This change introduces garbage collection for the light client. Historical
chain data is deleted periodically. If you want to disable the GC, use
the --light.nopruning flag.
This PR reimplements the light client server pool. It is also a first step
to move certain logic into a new lespay package. This package will contain
the implementation of the lespay token sale functions, the token buying and
selling logic and other components related to peer selection/prioritization
and service quality evaluation. Over the long term this package will be
reusable for incentivizing future protocols.
Since the LES peer logic is now based on enode.Iterator, it can now use
DNS-based fallback discovery to find servers.
This document describes the function of the new components:
https://gist.github.com/zsfelfoldi/3c7ace895234b7b345ab4f71dab102d4
* trie: initial implementation for range proof
* trie: add benchmark
* trie: fix lint
* trie: fix minor issue
* trie: unset the edge valuenode as well
* trie: unset the edge valuenode as nilValuenode
* all: seperate consensus error and evm internal error
There are actually two types of error will be returned when
a tranaction/message call is executed: (a) consensus error
(b) evm internal error. The former should be converted to
a consensus issue, e.g. The sender doesn't enough asset to
purchase the gas it specifies. The latter is allowed since
evm itself is a blackbox and internal error is allowed to happen.
This PR emphasizes the difference by introducing a executionResult
structure. The evm error is embedded inside. So if any error
returned, it indicates consensus issue happens.
And also this PR improve the `EstimateGas` API to return the concrete
revert reason if the transaction always fails
* all: polish
* accounts/abi/bind/backends: add tests
* accounts/abi/bind/backends, internal: cleanup error message
* all: address comments
* core: fix lint
* accounts, core, eth, internal: address comments
* accounts, internal: resolve revert reason if possible
* accounts, internal: address comments
* accounts/abi: implement new fackball functions
In Solidity v0.6.0, the original fallback is separated
into two different sub types: fallback and receive.
This PR addes the support for parsing new format abi
and the relevant abigen functionalities.
* accounts/abi: fix unit tests
* accounts/abi: minor fixes
* accounts/abi, mobile: support jave binding
* accounts/abi: address marius's comment
* accounts/abi: Work around the uin64 conversion issue
Co-authored-by: Guillaume Ballet <gballet@gmail.com>
This PR adds service value measurement statistics to the light client. It
also adds a private API that makes these statistics accessible. A follow-up
PR will add the new server pool which uses these statistics to select
servers with good performance.
This document describes the function of the new components:
https://gist.github.com/zsfelfoldi/3c7ace895234b7b345ab4f71dab102d4
Co-authored-by: rjl493456442 <garyrong0905@gmail.com>
Co-authored-by: rjl493456442 <garyrong0905@gmail.com>
* les: move execqueue into utilities package
execqueue is a util for executing queued functions
in a serial order which is used by both les server
and les client. Move it to common package.
* les: move randselect to utilities package
weighted_random_selector is a helpful tool for randomly select
items maintained in a set but based on the item weight.
It's used anywhere is LES package, mainly by les client but will
be used in les server with very high chance. So move it into a
common package as the second step for les separation.
* les: rename to utils
Prior to this change, eth_call changed the balance of the sender account in the
EVM environment to 2^256 wei to cover the gas cost of the call execution.
We've had this behavior for a long time even though it's super confusing.
This commit sets the default call gasprice to zero instead of updating the balance,
which is better because it makes eth_call semantics less surprising. Removing
the built-in balance assignment also makes balance overrides work as expected.
* les: move the checkpoint oracle into its own package
It's first step of refactor LES package. LES package
basically can be divided into LES client and LES server.
However both sides will use checkpoint package for
status retrieval and verification. So this PR moves
checkpoint oracle into a separate package
* les: address comments
* build: use golangci-lint
This changes build/ci.go to download and run golangci-lint instead
of gometalinter.
* core/state: fix unnecessary conversion
* p2p/simulations: fix lock copying (found by go vet)
* signer/core: fix unnecessary conversions
* crypto/ecies: remove unused function cmpPublic
* core/rawdb: remove unused function print
* core/state: remove unused function xTestFuzzCutter
* core/vm: disable TestWriteExpectedValues in a different way
* core/forkid: remove unused function checksum
* les: remove unused type proofsData
* cmd/utils: remove unused functions prefixedNames, prefixFor
* crypto/bn256: run goimports
* p2p/nat: fix goimports lint issue
* cmd/clef: avoid using unkeyed struct fields
* les: cancel context in testRequest
* rlp: delete unreachable code
* core: gofmt
* internal/build: simplify DownloadFile for Go 1.11 compatibility
* build: remove go test --short flag
* .travis.yml: disable build cache
* whisper/whisperv6: fix ineffectual assignment in TestWhisperIdentityManagement
* .golangci.yml: enable goconst and ineffassign linters
* build: print message when there are no lint issues
* internal/build: refactor download a bit
This change adds tests for the virtual clock and aligns the interface
with the time package by renaming Cancel to Stop. It also removes the
binary search from Stop because it complicates the code unnecessarily.
Most of these changes are related to the Go 1.13 changes to test binary
flag handling.
* cmd/geth: make attach tests more reliable
This makes the test wait for the endpoint to come up by polling
it instead of waiting for two seconds.
* tests: fix test binary flags for Go 1.13
Calling flag.Parse during package initialization is prohibited
as of Go 1.13 and causes test failures. Call it in TestMain instead.
* crypto/ecies: remove useless -dump flag in tests
* p2p/simulations: fix test binary flags for Go 1.13
Calling flag.Parse during package initialization is prohibited
as of Go 1.13 and causes test failures. Call it in TestMain instead.
* build: remove workaround for ./... vendor matching
This workaround was necessary for Go 1.8. The Go 1.9 release changed
the expansion rules to exclude vendored packages.
* Makefile: use relative path for GOBIN
This makes the "Run ./build/bin/..." line look nicer.
* les: fix test binary flags for Go 1.13
Calling flag.Parse during package initialization is prohibited
as of Go 1.13 and causes test failures. Call it in TestMain instead.
This PR adds some hardening in the lower levels of the protocol stack, to bail early on invalid data. Primarily, attacks that this PR protects against are on the "annoyance"-level, which would otherwise write a couple of megabytes of data into the log output, which is a bit resource intensive.
* les: reject client connection if it makes too much invalid req
* les: address comments
* les: use uint32
* les: fix variable name
* les: add invalid counter for duplicate invalid req
* p2p/enr: add entries for for IPv4/IPv6 separation
This adds entry types for "ip6", "udp6", "tcp6" keys. The IP type stays
around because removing it would break a lot of code and force everyone
to care about the distinction.
* p2p/enode: track IPv4 and IPv6 address separately
LocalNode predicts the local node's UDP endpoint and updates the record.
This change makes it predict IPv4 and IPv6 endpoints separately since
they can now be in the record at the same time.
* p2p/enode: implement base64 text format
* all: switch to enode.Parse(...)
This allows passing base64-encoded node records to all the places that
previously accepted enode:// URLs. The URL format is still supported.
* cmd/bootnode, p2p: log node URL instead of ENR
...and return the base64 record in NodeInfo.
* all: freezer style syncing
core, eth, les, light: clean up freezer relative APIs
core, eth, les, trie, ethdb, light: clean a bit
core, eth, les, light: add unit tests
core, light: rewrite setHead function
core, eth: fix downloader unit tests
core: add receipt chain insertion test
core: use constant instead of hardcoding table name
core: fix rollback
core: fix setHead
core/rawdb: remove canonical block first and then iterate side chain
core/rawdb, ethdb: add hasAncient interface
eth/downloader: calculate ancient limit via cht first
core, eth, ethdb: lots of fixes
* eth/downloader: print ancient disable log only for fast sync
* core, eth, trie: bloom filter for trie node dedup during fast sync
* eth/downloader, trie: address review comments
* core, ethdb, trie: restart fast-sync bloom construction now and again
* eth/downloader: initialize fast sync bloom on startup
* eth: reenable eth/62 until we properly remove it
This change makes getBalance, getCode, getStorageAt, getProof,
call, getTransactionCount return an error if the block number in
the request doesn't exist. getHeaderByNumber still returns null
for missing headers.
* cmd, eth, miner: disable advance sealing if user require
* cmd, console, miner, les, eth: wrap the miner config
* eth: remove todo
* cmd, miner: revert noadvance flag
The reason for this is: if the transaction execution is even longer
than block time, then this kind of transactions is DoS attack.
This change
- implements concurrent LES request serving even for a single peer.
- replaces the request cost estimation method with a cost table based on
benchmarks which gives much more consistent results. Until now the
allowed number of light peers was just a guess which probably contributed
a lot to the fluctuating quality of available service. Everything related
to request cost is implemented in a single object, the 'cost tracker'. It
uses a fixed cost table with a global 'correction factor'. Benchmark code
is included and can be run at any time to adapt costs to low-level
implementation changes.
- reimplements flowcontrol.ClientManager in a cleaner and more efficient
way, with added capabilities: There is now control over bandwidth, which
allows using the flow control parameters for client prioritization.
Target utilization over 100 percent is now supported to model concurrent
request processing. Total serving bandwidth is reduced during block
processing to prevent database contention.
- implements an RPC API for the LES servers allowing server operators to
assign priority bandwidth to certain clients and change prioritized
status even while the client is connected. The new API is meant for
cases where server operators charge for LES using an off-protocol mechanism.
- adds a unit test for the new client manager.
- adds an end-to-end test using the network simulator that tests bandwidth
control functions through the new API.