the SHA256 hash of a string and the S-Box index:

function (Fp: IField<bigint>, name: string,
idx: number) {

const val = Fp. name}${idx})));
return Fp. (val);

This function is called inside poseidonBasic with the string "Hades":

for (let i = 0; i < rounds; i++) {
const row = [];
for (let j = 0; j < m; j++)

row. (
i)

roundConstants. (row) ;

This leads to deviation of the hash function which does not follow the paper specification
and generate constants which stay the same between different instances of the hash
function. It also makes harder for independent implementations to be compatible with
Starknet.

Recommendation

The round constants and matrices should be generated using the Grain LFSR. The
authors of Poseidon have made available the implementation of the Grain LFSR and of

© 2023 Nagravision Sarl / All rights reserved. Page 16 of 35
For public release

Audit of Micro-Starknet KUDEI-SKI
Starkware | Audit of Stark SEGURITY @

04 septembre 2023

the methods for generating round constants at https://extgit.iaik.tugraz.at/krypto/h
adeshash/-/blob/master/code/generate_params_poseidon.sage. Consequently,
the correct manner of generating the round constants for Poseidon relies on the Grain
LFSR, defined in the script. We recommend the Client to follow the recommendations
of the authors of the Poseidon paper for generating the round constants as the authors
claimed in the paper: “Indeed, letting the attacker freely choose round constants and/or
matrices can lead to attacks”

Status details

Not fixed.

2.7 KS-SBCF-F-07: reversePartialPowldx can be used to apply the
non-linear layer to the first element of the state and to the last
one

Severity: Low
Status: Acknowledged

Location: micro-starknet/index.ts:292 and noble-curves/src/abstract/poseidon.ts:24
and 82

Description

In order to select the the position of the state where the sbox is applied in a partial
round, the parameter reversePartialPowIdx is used, being the position t-1 for a
value true, thatis, for Poseidon using the starkware curve, and the position @ otherwise.

function (opts: PoseidonOpts) {
const { t, Fp, rounds, sboxFn, reversePartialPowIdx } =
(opts);
const halfRoundsFull = (opts.) ;
const partialldx = reversePartialPowIdx ? t - 1 0;
const poseidonRound = (: bigint[], : boolean,
number) => {

values = values. ((1, j) => Fp. (i,
opts. [1dx]1[j1));

© 2023 Nagravision Sarl / All rights reserved. Page 17 of 35
For public release

https://extgit.iaik.tugraz.at/krypto/hadeshash/-/blob/master/code/generate_params_poseidon.sage
https://extgit.iaik.tugraz.at/krypto/hadeshash/-/blob/master/code/generate_params_poseidon.sage

KUDELSKI

Starkware | Audit of Micro-Starknet
04 septembre 2023 SEGURITY

if (isFull) values = values. ((1) => (1));
else values[partialldx] = (values[partialldx]);

The parameter reversePartialPowIdx is set to true for Poseidon in index.ts:292

const res: Partial<PoseidonFn> =
...opts,
m,

roundConstants,

}) s

However, the first element of the state is used instead in the reference imple-
mentation of Poseidon at https://extgit.iaik.tugraz.at/krypto/zkfriendlyhashzoo/-
/blob/master/plain_impls/src/poseidon/poseidon.rs:

pub fn permutation_not_opt(&self, input: &[S]) -> <S> {
let t = self.params.t;
(input.len(), t);

let mut current_state = input.to_owned();

for r in 0..self.params.rounds_f_beginning {
current_state = self.add_rc(¤t_state,
&self.params.round_constants[r]);
current_state self.sbox(¤t_state);
current_state self.matmul (¤t_state,
&self.params.mds);
}
let p_end = self.params.rounds_f_beginning +
self.params.rounds_p;
for r in self.params.rounds_f_beginning..p_end {
current_state = self.add_rc(¤t_state,

&self.params.round_constants[r]);

© 2023 Nagravision Sarl / All rights reserved. Page 18 of 35
For public release

https://extgit.iaik.tugraz.at/krypto/zkfriendlyhashzoo/-/blob/master/plain_impls/src/poseidon/poseidon.rs#L37
https://extgit.iaik.tugraz.at/krypto/zkfriendlyhashzoo/-/blob/master/plain_impls/src/poseidon/poseidon.rs#L37

Starkware | Audit of Micro-Starknet KUDEI-SKI A
04 septembre 2023 SEGURITY ‘

current_state[0] = self.sbox_p(¤t_state[0]),;
current_state = self.matmul(¤t_state,
&self.params.mds);
}
for r in p_end. .self.params.rounds {
current_state = self.add_rc(¤t_state,

&self.params.round_constants[r]);

current_state = self.sbox(¤t_state);
current_state = self.matmul(¤t_state,
&self.params.mds);

}

current_state

It is not clear why Starkware allows to apply the non-linear layer in internal rounds to
the first element of the state and to the last one.

Recommendation

« Clarify in the source code and documentation why the reversePartialPowIdx
is required in the Poseidon implementation.
« Add more information to the following comment:

reversePartialPowIdx: true,

Status details

Not fixed.

2.8 KS-SBCF-F-08: weierstrass: Bias in random private key genera-
tion

Severity: Low

Status: Remediated

Location: noble/curves/src/abstract/weierstrass.ts:848

© 2023 Nagravision Sarl / All rights reserved. Page 19 of 35
For public release

Starkware | Audit of Micro-Starknet KUDEI'SKI \
04 septembre 2023 SEGURITY

Description

The function randomPrivateKey generates a random number between 0 and the
curve order. To achieve that, a random number in [0, 2('°g2(p))+64)[is generated and
then reduced modulus the order of the curve.

randomPrivateKey: (): => {
const rand = CURVE. (Fp. + 8),
const num = mod. (rand, CURVE_ORDER);

return ut. (num, CURVE.) ;
},

According to [6] this gives give a number with a bias of about 2% The implementation
is based on the FIPS 186-4 [1] Appendix B.4.1 called “Key Pair Generation Using Extra
Random Bits”. However this algorithm has been replaced in FIPS 186-5 [3] in Appendix
A.2.1. The new algorithm define the extra bits to add before the modular reduction
only for specific curves and it does not apply for the Starknet curve. The function is
not currently used by the micro-starknet library but may be used by a user to generate
their keys and thus would lead to value generated non-uniformly with a bias bigger
than the level of security requires.

Recommendation
Use a larger number of random bytes like Fp.BYTES + Fp.BYTES/2 before the mod-
ular reduction to keep the same level of security as the curve.

Status details

The issue have been reported to the maintainer of noble-curves and corrected in version
1.2.0. The bias is now 27128 and matches curve security level.

© 2023 Nagravision Sarl / All rights reserved. Page 20 of 35
For public release

Audit of Micro-Starknet KUDEI-SKI
Starkware | Audit of Stark SEGURITY Q

04 septembre 2023

3 OTHER OBSERVATIONS

This section contains additional observations that are not directly related to the security
of the code, and as such have no severity rating or remediation status summary. These
observations are either minor remarks regarding good practice or design choices or
related to implementation and performance. These items do not need to be remediated
for what concerns security, but where applicable we include recommendations.

3.1 KS-SBCF-0-01: Missing security policy

Description

Currently there is no instructions for how to report a security vulnerability nor security
contacts regarding the repository .

Recommendation

Create a SECURITY.md file in the root directory with all the necessary information.
See for example: https://docs.github.com/en/code-security/getting-started/adding-a-
security-policy-to-your-repository or the SECURITY.md file of https://github.com/paul-
millr/noble-curves

Status details

A SECURITY.md have been added.

3.2 KS-SBCF-0-02: Lack of parameters generation documentation.

Location: https://docs.starkware.co/starkex/pedersen-hash-function.html

Description

The Pedersen hash uses five different points on the curve. This is critical to ensure that
they have been generated in a way that nobody knows the discrete logarithm of one
point regarding another [2]. The documentation gives only the point values without
any further explanation.

© 2023 Nagravision Sarl / All rights reserved. Page 21 of 35
For public release

Audit of Micro-Starknet KUDEI-SKI
Starkware | Audit of Stark SEGURITY Q

04 septembre 2023

Recommendation

According to the script https://github.com/starkware-libs/starkex-for-spot-
trading/blob/master/src/starkware/crypto/starkware/crypto/signature/noth-
ing_up_my_sleeve_gen.py, the parameters of the Pedersen hash are generated from
the constant . The x-coordinate of each point is a chunk of 76 decimal digit of 7
modulo p. If it is a quadratic residue then the point is valid else the x-coordinate
coordinate is incremented by one.

This method of generated points should be described in the documentation and ex-
plained how it avoid to know the discrete logarithm between each points.
Status details

The generated points have been commented.

3.3 KS-SBCF-0-03: Invalid signature test are commented

Location: src/test/stark.test.js:66

Description

A lot of test regarding invalid rejection signature are commented in the test file
stark.test.js. For example, there is a test with a message bigger that the curve order:

() =>

starkwareCrypto. (maxStarkKey,

maxMsgHash. (oneBn) . (16), {

maxR,
maxS

Recommendation

Those tests make sense and should be added back to the test suite to avoid regression.

© 2023 Nagravision Sarl / All rights reserved. Page 22 of 35
For public release

Starkware | Audit of Micro-Starknet KUDEI-SKI A
04 septembre 2023 SEGURITY ‘

Status details

Test have been brought back and allowed to spot invalid signature verification cases
which have been fixed as well.

3.4 KS-SBCF-0-04: Undefined and unused field Fp253 in Poseidon
hash

Location: src/index.ts:233

Description

The Poseidon hash parameters also include an alternative field Fp253:

which is not defined and not used in the current implementation.

Recommendation

Since the current provided parameters for the default field, Fp251 could be different
for the Fp253 field, we recommend the Client to provided specific parameters and
documentation for this field too.

Status details

The field has been removed.

3.5 KS-SBCF-0-05: Improvement: Add support for domain separa-
tion in Poseidon

Description

The Client could support a domain separation parameter in the Poseidon implementa-
tion. The authors of [7] suggest the support of a domain separation in Poseidon hash

© 2023 Nagravision Sarl / All rights reserved. Page 23 of 35
For public release

Starkware | Audit of Micro-Starknet KUDEI-SKI A
04 septembre 2023 SEGURITY ‘

implementation for applications that require different instances of the hashing function.

They propose to encode it in the capacity element in Section 4.2.

3.6 KS-SBCF-0-06: Improvement: Poseidon permutation optmiza-
tion

Description

The authors of [7] proposed an efficient implementation of the permutation in Appendix

B that the client could adopt. The approach is based on reducing the size of the round

constants utilized in each partial round. The Client could rely on the permutation

function of the Poseidon reference implementation available at https://extgit.iaik.tugr

az.at/krypto/zkfriendlyhashzoo/-/blob/master/plain_impls/src/poseidon/poseidon.rs,
line 22.

3.7 KS-SBCF-0-07: The Poseidon implementation doesn’t abort
when the number of full rounds is odd

Location: noble-curves/src/abstract/poseidon.ts:82

Description

The Poseidon implementation performs the Math. floox operator on the division by 2
of the number of full rounds (opts.roundsFull).

function (opts: PoseidonOpts) {
const { t, Fp, rounds, sboxFn, reversePartialPowIdx } =

(opts);
const halfRoundsFull = . (opts.),

Then:

let round = 0;

for (let i ; 1 < halfRoundsFull; i++) values =
(values, true, round++);

for (let i = 0; i < opts. ; 1++) values =
«~ poseidonRound

© 2023 Nagravision Sarl / All rights reserved. Page 24 of 35
For public release

https://extgit.iaik.tugraz.at/krypto/zkfriendlyhashzoo/-/blob/master/plain_impls/src/poseidon/poseidon.rs
https://extgit.iaik.tugraz.at/krypto/zkfriendlyhashzoo/-/blob/master/plain_impls/src/poseidon/poseidon.rs

Starkware | Audit of Micro-Starknet KUDEI-SKI A
04 septembre 2023 SEGURITY ‘

for (let i = 0; i < halfRoundsFull; i++) values =
(values, true, round++);

On the other hand, the reference implementation enforces that the number of full
rounds is even when validating the parameters at https://extgit.iaik.tugraz.at/krypto/zkf
riendlyhashzoo/-/blob/master/plain_impls/src/poseidon/poseidon_params.rs at line 35:

impl<S: PrimeField> PoseidonParams<S> {
allow too_many_arguments
pub fn new(
t: ,
d: ,
rounds_fT: ,
rounds_p: ,

mds: &[<S>7,
round_constants: &[<S>7],
{
(d ==3[] d==
(mds.len(), t);
(rounds_f % 2,
let r = rounds_f / 2;

Since having an odd number of full rounds could mean that the parameters for Poseidon
are wrong, we recommend the Client to warn the user and/or abort in this case.
Status details

validateOpts is now checked.

3.8 KS-SBCF-0-08: Not constant-time arithmetic methods in noble-
curves

Location: noble-curves/src/abstract/modular.ts:24

© 2023 Nagravision Sarl / All rights reserved. Page 25 of 35
For public release

https://extgit.iaik.tugraz.at/krypto/zkfriendlyhashzoo/-/blob/master/plain_impls/src/poseidon/poseidon_params.rs
https://extgit.iaik.tugraz.at/krypto/zkfriendlyhashzoo/-/blob/master/plain_impls/src/poseidon/poseidon_params.rs

Starkware | Audit of Micro-Starknet KUDEI-SKI A
04 septembre 2023 SEGURITY ‘

Description

There are several methods at modular.ts that are not constant time:

* Modular exponentiation:

TODO
function (num: bigint, power: bigint, modulo: bigint):

bigint {
if (modulo <= _@On || power < _@n) throw new
);
if (modulo === _1n) return _On;
let res = 1n;
while (power > _0n) {
if (power & _1n) res = (res * num) % modulo;
num = (num * num) % modulo;
power >>= _1n;
}

return res,;

* Field exponentiation:

function FpPow<T>(f: IField<T>, num: T, power: bigint): T {

TODO
if (power < _On) throw new
if (power === _0On) return f.

if (power === _1n) return num;

© 2023 Nagravision Sarl / All rights reserved. Page 26 of 35
For public release

Starkware | Audit of Micro-Starknet KUDEI-SKI A
04 septembre 2023 SEGURITY ‘

let p

let d =

while (power > _0n) {
if (power & _1n) p = f. (p,
d = f. (d);
power >>= _1n;

}

return p;

Status details

The issue was documented.

3.9 KS-SBCF-0-0