14 KiB
noble-curves
Minimal, zero-dependency JS implementation of elliptic curve cryptography.
- Short Weierstrass curve with ECDSA signatures
- Twisted Edwards curve with EdDSA signatures
- Montgomery curve for ECDH key agreement
To keep the package minimal, no curve definitions are provided out-of-box. Use micro-curve-definitions
module:
- It provides P192, P224, P256, P384, P521, secp256k1, stark curve, bn254, pasta (pallas/vesta) short weierstrass curves
- It also provides ed25519 and ed448 twisted edwards curves
- Main reason for separate package is the fact hashing library (like
@noble/hashes
) is required for full functionality - We may reconsider merging packages in future, when a stable version would be ready
Future plans:
- hash to curve standard
- point indistinguishability
- pairings
This library belongs to noble crypto
noble-crypto — high-security, easily auditable set of contained cryptographic libraries and tools.
- No dependencies, small files
- Easily auditable TypeScript/JS code
- Supported in all major browsers and stable node.js versions
- All releases are signed with PGP keys
- Check out homepage & all libraries: secp256k1, ed25519, bls12-381, hashes, curves
Usage
Use NPM in node.js / browser, or include single file from GitHub's releases page:
npm install @noble/curves
The library does not have an entry point. It allows you to select specific primitives and drop everything else. If you only want to use secp256k1, just use the library with rollup or other bundlers. This is done to make your bundles tiny.
import { weierstrass } from '@noble/curves/weierstrass'; // Short Weierstrass curve
import { sha256 } from '@noble/hashes/sha256';
import { hmac } from '@noble/hashes/hmac';
import { concatBytes, randomBytes } from '@noble/hashes/utils';
const secp256k1 = weierstrass({
a: 0n,
b: 7n,
P: 0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2fn,
n: 0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141n,
Gx: 55066263022277343669578718895168534326250603453777594175500187360389116729240n,
Gy: 32670510020758816978083085130507043184471273380659243275938904335757337482424n,
hash: sha256,
hmac: (k: Uint8Array, ...msgs: Uint8Array[]) => hmac(sha256, key, concatBytes(...msgs)),
});
const key = secp256k1.utils.randomPrivateKey();
const pub = secp256k1.getPublicKey(key);
const msg = randomBytes(32);
const sig = secp256k1.sign(msg, key);
secp256k1.verify(sig, msg, pub); // true
sig.recoverPublicKey(msg); // == pub
const someonesPubkey = secp256k1.getPublicKey(secp256k1.utils.randomPrivateKey());
const shared = secp256k1.getSharedSecret(key, someonesPubkey);
Overview
- edwards: Twisted Edwards curve
- montgomery: Montgomery curve
- weierstrass: Short Weistrass curve
- modular
- utils
- All arithmetics is done with JS bigints in finite fields
- Curve variables, order (number of points on curve), field prime (over which the modular division would be done) are required
- Many features require hashing, which is not provided.
@noble/hashes
can be used for this purpose. Any other library must conform to the CHash interface:export type CHash = { (message: Uint8Array): Uint8Array; blockLen: number; outputLen: number; create(): any; };
- w-ary non-adjacent form (wNAF) method with constant-time adjustments is used for point multiplication.
It is possible to enable precomputes for edwards & weierstrass curves.
Precomputes are calculated once (takes ~20-40ms), after that most
G
multiplications- for example,
getPublicKey()
,sign()
and similar methods - would be much faster. Usecurve.utils.precompute()
- for example,
- Special params that tune performance can be optionally provided. For example, square root calculation, which is commonly used in point decompression routines
- Curves export
Point
, which conforms toGroup
interface, which has following methods:double()
,negate()
add()
,subtract()
,equals()
multiply()
Every group also hasBASE
(generator) andZERO
(infinity) static properties.
- Every curve exports
utils
:randomPrivateKey()
mod
&invert
methods: basically utilities frommodular
with defaultP
edwards: Twisted Edwards curve
Twisted Edwards curve's formula is: ax² + y² = 1 + dx²y².
- You must specify curve params
a
,d
, fieldP
, ordern
, cofactorh
, and coordinatesGx
,Gy
of generator point. - For EdDSA signatures, params
hash
is also required.adjustScalarBytes
which instructs how to change private scalars could be specified.
import { twistedEdwards } from '@noble/curves/edwards'; // Twisted Edwards curve
import { sha512 } from '@noble/hashes/sha512';
import { div } from '@noble/curves/modular';
const ed25519 = twistedEdwards({
a: -1n,
d: div(-121665n, 121666n, 2n ** 255n - 19n), // -121665n/121666n
P: 2n ** 255n - 19n,
n: 2n ** 252n + 27742317777372353535851937790883648493n,
h: 8n,
Gx: 15112221349535400772501151409588531511454012693041857206046113283949847762202n,
Gy: 46316835694926478169428394003475163141307993866256225615783033603165251855960n,
hash: sha512,
randomBytes,
adjustScalarBytes(bytes) { // could be no-op
bytes[0] &= 248;
bytes[31] &= 127;
bytes[31] |= 64;
return bytes;
},
} as const);
ed25519.getPublicKey(ed25519.utils.randomPrivateKey());
twistedEdwards()
returns CurveFn
of following type:
export type CurveFn = {
CURVE: ReturnType<typeof validateOpts>;
getPublicKey: (privateKey: PrivKey, isCompressed?: boolean) => Uint8Array;
sign: (message: Hex, privateKey: Hex) => Uint8Array;
verify: (sig: SigType, message: Hex, publicKey: PubKey) => boolean;
Point: PointConstructor;
ExtendedPoint: ExtendedPointConstructor;
Signature: SignatureConstructor;
utils: {
mod: (a: bigint, b?: bigint) => bigint;
invert: (number: bigint, modulo?: bigint) => bigint;
randomPrivateKey: () => Uint8Array;
getExtendedPublicKey: (key: PrivKey) => {
head: Uint8Array;
prefix: Uint8Array;
scalar: bigint;
point: PointType;
pointBytes: Uint8Array;
};
};
};
montgomery: Montgomery curve
For now the module only contains methods for x-only ECDH on Curve25519 / Curve448 from RFC7748.
Proper Elliptic Curve Points are not implemented yet.
You must specify curve field, a24
special variable, montgomeryBits
, nByteLength
, and coordinate u
of generator point.
const x25519 = montgomery({
P: 2n ** 255n - 19n,
a24: 121665n, // TODO: change to a
montgomeryBits: 255,
nByteLength: 32,
Gu: '0900000000000000000000000000000000000000000000000000000000000000',
// Optional params
powPminus2: (x: bigint): bigint => { return mod.pow(x, P-2, P); },
adjustScalarBytes(bytes) {
bytes[0] &= 248;
bytes[31] &= 127;
bytes[31] |= 64;
return bytes;
},
});
weierstrass: Short Weistrass curve
Short Weistrass curve's formula is: y² = x³ + ax + b. Supports deterministic ECDSA from RFC6979.
- You must specify curve params:
a
,b
; fieldP
; curve ordern
; coordinatesGx
,Gy
of generator point - For ECDSA, you must specify
hash
,hmac
. It is also possible to recover keys from signatures - For ECDH, use
getSharedSecret(privKeyA, pubKeyB)
- Optional params are
lowS
(default value),sqrtMod
(square root chain) andendo
(endomorphism)
import { weierstrass } from '@noble/curves/weierstrass'; // Short Weierstrass curve
import { sha256 } from '@noble/hashes/sha256';
import { hmac } from '@noble/hashes/hmac';
import { concatBytes, randomBytes } from '@noble/hashes/utils';
const secp256k1 = weierstrass({
// Required params
a: 0n,
b: 7n,
P: 0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2fn,
n: 0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141n,
Gx: 55066263022277343669578718895168534326250603453777594175500187360389116729240n,
Gy: 32670510020758816978083085130507043184471273380659243275938904335757337482424n,
hash: sha256,
hmac: (k: Uint8Array, ...msgs: Uint8Array[]) => hmac(sha256, key, concatBytes(...msgs)),
randomBytes,
// Optional params
// Cofactor
h: BigInt(1),
// Allow only low-S signatures by default in sign() and verify()
lowS: true,
// More efficient curve-specific implementation of square root
sqrtMod(y: bigint) { return sqrt(y); },
// Endomorphism options
endo: {
// Beta param
beta: BigInt('0x7ae96a2b657c07106e64479eac3434e99cf0497512f58995c1396c28719501ee'),
// Split scalar k into k1, k2
splitScalar: (k: bigint) => {
return { k1neg: true, k1: 512n, k2neg: false, k2: 448n };
},
},
});
// Usage
const key = secp256k1.utils.randomPrivateKey();
const pub = secp256k1.getPublicKey(key);
const msg = randomBytes(32);
const sig = secp256k1.sign(msg, key);
secp256k1.verify(sig, msg, pub); // true
sig.recoverPublicKey(msg); // == pub
const someonesPubkey = secp256k1.getPublicKey(secp256k1.utils.randomPrivateKey());
const shared = secp256k1.getSharedSecret(key, someonesPubkey);
weierstrass()
returns CurveFn
:
export type CurveFn = {
CURVE: ReturnType<typeof validateOpts>;
getPublicKey: (privateKey: PrivKey, isCompressed?: boolean) => Uint8Array;
getSharedSecret: (privateA: PrivKey, publicB: PubKey, isCompressed?: boolean) => Uint8Array;
sign: (msgHash: Hex, privKey: PrivKey, opts?: SignOpts) => SignatureType;
verify: (
signature: Hex | SignatureType, msgHash: Hex, publicKey: PubKey, opts?: {lowS?: boolean;}
) => boolean;
Point: PointConstructor;
JacobianPoint: JacobianPointConstructor;
Signature: SignatureConstructor;
utils: {
mod: (a: bigint, b?: bigint) => bigint;
invert: (number: bigint, modulo?: bigint) => bigint;
isValidPrivateKey(privateKey: PrivKey): boolean;
hashToPrivateKey: (hash: Hex) => Uint8Array;
randomPrivateKey: () => Uint8Array;
};
};
modular
Modular arithmetics utilities.
import * as mod from '@noble/curves/modular';
mod.mod(21n, 10n); // 21 mod 10 == 1n; fixed version of 21 % 10
mod.invert(17n, 10n); // invert(17) mod 10; modular multiplicative inverse
mod.div(5n, 17n, 10n); // 5/17 mod 10 == 5 * invert(17) mod 10; division
mod.invertBatch([1n, 2n, 4n], 21n); // => [1n, 11n, 16n] in one inversion
mod.sqrt(21n, 73n); // sqrt(21) mod 73; square root
utils
import * as utils from '@noble/curves/utils';
utils.bytesToHex(Uint8Array.from([0xde, 0xad, 0xbe, 0xef]));
utils.hexToBytes('deadbeef');
utils.hexToNumber();
utils.bytesToNumberBE(Uint8Array.from([0xde, 0xad, 0xbe, 0xef]));
utils.bytesToNumberLE(Uint8Array.from([0xde, 0xad, 0xbe, 0xef]));
utils.numberToBytesBE(123n);
utils.numberToBytesLE(123n);
utils.numberToHexUnpadded(123n);
utils.concatBytes(Uint8Array.from([0xde, 0xad]), Uint8Array.from([0xbe, 0xef]));
utils.nLength(255n);
utils.hashToPrivateScalar(sha512_of_something, secp256r1.n);
utils.equalBytes(Uint8Array.from([0xde]), Uint8Array.from([0xde]));
Security
The library had no prior security audit.
Timing attack considerations: JIT-compiler and Garbage Collector make "constant time" extremely hard to achieve in a scripting language. Which means any other JS library can't have constant-timeness. Even statically typed Rust, a language without GC, makes it harder to achieve constant-time for some cases. If your goal is absolute security, don't use any JS lib — including bindings to native ones. Use low-level libraries & languages. Nonetheless we're targetting algorithmic constant time.
We consider infrastructure attacks like rogue NPM modules very important; that's why it's crucial to minimize the amount of 3rd-party dependencies & native bindings. If your app uses 500 dependencies, any dep could get hacked and you'll be downloading malware with every npm install
. Our goal is to minimize this attack vector.
Speed
Benchmark results on Apple M2 with node v18.10:
==== secp256k1 ====
- getPublicKey1 (samples: 10000)
noble_old x 8,131 ops/sec @ 122μs/op
secp256k1 x 7,374 ops/sec @ 135μs/op
- getPublicKey255 (samples: 10000)
noble_old x 7,894 ops/sec @ 126μs/op
secp256k1 x 7,327 ops/sec @ 136μs/op
- sign (samples: 5000)
noble_old x 5,243 ops/sec @ 190μs/op
secp256k1 x 4,834 ops/sec @ 206μs/op
- getSharedSecret (samples: 1000)
noble_old x 653 ops/sec @ 1ms/op
secp256k1 x 634 ops/sec @ 1ms/op
- verify (samples: 1000)
secp256k1_old x 1,038 ops/sec @ 962μs/op
secp256k1 x 1,009 ops/sec @ 990μs/op
==== ed25519 ====
- getPublicKey (samples: 10000)
old x 8,632 ops/sec @ 115μs/op
noble x 8,390 ops/sec @ 119μs/op
- sign (samples: 5000)
old x 4,376 ops/sec @ 228μs/op
noble x 4,233 ops/sec @ 236μs/op
- verify (samples: 1000)
old x 865 ops/sec @ 1ms/op
noble x 860 ops/sec @ 1ms/op
==== ed448 ====
- getPublicKey (samples: 5000)
noble x 3,224 ops/sec @ 310μs/op
- sign (samples: 2500)
noble x 1,561 ops/sec @ 640μs/op
- verify (samples: 500)
noble x 313 ops/sec @ 3ms/op
==== nist ====
- getPublicKey (samples: 2500)
P256 x 7,993 ops/sec @ 125μs/op
P384 x 3,819 ops/sec @ 261μs/op
P521 x 2,074 ops/sec @ 481μs/op
- sign (samples: 1000)
P256 x 5,327 ops/sec @ 187μs/op
P384 x 2,728 ops/sec @ 366μs/op
P521 x 1,594 ops/sec @ 626μs/op
- verify (samples: 250)
P256 x 806 ops/sec @ 1ms/op
P384 x 353 ops/sec @ 2ms/op
P521 x 171 ops/sec @ 5ms/op
==== stark ====
- pedersen (samples: 500)
old x 85 ops/sec @ 11ms/op
noble x 1,216 ops/sec @ 822μs/op
- verify (samples: 500)
old x 302 ops/sec @ 3ms/op
noble x 698 ops/sec @ 1ms/op
Contributing & testing
- Clone the repository
npm install
to install build dependencies like TypeScriptnpm run build
to compile TypeScript codenpm run test
will execute all main tests
License
The MIT License (MIT)
Copyright (c) 2022 Paul Miller (https://paulmillr.com)
See LICENSE file.