115 lines
3.0 KiB
Rust
115 lines
3.0 KiB
Rust
|
use std::sync::Arc;
|
||
|
|
||
|
use portable_atomic::{AtomicF32, Ordering};
|
||
|
use serde::ser::Serializer;
|
||
|
use serde::Serialize;
|
||
|
use tokio::task::JoinHandle;
|
||
|
use tokio::time::Duration;
|
||
|
use watermill::quantile::RollingQuantile;
|
||
|
use watermill::stats::Univariate;
|
||
|
|
||
|
pub struct RollingQuantileLatency {
|
||
|
/// Join handle for the latency calculation task.
|
||
|
pub join_handle: JoinHandle<()>,
|
||
|
/// Send to update with each request duration.
|
||
|
latency_tx: flume::Sender<f32>,
|
||
|
/// rolling quantile latency in seconds. Updated async.
|
||
|
seconds: Arc<AtomicF32>,
|
||
|
}
|
||
|
|
||
|
/// Task to be spawned per-RollingMedianLatency for calculating the value
|
||
|
#[derive(Debug)]
|
||
|
struct RollingQuantileLatencyTask {
|
||
|
/// Receive to update each request duration
|
||
|
latency_rx: flume::Receiver<f32>,
|
||
|
/// Current estimate and update time
|
||
|
seconds: Arc<AtomicF32>,
|
||
|
/// quantile value.
|
||
|
/// WARNING! should be between 0 and 1.
|
||
|
q: f32,
|
||
|
/// Rolling window size.
|
||
|
window_size: usize,
|
||
|
}
|
||
|
|
||
|
impl RollingQuantileLatencyTask {
|
||
|
/// Run the loop for updating latency.
|
||
|
async fn run(self) {
|
||
|
let mut q = RollingQuantile::new(self.q, self.window_size).unwrap();
|
||
|
|
||
|
while let Ok(rtt) = self.latency_rx.recv_async().await {
|
||
|
self.update(&mut q, rtt);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/// Update the estimate object atomically.
|
||
|
fn update(&self, q: &mut RollingQuantile<f32>, rtt: f32) {
|
||
|
q.update(rtt);
|
||
|
|
||
|
self.seconds
|
||
|
.store(q.get(), portable_atomic::Ordering::Relaxed);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
impl RollingQuantileLatency {
|
||
|
#[inline]
|
||
|
pub async fn record(&self, duration: Duration) {
|
||
|
self.record_secs(duration.as_secs_f32()).await
|
||
|
}
|
||
|
|
||
|
#[inline]
|
||
|
pub async fn record_secs(&self, secs: f32) {
|
||
|
self.latency_tx.send_async(secs).await.unwrap()
|
||
|
}
|
||
|
|
||
|
/// Current median.
|
||
|
#[inline]
|
||
|
pub fn seconds(&self) -> f32 {
|
||
|
self.seconds.load(portable_atomic::Ordering::Relaxed)
|
||
|
}
|
||
|
|
||
|
/// Current median.
|
||
|
#[inline]
|
||
|
pub fn duration(&self) -> Duration {
|
||
|
Duration::from_secs_f32(self.seconds())
|
||
|
}
|
||
|
}
|
||
|
|
||
|
impl RollingQuantileLatency {
|
||
|
pub async fn spawn(quantile_value: f32, window_size: usize) -> Self {
|
||
|
// TODO: how should queue size and window size be related?
|
||
|
let (latency_tx, latency_rx) = flume::bounded(window_size);
|
||
|
|
||
|
let seconds = Arc::new(AtomicF32::new(0.0));
|
||
|
|
||
|
let task = RollingQuantileLatencyTask {
|
||
|
latency_rx,
|
||
|
seconds: seconds.clone(),
|
||
|
q: quantile_value,
|
||
|
window_size,
|
||
|
};
|
||
|
|
||
|
let join_handle = tokio::spawn(task.run());
|
||
|
|
||
|
Self {
|
||
|
join_handle,
|
||
|
latency_tx,
|
||
|
seconds,
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#[inline]
|
||
|
pub async fn spawn_median(window_size: usize) -> Self {
|
||
|
Self::spawn(0.5, window_size).await
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/// serialize as seconds
|
||
|
impl Serialize for RollingQuantileLatency {
|
||
|
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
|
||
|
where
|
||
|
S: Serializer,
|
||
|
{
|
||
|
serializer.serialize_f32(self.seconds.load(Ordering::Relaxed))
|
||
|
}
|
||
|
}
|