implement s2 commitment

This commit is contained in:
Alex Vlasov 2019-02-21 18:55:56 -05:00
parent d4b8a481f1
commit 37f57a99a6

@ -1,4 +1,4 @@
use ff::{Field};
use ff::{Field, PrimeField, PrimeFieldRepr};
use pairing::{Engine, CurveProjective, CurveAffine};
use std::marker::PhantomData;
@ -21,6 +21,16 @@ pub struct S2Proof<E: Engine> {
}
impl<E: Engine> S2Eval<E> {
pub fn calculate_commitment_element(n: usize, srs: &SRS<E>) -> E::G1Affine {
// TODO: parallelize
let mut o = E::G1::zero();
for i in 0..n {
o.add_assign_mixed(&srs.g_positive_x_alpha[i]);
}
o.into_affine()
}
pub fn new(n: usize) -> Self {
S2Eval {
n: n,
@ -31,11 +41,7 @@ impl<E: Engine> S2Eval<E> {
pub fn evaluate(&self, x: E::Fr, y: E::Fr, srs: &SRS<E>) -> S2Proof<E> {
// create a reference element first
// TODO: parallelize
let mut o = E::G1::zero();
for i in 0..self.n {
o.add_assign_mixed(&srs.g_positive_x_alpha[i]);
}
let o = Self::calculate_commitment_element(self.n, &srs);
let mut poly = vec![E::Fr::one(); self.n+1];
@ -63,7 +69,7 @@ impl<E: Engine> S2Eval<E> {
S2Proof {
o: o.into_affine(),
o: o,
c_value: c,
d_value: d,
c_opening: c_opening,
@ -71,9 +77,54 @@ impl<E: Engine> S2Eval<E> {
}
}
pub fn verify(proof: &S2Proof<E>, srs: &SRS<E>) -> bool {
pub fn verify(x: E::Fr, y: E::Fr, proof: &S2Proof<E>, srs: &SRS<E>) -> bool {
// e(C,hαx)e(Cyz,hα) = e(O,h)e(gc,hα)
let alpha_x_precomp = srs.h_positive_x_alpha[1].prepare();
let alpha_precomp = srs.h_positive_x_alpha[0].prepare();
let mut h_prep = srs.h_positive_x[0];
h_prep.negate();
let h_prep = h_prep.prepare();
let mut c_minus_xy = proof.c_value;
let mut xy = x;
xy.mul_assign(&y);
c_minus_xy.sub_assign(&xy);
let mut c_in_c_minus_xy = proof.c_opening.mul(c_minus_xy.into_repr()).into_affine();
let valid = E::final_exponentiation(&E::miller_loop(&[
(&proof.c_opening.prepare(), &alpha_x_precomp),
(&c_in_c_minus_xy.prepare(), &alpha_precomp),
(&proof.o.prepare(), &h_prep),
])).unwrap() == E::Fqk::one();
if !valid {
return false;
}
// e(D,hαx)e(Dy1z,hα) = e(O,h)e(gd,hα)
let mut d_minus_x_y_inv = proof.d_value;
let mut x_y_inv = x;
x_y_inv.mul_assign(&y.inverse().unwrap());
d_minus_x_y_inv.sub_assign(&x_y_inv);
let mut d_in_d_minus_x_y_inv = proof.d_opening.mul(d_minus_x_y_inv.into_repr()).into_affine();
let valid = E::final_exponentiation(&E::miller_loop(&[
(&proof.d_opening.prepare(), &alpha_x_precomp),
(&d_in_d_minus_x_y_inv.prepare(), &alpha_precomp),
(&proof.o.prepare(), &h_prep),
])).unwrap() == E::Fqk::one();
if !valid {
return false;
}
true
}
}