2017-02-02 00:36:51 +03:00
|
|
|
// Copyright 2012 The Go Authors. All rights reserved.
|
|
|
|
// Use of this source code is governed by a BSD-style
|
|
|
|
// license that can be found in the LICENSE file.
|
|
|
|
|
2018-03-05 15:33:45 +03:00
|
|
|
// +build amd64,!appengine,!gccgo
|
|
|
|
|
2017-02-02 00:36:51 +03:00
|
|
|
package bn256
|
|
|
|
|
|
|
|
import (
|
|
|
|
"crypto/rand"
|
|
|
|
)
|
|
|
|
|
|
|
|
func ExamplePair() {
|
|
|
|
// This implements the tripartite Diffie-Hellman algorithm from "A One
|
|
|
|
// Round Protocol for Tripartite Diffie-Hellman", A. Joux.
|
|
|
|
// http://www.springerlink.com/content/cddc57yyva0hburb/fulltext.pdf
|
|
|
|
|
|
|
|
// Each of three parties, a, b and c, generate a private value.
|
|
|
|
a, _ := rand.Int(rand.Reader, Order)
|
|
|
|
b, _ := rand.Int(rand.Reader, Order)
|
|
|
|
c, _ := rand.Int(rand.Reader, Order)
|
|
|
|
|
|
|
|
// Then each party calculates g₁ and g₂ times their private value.
|
|
|
|
pa := new(G1).ScalarBaseMult(a)
|
|
|
|
qa := new(G2).ScalarBaseMult(a)
|
|
|
|
|
|
|
|
pb := new(G1).ScalarBaseMult(b)
|
|
|
|
qb := new(G2).ScalarBaseMult(b)
|
|
|
|
|
|
|
|
pc := new(G1).ScalarBaseMult(c)
|
|
|
|
qc := new(G2).ScalarBaseMult(c)
|
|
|
|
|
|
|
|
// Now each party exchanges its public values with the other two and
|
|
|
|
// all parties can calculate the shared key.
|
|
|
|
k1 := Pair(pb, qc)
|
|
|
|
k1.ScalarMult(k1, a)
|
|
|
|
|
|
|
|
k2 := Pair(pc, qa)
|
|
|
|
k2.ScalarMult(k2, b)
|
|
|
|
|
|
|
|
k3 := Pair(pa, qb)
|
|
|
|
k3.ScalarMult(k3, c)
|
|
|
|
|
|
|
|
// k1, k2 and k3 will all be equal.
|
|
|
|
}
|