

PUBLIC

Code Assessment

of the OmniBridge

Smart Contracts

April 27, 2021

Produced for

by

Contents

1 Executive Summary 3

2 Assessment Overview 4

3 Limitations and use of report 7

4 Terminology 8

5 Findings 9

6 Resolved Findings 12

7 Notes 18

POA Network - OmniBridge - ChainSecurity 2

https://chainsecurity.com

1 Executive Summary
Dear Sir or Madam,

First and foremost we would like to thank POA Network for giving us the opportunity to assess the current
state of their OmniBridge system. This document outlines the findings, limitations, and methodology of
our assessment.

We hope that this assessment provides more insight into the current implementation and provides
valuable findings. We are happy to receive questions and feedback to improve our service and are highly
committed to further support your project.

Sincerely yours,

ChainSecurity

1.1 Overview of the Findings
Below we provide a brief numerical overview of the findings and how they have been addressed.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 8

• Code Corrected 6

• Risk Accepted 2

Low -Severity Findings 8

• Code Corrected 4

• Specification Changed 1

• Risk Accepted 2

• Acknowledged 1

POA Network - OmniBridge - ChainSecurity 3

https://chainsecurity.com

2 Assessment Overview
In this section we briefly describe the overall structure and scope of the engagement including the code
commit which is referenced throughout this report.

2.1 Scope
The assessment was performed on the source code files inside the OmniBridge repository based on the
documentation files. The table below indicates the code versions relevant to this report and when they
were received.

V Date Commit Hash Note

1 March 1 2021 ea0ffa6f015da024306d80f61bd271c4268b1f7a Initial Version

2 April 8 2021 9e602a3719e32feabc18fc387b9474acfa28cfe2 Version with fixes

For the solidity smart contracts, the compiler version 0.7.5 was chosen.

2.1.1 Excluded from scope
The Arbitrary Message Bridge (AMB) smart contracts were not part of the scope.

2.2 System Overview
Version 1This system overview describes the initially received version () of the contracts as defined in the

Assessment Overview.

Furthermore, in the findings section we have added a version icon to each of the findings to increase the
readability of the report.

OmniBridge is a system of smart contracts that allows cross-chain token transfers between
Ethereum-compatible blockchains.

Cross-chain communication is based on the Arbitrary Message Bridge (AMB), which replays messages
between two blockchains: the home blockchain and the foreign blockchain. Messages can originate at
either blockchain, and are initially stored in the AMB mediator contract on that blockchain. Each
message includes a target address (on the target blockchain) and may include extra data parameters.
Then, dedicated oracles relay the messages to the AMB mediator contract on the other blockchain. A
relayed message is authenticated if enough oracles confirm its authenticity.

OmniBridge uses this message-relay system to establish token transfers between the home and the
foreign blockchains. The transfers are implemented by pairing a token contract, the native token, on one
of the blockchains, with a token contract, the bridged token, on the other blockchain. The native token is
independent of the OmniBridge system, while the bridged token is automatically deployed by the system.
Transfers are mediated by two AMB mediator contracts on every side of the bridge.

There are two message flows:

• For native -> bridged transfers:

1. the transfer sender approves native token transfer to the mediator contract;

2. the transfer sender invokes the mediator contract: 1. the mediator contract transfers to itself the
specified amount of tokens; 2. the tokens are now locked in the mediator; 3. the mediator sends
a transfer message through the AMB;

POA Network - OmniBridge - ChainSecurity 4

https://chainsecurity.com

3. when the message is received, the mediator on the other side mints the specified tokens of the
bridged token to the receiver of the transfer.

• For bridged -> native transfers, the flow is reversed: tokens are burned on the sender (bridged) side
and unlocked on the receiver (native) side.

As mentioned, the bridged token counterpart of a native token is deployed on-demand. The native token
starts in a deploy unacknowledged state. In this state, a cross-chain transfer generates an additional
request to deploy the bridged token counterpart, which until this moment is non-existent. After the
deployment request is received, the bridged counterpart is deployed by the TokenFactory contract.
This leads to the native token state being updated to deploy acknowledged.

In addition to deployment, both tokens need to have their operational limits set. For native tokens this
happens upon the first cross-chain transfer, and for their bridged counterparts---after deployment. In
particular, the minimum transfer amount per transaction is set, which promotes the token from
unregistered to registered status. The registered status is required for the completion of cross-chain
transfers.

To reduce the cost of deployment, all bridged tokens share the same ERC677 implementation. Each
bridged token is actually a proxy that stores the token balances, but delegates all calls to a predeployed
ERC677 contract. Thus, all proxies have very small code and deployment is relatively cheap.

The behavior of the mediator contracts on the home blockchain and on foreign blockchain are mostly
identical. However, differences between the home and the foreign blockchains can make it economically
more efficient to perform certain operations on the home blockchains. (For example, because of lower
transaction fees, faster throughput, lower latency, etc.) This results in the following differences between
the home OmniBridge and the foreign OmniBridge:

• Fees are collected and payed in the home contract only.

• Gas limit on the foreign contract is stored on the contract itself and can be modified by owner.

• Gas limit on the home contract is queried from a separate SelectorTokenGasLimitManager contract.
This contract can return an exact limit for token and function based on the message data. Tokens
not configured on the SelectorTokenGasLimitManager will use default gas limits.

The same considerations also make the AMB transaction handling different. On the home side, oracles
will submit the incoming transaction. On the foreign side, oracles just provide the necessary signatures
before it is actually submitted to the foreign blockchain by the users (senders/receivers) themselves. This
way the higher foreign gas fees will be payed by the users.

2.2.1 Trust Model
Users of the OmniBridge need to trust in different parties:

• xDai Validators: They are trusted to avoid any forks of more than 12 blocks and generally follow the
protocol honestly.

• OmniBridge Contract Administrators: These administrator can change numerous values and thereby
execute a lot of control as described in some findings below.

• TokenFactory Contract Administrators: The administrators controlling the TokenFactory can
determine the base image that is used for all bridged tokens. By choosing a malicious image, they
can steal the bridged funds.

• FeeManager Contract Administrators: The administrators of the FeeManager contract can set the
fees and also exempt addresses from fee payments. By setting extremely high fees, they can
essentially steal the funds that are sent across the bridge.

• AMB Validators: The AMB Validators are fully trusted to correctly relay information from one side to
the other.

• Ethereum miners: They are trusted to avoid any forks of more than 12 blocks and generally follow
the protocol honestly.

POA Network - OmniBridge - ChainSecurity 5

https://chainsecurity.com

Generally, honest majorities are required from all of these parties.

POA Network - OmniBridge - ChainSecurity 6

https://chainsecurity.com

3 Limitations and use of report
Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts associated with the items defined in the
engagement letter on whether it is used in accordance with its specifications by the user meeting the
criteria predefined in the business specification. We draw attention to the fact that due to inherent
limitations in any software development process and software product an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third party technology stack itself. Report readers should also take into account
the facts that over the life cycle of any software product changes to the product itself or to its
environment, in which it is operated, can have an impact leading to operational behaviours other than
initially determined in the business specification.

POA Network - OmniBridge - ChainSecurity 7

https://chainsecurity.com

4 Terminology
For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

• Likelihood represents the likelihood of a finding to be triggered or exploited in practice

• Impact specifies the technical and business-related consequences of a finding

• Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severities. These severities
are derived from the likelihood and the impact using the following table, following a standard risk
assessment procedure.

Likelihood Impact
High Medium Low

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

POA Network - OmniBridge - ChainSecurity 8

https://chainsecurity.com

5 Findings
In this section, we describe any open findings. Findings that have been resolved, have been moved to
the Resolved Findings section. All of the findings are split into these different categories:

• Security : Related to vulnerabilities that could be exploited by malicious actors

• Design : Architectural shortcomings and design inefficiencies

• Correctness : Mismatches between specification and implementation

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 2

• Risk AcceptedAdministrators Can Make Non-Native Tokens Native and Native Tokens Non-Native

• Risk AcceptedTokens With More Than One Token Address Can Be Stolen by Admins

Low -Severity Findings 3

• AcknowledgedDocumentation Mismatches

• Risk AcceptedFunction onTokenTransfer Reentrancy Case

• Risk AcceptedIncompatible Tokens

5.1 Administrators Can Make Non-Native Tokens
Native and Native Tokens Non-Native
Correctness Medium Version 1 Risk Accepted

When the function setCustomTokenAddressPair is called, the following checks are being performed:

require(!isTokenRegistered(_bridgedToken));
require(nativeTokenAddress(_bridgedToken) == address(0));
require(bridgedTokenAddress(_nativeToken) == address(0));

However, there is no check that the _nativeToken is not bridged token, i.e.:

require(nativeTokenAddress(_nativeToken) == address(0));

This can create a weird condition where the bridged token is again a native token. Once this occurs, the
bridge fails to function correctly, as the bridged tokens are now handled as native tokens.

Similarly, administrators can also register an existing native token, as a non-native token. Consider the
following example:

1. A native token T exists, which has already been bridged and where tokens of type T are locked up
inside the mediator contract.

2. An administrator call setCustomTokenAddressPair with T as the _bridgedToken and some
other fake token F as the supposedly native token on the other side.

POA Network - OmniBridge - ChainSecurity 9

https://chainsecurity.com

3. The attacker transfers a lot of F token (which can be freely minted) over the brige and thereby
unlocks the T tokens.

This allows administrators to steal all native tokens held by the bridge.

However, the overall risk is rather low as only administrators can call setCustomTokenAddressPair.

Risk accepted:

To address this problem, POA Network added a comment saying that the function arguments should be
manually validated by the administrator, as no easy solution is available.

5.2 Tokens With More Than One Token Address
Can Be Stolen by Admins
Security Medium Version 1 Risk Accepted

Tokens that have more than one address, through which they can be called, can be stolen when they are
bridged. An example for such a token is TUSD. The attack would work as follows:

1. The token is already bridged using the first token address. An amount X has been transferred across
the bridge.

2. An attacker bridges the token using another token address. The attacker also bridges X tokens. Now
the mediator balance on the native side is X for both token addresses. However, the actual balance,
when queried from balanceOf is 2*X for both of them.

3. The attacker colludes with the administrators, which trigger a call to fixMediatorBalance on the
native side and withdraw X amount of tokens.

4. Then, the attacker can withdraw X tokens, by sending back the bridged tokens.

Overall, turned X tokens into 2*X tokens, when ignoring fees. The attacker managed to withdraw the full
amount of bridged tokens. At the time of writing 118,000 TUSD have been bridged which are at risk
under such an attack.

Risk accepted:

No code changes were done. POA Network added a warning comment to fixMediatorBalance
method.

5.3 Documentation Mismatches
Correctness Low Version 1 Acknowledged

The following mismatches with the documentation or within the documentation were found:

1. The definition of native is different in the code and in the documentation:
https://docs.tokenbridge.net/about-tokenbridge/features#chain-and-network-definitions

In the code, native refers to the origin of the token contract, in the documentation to the home side of
the network.

2. Some documentation items mention a requiredBlockConfirmations of 8 while others mention
12.

POA Network - OmniBridge - ChainSecurity 10

https://docs.tokenbridge.net/about-tokenbridge/features#chain-and-network-definitions
https://chainsecurity.com

Acknowledged:

Documentation will be re-worked with help of a technical writer.

5.4 Function onTokenTransfer Reentrancy Case
Security Low Version 1 Risk Accepted

The main contracts have a lock() function with a corresponding variable that aims as a reentrancy
guard. In case when lock() is true, the onTokenTransfer function will silently accept the funds. This
can lead to a reentrancy that can break some invariants of the contract. In case, the callback happens
during the safeTransferFrom in the _relayTokens function, the from address can perform a token
transfer to the Bridge contract. Note that the same or a different token can be used. Such callbacks
during safeTransferFrom can occur with tokens that implement the ERC777 or similar standards.
Because the received tokens are silently accepted and _setMediatorBalance is not called, the
mediatorBalance won't track the balance correctly.

Risk accepted:

The described behaviour is acceptable, as ERC-777 tokens are not supported by the OmniBridge.

5.5 Incompatible Tokens
Design Low Version 1 Risk Accepted

The following token types are incompatible with Omnibridge:

• Rebasing tokens: If the balance of a token can change while it is stored inside the mediator contract,
then basic assumptions no longer hold. Hence, such tokens as Ampleforth should not be bridged as
the bridging might not be reversible.

• Special transfer fees: This report already contains issues regarding "regular transfer fees", where
upon transfer of X tokens, X-F tokens are transferred, while F tokens are paid to the fee receiver. In
case of transfer fees, where upon transfer of X tokens, X+F tokens are subtracted from the senders
balance and X tokens arrive at the receiver, the Omnibridge contracts will fail as they do not account
for such fees.

• Malicious tokens: Obviously, any malicious token contracts that do not follow sensible guidelines so
that for example, balances can be arbitrarily can freely manipulated, cannot be bridged in a
meaningful manner.

Users should be warned not to bridge such tokens.

Risk accepted:

POA Network manually reviewed the most important tokens to ensure their compatibility and will monitor
the bridge and the bridged tokens. Furthermore, appropriate warnings will be added inside the UI.

POA Network - OmniBridge - ChainSecurity 11

https://eips.ethereum.org/EIPS/eip-777
https://chainsecurity.com

6 Resolved Findings
Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 6

• Code CorrectedDecimals in bridgeSpecificActionsOnTokenTransfer Are Not Used

• Code CorrectedERC20 Function Calls Ignore Return Values

• Code CorrectedNo Canonical Definition of Calldata for onTokenTransfer

• Code CorrectedSafe Transfers Are Not Used for All Token Transfers

• Code CorrectedTransferred Values in Case of Relaying Tokens With Fees

•
Code Corrected

OmnibridgeFeeManager Fee Distribution Reverts in Case of Tokens With Transfer Fees

Low -Severity Findings 5

• Specification ChangedCode Simplification Possible

• Code CorrectedName Collision Among Bridged Tokens With Different Origins

• Code CorrectedReentrancy Into AMB

• Code CorrectedRestriction to Static Call

• Code CorrectedSuperfluous Loads From Storage

6.1 Decimals in
bridgeSpecificActionsOnTokenTransfer Are
Not Used
Design Medium Version 1 Code Corrected

In both Home and Foreign OmniBridge contracts the decimals are queried in the
bridgeSpecificActionsOnTokenTransfer function during the token relaying. But this data is used
only in few cases within this function:

• Token is not registered and limits need to be initialised.

• Token is native to the current side of the bridge and its deployment is not yet acknowledged.

In case of non-native, acknowledged or initialised Tokens the queried decimals won't be used. Because
such cases are the most common ones, the unused data introduces extra gas costs that could be
avoided.

Code corrected:

POA Network - OmniBridge - ChainSecurity 12

https://chainsecurity.com

The use of TokenReader.readDecimals() was refactored as so it is being called only when
deployAndHandleTokens messages are sent.

6.2 ERC20 Function Calls Ignore Return Values
Design Medium Version 1 Code Corrected

The ERC20 specification states:

Callers MUST handle false from returns (bool success). Callers MUST NOT assume that false is never returned!

In some calls to the ERC20 tokens those return values are ignored:

• IBurnableMintableERC677Token(_token).mint(address(manager), fee) in
_distributeFee function.

• IBurnableMintableERC677Token(_token).transfer(address(manager), fee) in
_distributeFee function.

• IBurnableMintableERC677Token(_bridgedToken).mint(address(this), 1) in
setCustomTokenAddressPair function.

• _getMinterFor(_token).mint(_recipient, _value) in _releaseTokens function.

In most cases that happens during the calls to non-native Tokens that were deployed via the factory. But
due to the setCustomTokenAddressPair function the non-native contracts can have any behavior
and the return values need to be checked explicitly.

Code corrected:

All calls to transfer and mint function now check the return values.

6.3 No Canonical Definition of Calldata for
onTokenTransfer
Correctness Medium Version 1 Code Corrected

The function onTokenTransfer uses inline assembly to read the receiver and calldata from the calldata
arguments. The assembly strongly relies on some assumptions about the argument encoding of the
Solidity. One of them is that there are no "garbage bits" between the byte offset of the
bytes calldata _data variable and the length field of the bytes calldata _data argument.
This assumption will hold true in most cases, but is not guaranteed to hold. This assumption can be
eliminated letting the compiler copy the _data into the memory and dealing with it there. Full
expectations about the expected information in the _data argument must be properly documented, to
avoid the misinterpretation of the interface.

function onTokenTransfer(
 address _from,
 uint256 _value,
 bytes calldata _data
) external returns (bool) {

POA Network - OmniBridge - ChainSecurity 13

https://eips.ethereum.org/EIPS/eip-20
https://docs.soliditylang.org/en/v0.6.0/abi-spec.html
https://docs.soliditylang.org/en/v0.6.0/abi-spec.html
https://chainsecurity.com

Code corrected:

For the relevant onTokenTransfer function, the calldata location of the _data variable was
replaced with the memory location. Hence, the ABI parsing is performed by the compiler and only
afterwards data is being parsed in inline assembly.

6.4 Safe Transfers Are Not Used for All Token
Transfers
Design Medium Version 1 Code Corrected

For some transfers of ERC20 Tokens the SafeERC20 functions are not used. This includes:

• The function _distributeFee in OmnibridgeFeeManagerConnector contract.

• The function distributeFee in OmnibridgeFeeManager contract.

The first case only appears for non-native tokens at the Home side of the bridge, which in most cases
should be ERC677 deployed by Factory. But due to the setCustomTokenAddressPair function, there
are possible conditions when any other token can be called with this transfer.

Code corrected:

All calls to the transfer function were replaced by a safe wrapper.

6.5 Transferred Values in Case of Relaying
Tokens With Fees
Design Medium Version 1 Code Corrected

In a scenario with token relaying, the _relayTokens function is executed. A user provided _value is
then transferred to the bridge contract via safeTransferFrom. If the token has fees on transfer (e.g.
USDT-not currently charged, PAXG), the actual transferred value will be smaller than the bridged value.
This will effectively break the invariant
Balance of bridge == total supply of bridged token.

Code corrected:

This has been corrected by measuring the actually transferred token amount.

6.6 OmnibridgeFeeManager Fee Distribution
Reverts in Case of Tokens With Transfer Fees
Design Medium Version 1 Code Corrected

As part of the internal function _distributeFee of the OmnibridgeFeeManagerConnector contract
calls the token contract to transfer or mint the fee amount to the manager. In case the relevant token
contract is native to Home side it might have transfer fees. Then, a value less than fee will be moved
during the transfer to the OmnibridgeFeeManager. Later the OmnibridgeFeeManager tries to
distribute this fee amount using distributeFee function. Because the actually transferred value will be

POA Network - OmniBridge - ChainSecurity 14

https://chainsecurity.com

smaller in case of Tokens with transfer fees, the OmnibridgeFeeManager will not have enough assets
to perform the reward distribution with the required values.

Hence, the whole transaction will fail and such tokens cannot be moved across the bridge.

Code corrected:

The code has been rewritten so that

1. The OmnibridgeFeeManager determines the amount of fees to distribute by calling
token.balanceOf(address(this)).

2. Failure of the transfer/mint operation during the fee distribution will not fail the Omnibridge
message processing.

6.7 Code Simplification Possible
Design Low Version 1 Specification Changed

The following code can be simplified:

if (_token == address(0xb7D311E2Eb55F2f68a9440da38e7989210b9A05e)) {
 // hardcoded address of the TokenMinter address
 return IBurnableMintableERC677Token(0xb7D311E2Eb55F2f68a9440da38e7989210b9A05e);
}
return IBurnableMintableERC677Token(_token);

The if clause can be entirely omitted.

Specfication changed:

Before the OmniBridge is deployed for the ETH-xDAI instance the contract address in this check can be
replaced with the actual minter 0x857DD07866C1e19eb2CDFceF7aE655cE7f9E560d of the STAKE
token on the xDai chain. For other bridges this check is either removed at all or did not have any
significant impact. A comment was added into the code to bring more clarity why this check is needed.

6.8 Name Collision Among Bridged Tokens With
Different Origins
Design Low Version 1 Code Corrected

When the bridge creates token contracts on the Home chain, the " on xDai" string is appended to the
Foreign token name. In case of multiple bridges to different Foreign chains, different tokens that have the
same name on different Foreign chains, will have same names on the Home chain. As an example,
"1INCH Token" from Ethereum Mainnet and Binance Smart Chain will both have the "1INCH Token on
xDai" name on the Home chain. While that has no direct code-related problems, this increases the
human error chance during the user interactions.

Code corrected:

POA Network - OmniBridge - ChainSecurity 15

https://chainsecurity.com

Newly deployed Omnibridge contracts are using "from X" names where X is the respective blockchain.
The Blockscout interface also renames such tokens in the UI. Unfortunately, it is not possible to change
token names for already existing tokens. However such collisions are being mitigated in the UI.

6.9 Reentrancy Into AMB
Security Low Version 1 Code Corrected

When the Arbitrary Message Bridge contract receives a message from the other side, the following is
performed code is used to execute the message call:

setMessageSender(_sender);
setMessageId(_messageId);
setMessageSourceChainId(_sourceChainId);

...

bool status = _contract.call.gas(_gas)(_data);
setMessageSender(address(0));
setMessageId(bytes32(0));
setMessageSourceChainId(0);

The called contracts can query the information such as messageId and messageSender. These
information provide important authorization for the called contracts. As there is no reentrancy guard on
this function, this code can be reentered in the following way:

1. Call A is made, correct information for A is available

2. A triggers the reentrancy and call B is made, now B is executing and the correct information for B is
available

3. The call B completes and the information are reset to 0

4. The execution of A continues, but now the queried information will be 0

Hence, it is possible that during the execution of a passed message the wrong context, namely 0 is
returned when queried from the AMB contract. Furthermore, events are emitted in an interlaced order
which might confuse connected systems.

Please note the AMB contracts were outside of the scope of this review, however, we still note this as it
can affect the OmniBridge.

Code corrected:

The issue was fixed in https://github.com/poanetwork/tokenbridge-contracts/pull/577. It ensures that no
other message relay is currently being processed.

6.10 Restriction to Static Call
Security Low Version 1 Code Corrected

The contract contains the following code to determine the upgradabilityOwner:

address(this).call(abi.encodeWithSelector(UPGRADEABILITY_OWNER))

However, this function is defined as a view function:

POA Network - OmniBridge - ChainSecurity 16

https://github.com/poanetwork/tokenbridge-contracts/pull/577
https://chainsecurity.com

function upgradeabilityOwner() external view returns (address);

Hence, a staticcall can be used to avoid unexpected state modifications.

Code corrected:

The call was replaced with a staticcall.

6.11 Superfluous Loads From Storage
Design Low Version 1 Code Corrected

The Omnibridge contracts sometimes contain code like this:

require(!bridgeContract().messageCallStatus(_messageId));
require(bridgeContract().failedMessageReceiver(_messageId) == address(this));
require(bridgeContract().failedMessageSender(_messageId) == mediatorContractOnOtherSide());

As there is a storage load (SLOAD) inside the bridgeContract() function, this SLOAD will be
executed three times in this case. Due to the about-to-be introduced EIP-2929 the additional costs of
extra SLOADs from the same location are significantly lowered, but it could still be avoided to do it.

Code corrected:

The return value of bridgeContract() was saved in a local variable to avoid repeated calls.

POA Network - OmniBridge - ChainSecurity 17

https://chainsecurity.com

7 Notes
We leverage this section to highlight potential pitfalls which are fairly common when working Distributed
Ledger Technologies. As such technologies are still rather novel not all developers might yet be aware of
these pitfalls. Hence, the mentioned topics serve to clarify or support the report, but do not require a
modification inside the project. Instead, they should raise awareness in order to improve the overall
understanding for users and developers.

7.1 Differing Token Values
Note Version 1

The OmniBridge has limits on transfers per token. This means that only a certain amount of tokens can
be transferred per transaction and per day. Generally, this limits are initialized as a number of tokens.
Obviously, a certain number of tokens of one type can have a very different value than the same number
of tokens from another type. Hence, these limits need to be carefully monitored.

7.2 Function requestFailedMessageFix
Performs Multiple Calls to bridgeContract
Note Version 1

When a user detects a failed, bridged message, the function requestFailedMessageFix can be used
to fix the failed call. Therefore, three pieces of information are needed which are currently loaded like
this:

 require(!bridgeContract().messageCallStatus(_messageId));
 require(bridgeContract().failedMessageReceiver(_messageId) == address(this));
 require(bridgeContract().failedMessageSender(_messageId) == mediatorContractOnOtherSide());

This code is execute both on Home and Foreign bridges.

Note that there are two levels of inefficiency here. First of all three separate calls are made, even though
these information are generally always queried together. Second, this information is spread amount three
storage slots, and hence requires three costly SLOADs, even though two storage slots would easily
suffice, as only 321 bit of data are stored.

However, as this needs to be resolved within the AMB contracts, it is outside the scope of this code
review.

7.3 Limits Can Be Compressed in Storage
Note Version 1

There are three storage slots being consumed on both sides of the bridge for the following information:

uintStorage[keccak256(abi.encodePacked("dailyLimit", _token))] = _limits[0];
uintStorage[keccak256(abi.encodePacked("maxPerTx", _token))] = _limits[1];
uintStorage[keccak256(abi.encodePacked("minPerTx", _token))] = _limits[2];

These information are often accessed together. Given the value ranges they could probably be
compressed into two storage slots. This would also provide gas savings on the foreign side as it would
avoid a costly SLOAD.

POA Network - OmniBridge - ChainSecurity 18

https://chainsecurity.com

7.4 Proxy Fallback Redundant Operations
Note Version 1

The Proxy contract does some redundant operations, such as:

• let ptr := mload(0x40)

• mstore(0x40, add(ptr, returndatasize()))

Preserving the free memory slot pointer at 0x40 is important when the assembly code is used together
with Solidity code. But in case of the Proxy contract, this can be skipped, as no solidity code is executed
after the assembly block.

7.5 Redundant Work Performed as Part of
totalSpentPerDay
Note Version 1

The function bridgeSpecificActionsOnTokenTransfer has the following code, that checks and
adjusts the totalSpentPerDay limit for a particular token.

require(withinLimit(_token, _value));
addTotalSpentPerDay(_token, getCurrentDay(), _value);

The code of those 2 functions are quite similar.

function withinLimit(address _token, uint256 _amount) public view returns (bool) {
 uint256 nextLimit = totalSpentPerDay(_token, getCurrentDay()).add(_amount);
 return
 dailyLimit(address(0)) > 0 &&
 dailyLimit(_token) >= nextLimit &&
 _amount <= maxPerTx(_token) &&
 _amount >= minPerTx(_token);
}

function addTotalSpentPerDay(
 address _token,
 uint256 _day,
 uint256 _value
) internal {
 uintStorage[keccak256(abi.encodePacked("totalSpentPerDay", _token, _day))] = totalSpentPerDay(_token, _day).add(
 _value
);
}

The function withinLimit, that is executed first, reads, increases and checks limits. The function
addTotalSpentPerDay reads, increases and writes the increased value for the limit. This is a small
redundancy that can potentially be eliminated.

7.6 Reentrancy Lock Is Gas Inefficient
Note Version 1

The main contracts have a reentrancy guard. Setting and releasing this guard inside OmniBridge
contracts is done via storage of a boolean true/false.

Please note that using locks which switch between the values 0 and 1 is more expensive than switching
between the values 1 and 2 in case of a reverting transaction. However, the correct choice of this values

POA Network - OmniBridge - ChainSecurity 19

https://chainsecurity.com

in the future will also be affected by the currently discussed EIP-3298 which is concerned about the
removals of refunds.

Based on EIP-2929 it would also be beneficial if the reentracy lock value would be packed into the same
storage slot with another variable, but that is hard due to the chosen storage layout.

7.7 State of Implementation Contract
Note Version 1

With proxied contracts, the state generally resides in the proxy while the code resides inside the
implementation contract. In principle, the state of the implementation contract is meaningless, unless the
code contains selfdestruct, callcode or delegatecall opcodes. Neither of these opcodes can be found
inside the current Omnibridge contracts. However, we would still recommend to make the initialization of
the state of the implementation contract part of the deployment scripts, as a best practice to avoid future
issues.

7.8 Token Creators Can Avoid Fee Payments
Note Version 1

Token contracts that are native to the xDai side could be programmed such that they avoid a fee
payment to the bridge validators, e.g. by simply ignoring transfer calls to and from the fee manager.
Furthermore, existing tokens could be wrapped to avoid fees. However, as the fees are fairly low and as
such tokens could be blocked on the bridge, the risk appears to be very low.

7.9 Token With Transfer Restrictions
Note Version 1

Certain Tokens, especially regulated stable coins, have transfer restrictions, blacklists or even the power
to seize funds. If some tainted funds would be bridged, the entire bridge balance of that particular token
might become frozen or could get seized. As with any other contract where funds are deposited, users
need to be aware of these potential risks.

7.10 Weak Randomness
Note Version 1

The following function is used to pick a random number:

function random(uint256 _count) internal view returns (uint256) {
 return uint256(blockhash(block.number.sub(1))) % _count;
}

This is generally a bad way to sample randomness as, especially in the case of xDai, different attacks
exist. Furthermore, there randomness is extremely slightly skewed. In this context, however, the
randomness only serves to pick the account the receives the fee dust. As the corresponding monetary
value is generally tiny, it seems acceptable.

POA Network - OmniBridge - ChainSecurity 20

https://chainsecurity.com

7.11 onlyMediator Modifier
Note Version 1

There is an onlyMediator modifier inside the BasicAMBMediator contract. It performs two checks:

• Check that the call comes from AMB bridge contracts.

• Check that the forwarded by AMB bridge the message sender is a mediator on the other side.

There are multiple concerns about this modifier.

Firstly, the MediatorOwnableModule has a modifier with the same name that performs only one check
- that the message comes from OmniBridge extension contract. That can potentially cause
misunderstandings and human errors.

Secondly, it seems that the virtual message sender is always needed. This is currently being queried
through a call to bridge.messageSender(). Here, for future versions of the AMB protocol a more
efficient design would be possible where this information is passed along.

/**
 * @dev Throws if caller on the other side is not an associated mediator.
 */
modifier onlyMediator {
 _onlyMediator();
 _;
}

/**
 * @dev Internal function for reducing onlyMediator modifier bytecode overhead.
 */
function _onlyMediator() internal view {
 IAMB bridge = bridgeContract();
 require(msg.sender == address(bridge));
 require(bridge.messageSender() == mediatorContractOnOtherSide());
}

POA Network - OmniBridge - ChainSecurity 21

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	2.2 System Overview
	2.2.1 Trust Model

	3 Limitations and use of report
	4 Terminology
	5 Findings
	5.1 Administrators Can Make Non-Native Tokens Native and Native Tokens Non-Native
	5.2 Tokens With More Than One Token Address Can Be Stolen by Admins
	5.3 Documentation Mismatches
	5.4 Function onTokenTransfer Reentrancy Case
	5.5 Incompatible Tokens

	6 Resolved Findings
	6.1 Decimals in bridgeSpecificActionsOnTokenTransfer Are Not Used
	6.2 ERC20 Function Calls Ignore Return Values
	6.3 No Canonical Definition of Calldata for onTokenTransfer
	6.4 Safe Transfers Are Not Used for All Token Transfers
	6.5 Transferred Values in Case of Relaying Tokens With Fees
	6.6 OmnibridgeFeeManager Fee Distribution Reverts in Case of Tokens With Transfer Fees
	6.7 Code Simplification Possible
	6.8 Name Collision Among Bridged Tokens With Different Origins
	6.9 Reentrancy Into AMB
	6.10 Restriction to Static Call
	6.11 Superfluous Loads From Storage

	7 Notes
	7.1 Differing Token Values
	7.2 Function requestFailedMessageFix Performs Multiple Calls to bridgeContract
	7.3 Limits Can Be Compressed in Storage
	7.4 Proxy Fallback Redundant Operations
	7.5 Redundant Work Performed as Part of totalSpentPerDay
	7.6 Reentrancy Lock Is Gas Inefficient
	7.7 State of Implementation Contract
	7.8 Token Creators Can Avoid Fee Payments
	7.9 Token With Transfer Restrictions
	7.10 Weak Randomness
	7.11 onlyMediator Modifier

