noble-curves/README.md
2023-02-26 19:05:40 +01:00

770 lines
30 KiB
Markdown
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# noble-curves
Audited & minimal JS implementation of elliptic curve cryptography.
- **noble** family, zero dependencies
- Short Weierstrass, Edwards, Montgomery curves
- ECDSA, EdDSA, Schnorr, BLS signature schemes, ECDH key agreement
- #⃣ [hash to curve](#abstracthash-to-curve-hashing-strings-to-curve-points)
for encoding or hashing an arbitrary string to an elliptic curve point
- 🧜‍♂️ [Poseidon](https://www.poseidon-hash.info) ZK-friendly hash
- 🏎 [Ultra-fast](#speed), hand-optimized for caveats of JS engines
- 🔍 Unique tests ensure correctness with Wycheproof vectors and [cryptofuzz](https://github.com/guidovranken/cryptofuzz) differential fuzzing
- 🔻 Tree-shaking-friendly: there is no entry point, which ensures small size of your app
Package consists of two parts:
1. [Abstract](#abstract-api), zero-dependency EC algorithms
2. [Implementations](#implementations), utilizing one dependency `@noble/hashes`, providing ready-to-use:
- NIST curves secp256r1/P256, secp384r1/P384, secp521r1/P521
- SECG curve secp256k1
- ed25519/curve25519/x25519/ristretto255, edwards448/curve448/x448 [RFC7748](https://www.rfc-editor.org/rfc/rfc7748) / [RFC8032](https://www.rfc-editor.org/rfc/rfc8032) / [ZIP215](https://zips.z.cash/zip-0215) stuff
- pairing-friendly curves bls12-381, bn254
Check out [Upgrading](#upgrading) if you've previously used single-feature noble packages
([secp256k1](https://github.com/paulmillr/noble-secp256k1), [ed25519](https://github.com/paulmillr/noble-ed25519)).
See [Resources](#resources) for articles and real-world software that uses curves.
### This library belongs to _noble_ crypto
> **noble-crypto** — high-security, easily auditable set of contained cryptographic libraries and tools.
- No dependencies, protection against supply chain attacks
- Easily auditable TypeScript/JS code
- Supported in all major browsers and stable node.js versions
- All releases are signed with PGP keys
- Check out [homepage](https://paulmillr.com/noble/) & all libraries:
[curves](https://github.com/paulmillr/noble-curves)
([secp256k1](https://github.com/paulmillr/noble-secp256k1),
[ed25519](https://github.com/paulmillr/noble-ed25519)),
[hashes](https://github.com/paulmillr/noble-hashes)
## Usage
Use NPM for browser / node.js:
> npm install @noble/curves
For [Deno](https://deno.land), use it with [npm specifier](https://deno.land/manual@v1.28.0/node/npm_specifiers). In browser, you could also include the single file from
[GitHub's releases page](https://github.com/paulmillr/noble-curves/releases).
The library is tree-shaking-friendly and does not expose root entry point as `import * from '@noble/curves'`.
Instead, you need to import specific primitives. This is done to ensure small size of your apps.
### Implementations
Each curve can be used in the following way:
```ts
import { secp256k1 } from '@noble/curves/secp256k1'; // ECMAScript Modules (ESM) and Common.js
// import { secp256k1 } from 'npm:@noble/curves@1.2.0/secp256k1'; // Deno
const priv = secp256k1.utils.randomPrivateKey();
const pub = secp256k1.getPublicKey(priv);
const msg = new Uint8Array(32).fill(1);
const sig = secp256k1.sign(msg, priv);
secp256k1.verify(sig, msg, pub) === true;
const privHex = '46c930bc7bb4db7f55da20798697421b98c4175a52c630294d75a84b9c126236';
const pub2 = secp256k1.getPublicKey(privHex); // keys & other inputs can be Uint8Array-s or hex strings
```
All curves:
```typescript
import { secp256k1, schnorr } from '@noble/curves/secp256k1';
import { ed25519, ed25519ph, ed25519ctx, x25519, RistrettoPoint } from '@noble/curves/ed25519';
import { ed448, ed448ph, ed448ctx, x448 } from '@noble/curves/ed448';
import { p256 } from '@noble/curves/p256';
import { p384 } from '@noble/curves/p384';
import { p521 } from '@noble/curves/p521';
import { pallas, vesta } from '@noble/curves/pasta';
import * as stark from '@noble/curves/stark';
import { bls12_381 } from '@noble/curves/bls12-381';
import { bn254 } from '@noble/curves/bn';
import { jubjub } from '@noble/curves/jubjub';
```
Weierstrass curves feature recovering public keys from signatures and ECDH key agreement:
```ts
// extraEntropy https://moderncrypto.org/mail-archive/curves/2017/000925.html
const sigImprovedSecurity = secp256k1.sign(msg, priv, { extraEntropy: true });
sig.recoverPublicKey(msg) === pub; // public key recovery
const someonesPub = secp256k1.getPublicKey(secp256k1.utils.randomPrivateKey());
const shared = secp256k1.getSharedSecret(priv, someonesPub); // ECDH (elliptic curve diffie-hellman)
```
secp256k1 has schnorr signature implementation which follows
[BIP340](https://github.com/bitcoin/bips/blob/master/bip-0340.mediawiki):
```ts
import { schnorr } from '@noble/curves/secp256k1';
const priv = schnorr.utils.randomPrivateKey();
const pub = schnorr.getPublicKey(priv);
const msg = new TextEncoder().encode('hello');
const sig = schnorr.sign(msg, priv);
const isValid = schnorr.verify(sig, msg, pub);
console.log(isValid);
```
ed25519 module has ed25519ctx / ed25519ph variants,
x25519 ECDH and [ristretto255](https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-ristretto255-decaf448).
It follows [ZIP215](https://zips.z.cash/zip-0215) and [can be used in consensus-critical applications](https://hdevalence.ca/blog/2020-10-04-its-25519am):
```ts
import { ed25519 } from '@noble/curves/ed25519';
// Variants from RFC8032: with context, prehashed
import { ed25519ctx, ed25519ph } from '@noble/curves/ed25519';
// ECDH using curve25519 aka x25519
import { x25519 } from '@noble/curves/ed25519';
const priv = 'a546e36bf0527c9d3b16154b82465edd62144c0ac1fc5a18506a2244ba449ac4';
const pub = 'e6db6867583030db3594c1a424b15f7c726624ec26b3353b10a903a6d0ab1c4c';
x25519.getSharedSecret(priv, pub) === x25519.scalarMult(priv, pub); // aliases
x25519.getPublicKey(priv) === x25519.scalarMultBase(priv);
// hash-to-curve
import { hashToCurve, encodeToCurve } from '@noble/curves/ed25519';
import { RistrettoPoint } from '@noble/curves/ed25519';
const rp = RistrettoPoint.fromHex(
'6a493210f7499cd17fecb510ae0cea23a110e8d5b901f8acadd3095c73a3b919'
);
RistrettoPoint.hashToCurve('Ristretto is traditionally a short shot of espresso coffee');
// also has add(), equals(), multiply(), toRawBytes() methods
```
ed448 module is basically the same:
```ts
import { ed448, ed448ph, ed448ctx, x448 } from '@noble/curves/ed448';
import { hashToCurve, encodeToCurve } from '@noble/curves/ed448';
```
BLS12-381 pairing-friendly Barreto-Lynn-Scott elliptic curve construction allows to
construct [zk-SNARKs](https://z.cash/technology/zksnarks/) at the 128-bit security
and use aggregated, batch-verifiable
[threshold signatures](https://medium.com/snigirev.stepan/bls-signatures-better-than-schnorr-5a7fe30ea716),
using Boneh-Lynn-Shacham signature scheme.
```ts
import { bls12_381 as bls } from '@noble/curves/bls12-381';
const privateKey = '67d53f170b908cabb9eb326c3c337762d59289a8fec79f7bc9254b584b73265c';
const message = '64726e3da8';
const publicKey = bls.getPublicKey(privateKey);
const signature = bls.sign(message, privateKey);
const isValid = bls.verify(signature, message, publicKey);
console.log({ publicKey, signature, isValid });
// Sign 1 msg with 3 keys
const privateKeys = [
'18f020b98eb798752a50ed0563b079c125b0db5dd0b1060d1c1b47d4a193e1e4',
'ed69a8c50cf8c9836be3b67c7eeff416612d45ba39a5c099d48fa668bf558c9c',
'16ae669f3be7a2121e17d0c68c05a8f3d6bef21ec0f2315f1d7aec12484e4cf5',
];
const messages = ['d2', '0d98', '05caf3'];
const publicKeys = privateKeys.map(bls.getPublicKey);
const signatures2 = privateKeys.map((p) => bls.sign(message, p));
const aggPubKey2 = bls.aggregatePublicKeys(publicKeys);
const aggSignature2 = bls.aggregateSignatures(signatures2);
const isValid2 = bls.verify(aggSignature2, message, aggPubKey2);
console.log({ signatures2, aggSignature2, isValid2 });
// Sign 3 msgs with 3 keys
const signatures3 = privateKeys.map((p, i) => bls.sign(messages[i], p));
const aggSignature3 = bls.aggregateSignatures(signatures3);
const isValid3 = bls.verifyBatch(aggSignature3, messages, publicKeys);
console.log({ publicKeys, signatures3, aggSignature3, isValid3 });
// bls.pairing(PointG1, PointG2) // pairings
// hash-to-curve examples can be seen below
```
## Abstract API
Abstract API allows to define custom curves. All arithmetics is done with JS bigints over finite fields,
which is defined from `modular` sub-module. For scalar multiplication, we use [precomputed tables with w-ary non-adjacent form (wNAF)](https://paulmillr.com/posts/noble-secp256k1-fast-ecc/).
Precomputes are enabled for weierstrass and edwards BASE points of a curve. You could precompute any
other point (e.g. for ECDH) using `utils.precompute()` method: check out examples.
There are following zero-dependency algorithms:
- [abstract/weierstrass: Short Weierstrass curve](#abstractweierstrass-short-weierstrass-curve)
- [abstract/edwards: Twisted Edwards curve](#abstractedwards-twisted-edwards-curve)
- [abstract/montgomery: Montgomery curve](#abstractmontgomery-montgomery-curve)
- [abstract/hash-to-curve: Hashing strings to curve points](#abstracthash-to-curve-hashing-strings-to-curve-points)
- [abstract/poseidon: Poseidon hash](#abstractposeidon-poseidon-hash)
- [abstract/modular: Modular arithmetics utilities](#abstractmodular-modular-arithmetics-utilities)
- [abstract/utils: General utilities](#abstractutils-general-utilities)
### abstract/weierstrass: Short Weierstrass curve
```ts
import { weierstrass } from '@noble/curves/abstract/weierstrass';
```
Short Weierstrass curve's formula is `y² = x³ + ax + b`. `weierstrass` expects arguments `a`, `b`, field `Fp`, curve order `n`, cofactor `h`
and coordinates `Gx`, `Gy` of generator point.
**`k` generation** is done deterministically, following [RFC6979](https://www.rfc-editor.org/rfc/rfc6979).
For this you will need `hmac` & `hash`, which in our implementations is provided by noble-hashes.
If you're using different hashing library, make sure to wrap it in the following interface:
```ts
type CHash = {
(message: Uint8Array): Uint8Array;
blockLen: number;
outputLen: number;
create(): any;
};
```
**Weierstrass points:**
1. Exported as `ProjectivePoint`
2. Represented in projective (homogeneous) coordinates: (x, y, z) ∋ (x=x/z, y=y/z)
3. Use complete exception-free formulas for addition and doubling
4. Can be decoded/encoded from/to Uint8Array / hex strings using `ProjectivePoint.fromHex` and `ProjectivePoint#toRawBytes()`
5. Have `assertValidity()` which checks for being on-curve
6. Have `toAffine()` and `x` / `y` getters which convert to 2d xy affine coordinates
```ts
// T is usually bigint, but can be something else like complex numbers in BLS curves
interface ProjPointType<T> extends Group<ProjPointType<T>> {
readonly px: T;
readonly py: T;
readonly pz: T;
multiply(scalar: bigint): ProjPointType<T>;
multiplyUnsafe(scalar: bigint): ProjPointType<T>;
multiplyAndAddUnsafe(Q: ProjPointType<T>, a: bigint, b: bigint): ProjPointType<T> | undefined;
toAffine(iz?: T): AffinePoint<T>;
isTorsionFree(): boolean;
clearCofactor(): ProjPointType<T>;
assertValidity(): void;
hasEvenY(): boolean;
toRawBytes(isCompressed?: boolean): Uint8Array;
toHex(isCompressed?: boolean): string;
}
// Static methods for 3d XYZ points
interface ProjConstructor<T> extends GroupConstructor<ProjPointType<T>> {
new (x: T, y: T, z: T): ProjPointType<T>;
fromAffine(p: AffinePoint<T>): ProjPointType<T>;
fromHex(hex: Hex): ProjPointType<T>;
fromPrivateKey(privateKey: PrivKey): ProjPointType<T>;
}
```
**ECDSA signatures** are represented by `Signature` instances and can be described by the interface:
```ts
interface SignatureType {
readonly r: bigint;
readonly s: bigint;
readonly recovery?: number;
assertValidity(): void;
addRecoveryBit(recovery: number): SignatureType;
hasHighS(): boolean;
normalizeS(): SignatureType;
recoverPublicKey(msgHash: Hex): ProjPointType<bigint>;
toCompactRawBytes(): Uint8Array;
toCompactHex(): string;
// DER-encoded
toDERRawBytes(): Uint8Array;
toDERHex(): string;
}
type SignatureConstructor = {
new (r: bigint, s: bigint): SignatureType;
fromCompact(hex: Hex): SignatureType;
fromDER(hex: Hex): SignatureType;
};
```
Example implementing [secq256k1](https://personaelabs.org/posts/spartan-ecdsa) (NOT secp256k1)
[cycle](https://zcash.github.io/halo2/background/curves.html#cycles-of-curves) of secp256k1 with Fp/N flipped.
```typescript
import { weierstrass } from '@noble/curves/abstract/weierstrass';
import { Field } from '@noble/curves/abstract/modular'; // finite field, mod arithmetics done over it
import { sha256 } from '@noble/hashes/sha256'; // 3rd-party sha256() of type utils.CHash, with blockLen/outputLen
import { hmac } from '@noble/hashes/hmac'; // 3rd-party hmac() that will accept sha256()
import { concatBytes, randomBytes } from '@noble/hashes/utils'; // 3rd-party utilities
const secq256k1 = weierstrass({
// secq256k1: cycle of secp256k1 with Fp/N flipped.
a: 0n,
b: 7n,
Fp: Field(2n ** 256n - 432420386565659656852420866394968145599n),
n: 2n ** 256n - 2n ** 32n - 2n ** 9n - 2n ** 8n - 2n ** 7n - 2n ** 6n - 2n ** 4n - 1n,
Gx: 55066263022277343669578718895168534326250603453777594175500187360389116729240n,
Gy: 32670510020758816978083085130507043184471273380659243275938904335757337482424n,
hash: sha256,
hmac: (key: Uint8Array, ...msgs: Uint8Array[]) => hmac(sha256, key, concatBytes(...msgs)),
randomBytes,
});
// All curves expose same generic interface.
const priv = secq256k1.utils.randomPrivateKey();
secq256k1.getPublicKey(priv); // Convert private key to public.
const sig = secq256k1.sign(msg, priv); // Sign msg with private key.
secq256k1.verify(sig, msg, priv); // Verify if sig is correct.
const Point = secq256k1.ProjectivePoint;
const point = Point.BASE; // Elliptic curve Point class and BASE point static var.
point.add(point).equals(point.double()); // add(), equals(), double() methods
point.subtract(point).equals(Point.ZERO); // subtract() method, ZERO static var
point.negate(); // Flips point over x/y coordinate.
point.multiply(31415n); // Multiplication of Point by scalar.
point.assertValidity(); // Checks for being on-curve
point.toAffine(); // Converts to 2d affine xy coordinates
secq256k1.CURVE.n;
secq256k1.CURVE.Fp.mod();
secq256k1.CURVE.hash();
// precomputes
const fast = secq256k1.utils.precompute(8, Point.fromHex(someonesPubKey));
fast.multiply(privKey); // much faster ECDH now
```
`weierstrass()` returns `CurveFn`:
```ts
type SignOpts = { lowS?: boolean; prehash?: boolean; extraEntropy: boolean | Uint8Array };
type CurveFn = {
CURVE: ReturnType<typeof validateOpts>;
getPublicKey: (privateKey: PrivKey, isCompressed?: boolean) => Uint8Array;
getSharedSecret: (privateA: PrivKey, publicB: Hex, isCompressed?: boolean) => Uint8Array;
sign: (msgHash: Hex, privKey: PrivKey, opts?: SignOpts) => SignatureType;
verify: (
signature: Hex | SignatureType,
msgHash: Hex,
publicKey: Hex,
opts?: { lowS?: boolean; prehash?: boolean }
) => boolean;
ProjectivePoint: ProjectivePointConstructor;
Signature: SignatureConstructor;
utils: {
normPrivateKeyToScalar: (key: PrivKey) => bigint;
isValidPrivateKey(key: PrivKey): boolean;
randomPrivateKey: () => Uint8Array;
precompute: (windowSize?: number, point?: ProjPointType<bigint>) => ProjPointType<bigint>;
};
};
```
### abstract/edwards: Twisted Edwards curve
Twisted Edwards curve's formula is `ax² + y² = 1 + dx²y²`. You must specify `a`, `d`, field `Fp`, order `n`, cofactor `h`
and coordinates `Gx`, `Gy` of generator point.
For EdDSA signatures, `hash` param required. `adjustScalarBytes` which instructs how to change private scalars could be specified.
**Edwards points:**
1. Exported as `ExtendedPoint`
2. Represented in extended coordinates: (x, y, z, t) ∋ (x=x/z, y=y/z)
3. Use complete exception-free formulas for addition and doubling
4. Can be decoded/encoded from/to Uint8Array / hex strings using `ExtendedPoint.fromHex` and `ExtendedPoint#toRawBytes()`
5. Have `assertValidity()` which checks for being on-curve
6. Have `toAffine()` and `x` / `y` getters which convert to 2d xy affine coordinates
7. Have `isTorsionFree()`, `clearCofactor()` and `isSmallOrder()` utilities to handle torsions
```ts
interface ExtPointType extends Group<ExtPointType> {
readonly ex: bigint;
readonly ey: bigint;
readonly ez: bigint;
readonly et: bigint;
assertValidity(): void;
multiply(scalar: bigint): ExtPointType;
multiplyUnsafe(scalar: bigint): ExtPointType;
isSmallOrder(): boolean;
isTorsionFree(): boolean;
clearCofactor(): ExtPointType;
toAffine(iz?: bigint): AffinePoint<bigint>;
}
// Static methods of Extended Point with coordinates in X, Y, Z, T
interface ExtPointConstructor extends GroupConstructor<ExtPointType> {
new (x: bigint, y: bigint, z: bigint, t: bigint): ExtPointType;
fromAffine(p: AffinePoint<bigint>): ExtPointType;
fromHex(hex: Hex): ExtPointType;
fromPrivateKey(privateKey: Hex): ExtPointType;
}
```
Example implementing edwards25519:
```ts
import { twistedEdwards } from '@noble/curves/abstract/edwards';
import { Field, div } from '@noble/curves/abstract/modular';
import { sha512 } from '@noble/hashes/sha512';
const Fp = Field(2n ** 255n - 19n);
const ed25519 = twistedEdwards({
a: -1n,
d: Fp.div(-121665n, 121666n), // -121665n/121666n mod p
Fp,
n: 2n ** 252n + 27742317777372353535851937790883648493n,
h: 8n,
Gx: 15112221349535400772501151409588531511454012693041857206046113283949847762202n,
Gy: 46316835694926478169428394003475163141307993866256225615783033603165251855960n,
hash: sha512,
randomBytes,
adjustScalarBytes(bytes) {
// optional; but mandatory in ed25519
bytes[0] &= 248;
bytes[31] &= 127;
bytes[31] |= 64;
return bytes;
},
} as const);
```
`twistedEdwards()` returns `CurveFn` of following type:
```ts
type CurveFn = {
CURVE: ReturnType<typeof validateOpts>;
getPublicKey: (privateKey: Hex) => Uint8Array;
sign: (message: Hex, privateKey: Hex, context?: Hex) => Uint8Array;
verify: (sig: SigType, message: Hex, publicKey: Hex, context?: Hex) => boolean;
ExtendedPoint: ExtPointConstructor;
utils: {
randomPrivateKey: () => Uint8Array;
getExtendedPublicKey: (key: PrivKey) => {
head: Uint8Array;
prefix: Uint8Array;
scalar: bigint;
point: PointType;
pointBytes: Uint8Array;
};
};
};
```
### abstract/montgomery: Montgomery curve
The module contains methods for x-only ECDH on Curve25519 / Curve448 from RFC7748. Proper Elliptic Curve Points are not implemented yet.
You must specify curve params `Fp`, `a`, `Gu` coordinate of u, `montgomeryBits` and `nByteLength`.
```typescript
import { montgomery } from '@noble/curves/abstract/montgomery';
const x25519 = montgomery({
Fp: Field(2n ** 255n - 19n),
a: 486662n,
Gu: 9n,
montgomeryBits: 255,
nByteLength: 32,
// Optional param
adjustScalarBytes(bytes) {
bytes[0] &= 248;
bytes[31] &= 127;
bytes[31] |= 64;
return bytes;
},
});
```
### abstract/hash-to-curve: Hashing strings to curve points
The module allows to hash arbitrary strings to elliptic curve points. Implements [hash-to-curve v16](https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-hash-to-curve-16).
Every curve has exported `hashToCurve` and `encodeToCurve` methods:
```ts
import { hashToCurve, encodeToCurve } from '@noble/curves/secp256k1';
import { randomBytes } from '@noble/hashes/utils';
hashToCurve('0102abcd');
console.log(hashToCurve(randomBytes()));
console.log(encodeToCurve(randomBytes()));
import { bls12_381 } from '@noble/curves/bls12-381';
bls12_381.G1.hashToCurve(randomBytes(), { DST: 'another' });
bls12_381.G2.hashToCurve(randomBytes(), { DST: 'custom' });
```
If you need low-level methods from spec:
`expand_message_xmd` [(spec)](https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-hash-to-curve-11#section-5.4.1) produces a uniformly random byte string using a cryptographic hash function H that outputs b bits.
Hash must conform to `CHash` interface (see [weierstrass section](#abstractweierstrass-short-weierstrass-curve)).
```ts
function expand_message_xmd(
msg: Uint8Array,
DST: Uint8Array,
lenInBytes: number,
H: CHash
): Uint8Array;
function expand_message_xof(
msg: Uint8Array,
DST: Uint8Array,
lenInBytes: number,
k: number,
H: CHash
): Uint8Array;
```
`hash_to_field(msg, count, options)` [(spec)](https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-hash-to-curve-11#section-5.3)
hashes arbitrary-length byte strings to a list of one or more elements of a finite field F.
- `msg` a byte string containing the message to hash
- `count` the number of elements of F to output
- `options` `{DST: string, p: bigint, m: number, k: number, expand: 'xmd' | 'xof', hash: H}`.
- `p` is field prime, m=field extension (1 for prime fields)
- `k` is security target in bits (e.g. 128).
- `expand` should be `xmd` for SHA2, SHA3, BLAKE; `xof` for SHAKE, BLAKE-XOF
- `hash` conforming to `utils.CHash` interface, with `outputLen` / `blockLen` props
- Returns `[u_0, ..., u_(count - 1)]`, a list of field elements.
```ts
function hash_to_field(msg: Uint8Array, count: number, options: Opts): bigint[][];
```
### abstract/poseidon: Poseidon hash
Implements [Poseidon](https://www.poseidon-hash.info) ZK-friendly hash.
There are many poseidon variants with different constants.
We don't provide them: you should construct them manually.
The only variant provided resides in `stark` module: inspect it for proper usage.
```ts
import { poseidon } from '@noble/curves/abstract/poseidon';
type PoseidonOpts = {
Fp: Field<bigint>;
t: number;
roundsFull: number;
roundsPartial: number;
sboxPower?: number;
reversePartialPowIdx?: boolean; // Hack for stark
mds: bigint[][];
roundConstants: bigint[][];
};
const instance = poseidon(opts: PoseidonOpts);
```
### abstract/bls
The module abstracts BLS (Barreto-Lynn-Scott) primitives. In theory you should be able to write BLS12-377, BLS24,
and others with it.
### abstract/modular: Modular arithmetics utilities
```ts
import * as mod from '@noble/curves/abstract/modular';
const fp = mod.Field(2n ** 255n - 19n); // Finite field over 2^255-19
fp.mul(591n, 932n); // multiplication
fp.pow(481n, 11024858120n); // exponentiation
fp.div(5n, 17n); // division: 5/17 mod 2^255-19 == 5 * invert(17)
fp.sqrt(21n); // square root
// Generic non-FP utils are also available
mod.mod(21n, 10n); // 21 mod 10 == 1n; fixed version of 21 % 10
mod.invert(17n, 10n); // invert(17) mod 10; modular multiplicative inverse
mod.invertBatch([1n, 2n, 4n], 21n); // => [1n, 11n, 16n] in one inversion
```
#### Creating private keys from hashes
Suppose you have `sha256(something)` (e.g. from HMAC) and you want to make a private key from it.
Even though p256 or secp256k1 may have 32-byte private keys,
and sha256 output is also 32-byte, you can't just use it and reduce it modulo `CURVE.n`.
Doing so will make the result key [biased](https://research.kudelskisecurity.com/2020/07/28/the-definitive-guide-to-modulo-bias-and-how-to-avoid-it/).
To avoid the bias, we implement FIPS 186 B.4.1, which allows to take arbitrary
byte array and produce valid scalars / private keys with bias being neglible.
Use [hash-to-curve](#abstracthash-to-curve-hashing-strings-to-curve-points) if you need
hashing to **public keys**; the function in the module instead operates on **private keys**.
```ts
import { p256 } from '@noble/curves/p256';
import { sha256 } from '@noble/hashes/sha256';
import { hkdf } from '@noble/hashes/hkdf';
const someKey = new Uint8Array(32).fill(2); // Needs to actually be random, not .fill(2)
const derived = hkdf(sha256, someKey, undefined, 'application', 40); // 40 bytes
const validPrivateKey = mod.hashToPrivateScalar(derived, p256.CURVE.n);
```
### abstract/utils: General utilities
```ts
import * as utils from '@noble/curves/abstract/utils';
utils.bytesToHex(Uint8Array.from([0xde, 0xad, 0xbe, 0xef]));
utils.hexToBytes('deadbeef');
utils.hexToNumber();
utils.bytesToNumberBE(Uint8Array.from([0xde, 0xad, 0xbe, 0xef]));
utils.bytesToNumberLE(Uint8Array.from([0xde, 0xad, 0xbe, 0xef]));
utils.numberToBytesBE(123n, 32);
utils.numberToBytesLE(123n, 64);
utils.numberToHexUnpadded(123n);
utils.concatBytes(Uint8Array.from([0xde, 0xad]), Uint8Array.from([0xbe, 0xef]));
utils.nLength(255n);
utils.equalBytes(Uint8Array.from([0xde]), Uint8Array.from([0xde]));
```
## Security
The library had no prior security audit. The library has been fuzzed by [Guido Vranken's cryptofuzz](https://github.com/guidovranken/cryptofuzz): you can run the fuzzer by yourself to check it.
[Timing attack](https://en.wikipedia.org/wiki/Timing_attack) considerations: we are using non-CT bigints. However, _JIT-compiler_ and _Garbage Collector_ make "constant time" extremely hard to achieve in a scripting language. Which means _any other JS library can't have constant-timeness_. Even statically typed Rust, a language without GC, [makes it harder to achieve constant-time](https://www.chosenplaintext.ca/open-source/rust-timing-shield/security) for some cases. If your goal is absolute security, don't use any JS lib — including bindings to native ones. Use low-level libraries & languages. Nonetheless we're targetting algorithmic constant time.
We consider infrastructure attacks like rogue NPM modules very important; that's why it's crucial to minimize the amount of 3rd-party dependencies & native bindings. If your app uses 500 dependencies, any dep could get hacked and you'll be downloading malware with every `npm install`. Our goal is to minimize this attack vector. As for devDependencies used by the library:
- `@scure` base, bip32, bip39 (used in tests), micro-bmark (benchmark), micro-should (testing) are developed by us
and follow the same practices such as: minimal library size, auditability, signed releases
- prettier (linter), fast-check (property-based testing),
typescript versions are locked and rarely updated. Every update is checked with `npm-diff`.
The packages are big, which makes it hard to audit their source code thoroughly and fully.
- They are only used if you clone the git repo and want to add some feature to it. End-users won't use them.
## Speed
Benchmark results on Apple M2 with node v19:
```
secp256k1
init x 58 ops/sec @ 17ms/op
getPublicKey x 5,640 ops/sec @ 177μs/op
sign x 3,909 ops/sec @ 255μs/op
verify x 780 ops/sec @ 1ms/op
getSharedSecret x 465 ops/sec @ 2ms/op
recoverPublicKey x 740 ops/sec @ 1ms/op
schnorr.sign x 597 ops/sec @ 1ms/op
schnorr.verify x 775 ops/sec @ 1ms/op
P256
init x 31 ops/sec @ 31ms/op
getPublicKey x 5,607 ops/sec @ 178μs/op
sign x 3,930 ops/sec @ 254μs/op
verify x 540 ops/sec @ 1ms/op
P384
init x 15 ops/sec @ 63ms/op
getPublicKey x 2,622 ops/sec @ 381μs/op
sign x 1,913 ops/sec @ 522μs/op
verify x 222 ops/sec @ 4ms/op
P521
init x 8 ops/sec @ 119ms/op
getPublicKey x 1,371 ops/sec @ 729μs/op
sign x 1,090 ops/sec @ 917μs/op
verify x 118 ops/sec @ 8ms/op
ed25519
init x 47 ops/sec @ 20ms/op
getPublicKey x 9,414 ops/sec @ 106μs/op
sign x 4,516 ops/sec @ 221μs/op
verify x 912 ops/sec @ 1ms/op
ed448
init x 17 ops/sec @ 56ms/op
getPublicKey x 3,363 ops/sec @ 297μs/op
sign x 1,615 ops/sec @ 619μs/op
verify x 319 ops/sec @ 3ms/op
stark
init x 35 ops/sec @ 28ms/op
pedersen x 884 ops/sec @ 1ms/op
poseidon x 8,598 ops/sec @ 116μs/op
verify x 528 ops/sec @ 1ms/op
ecdh
├─x25519 x 1,337 ops/sec @ 747μs/op
├─secp256k1 x 461 ops/sec @ 2ms/op
├─P256 x 441 ops/sec @ 2ms/op
├─P384 x 179 ops/sec @ 5ms/op
├─P521 x 93 ops/sec @ 10ms/op
└─x448 x 496 ops/sec @ 2ms/op
bls12-381
init x 32 ops/sec @ 30ms/op
getPublicKey 1-bit x 858 ops/sec @ 1ms/op
getPublicKey x 858 ops/sec @ 1ms/op
sign x 49 ops/sec @ 20ms/op
verify x 34 ops/sec @ 28ms/op
pairing x 94 ops/sec @ 10ms/op
aggregatePublicKeys/8 x 116 ops/sec @ 8ms/op
aggregatePublicKeys/32 x 31 ops/sec @ 31ms/op
aggregatePublicKeys/128 x 7 ops/sec @ 125ms/op
aggregateSignatures/8 x 45 ops/sec @ 22ms/op
aggregateSignatures/32 x 11 ops/sec @ 84ms/op
aggregateSignatures/128 x 3 ops/sec @ 332ms/opp
hash-to-curve
hash_to_field x 850,340 ops/sec @ 1μs/op
hashToCurve
├─secp256k1 x 1,850 ops/sec @ 540μs/op
├─P256 x 3,352 ops/sec @ 298μs/op
├─P384 x 1,367 ops/sec @ 731μs/op
├─P521 x 691 ops/sec @ 1ms/op
├─ed25519 x 2,492 ops/sec @ 401μs/op
└─ed448 x 1,045 ops/sec @ 956μs/op
```
## Resources
Article about some of library's features: [Learning fast elliptic-curve cryptography](https://paulmillr.com/posts/noble-secp256k1-fast-ecc/). Elliptic curve calculator: [paulmillr.com/ecc](https://paulmillr.com/ecc)
- secp256k1
- [btc-signer](https://github.com/paulmillr/micro-btc-signer), [eth-signer](https://github.com/paulmillr/micro-eth-signer)
- ed25519
- [sol-signer](https://github.com/paulmillr/micro-sol-signer)
- BLS12-381
- Check out `bls12-381.ts` for articles about the curve
- Threshold sigs demo [genthresh.com](https://genthresh.com)
- BBS signatures [github.com/Wind4Greg/BBS-Draft-Checks](https://github.com/Wind4Greg/BBS-Draft-Checks) following [draft-irtf-cfrg-bbs-signatures-latest](https://identity.foundation/bbs-signature/draft-irtf-cfrg-bbs-signatures.html)
## Upgrading
If you're coming from single-feature noble packages, the following changes need to be kept in mind:
- 2d affine (x, y) points have been removed to reduce complexity and improve speed
- Removed `number` support as a type for private keys, `bigint` is still supported
- `mod`, `invert` are no longer present in `utils`: use `@noble/curves/abstract/modular`
Upgrading from @noble/secp256k1 1.7:
- Compressed (33-byte) public keys are now returned by default, instead of uncompressed
- Methods are now synchronous. Setting `secp.utils.hmacSha256` is no longer required
- `sign()`
- `der`, `recovered` options were removed
- `canonical` was renamed to `lowS`
- Return type is now `{ r: bigint, s: bigint, recovery: number }` instance of `Signature`
- `verify()`
- `strict` was renamed to `lowS`
- `recoverPublicKey()`: moved to sig instance `Signature#recoverPublicKey(msgHash)`
- `Point` was removed: use `ProjectivePoint` in xyz coordinates
- `utils`: Many methods were removed, others were moved to `schnorr` namespace
Upgrading from @noble/ed25519 1.7:
- Methods are now synchronous. Setting `secp.utils.hmacSha256` is no longer required
- ed25519ph, ed25519ctx
- `Point` was removed: use `ExtendedPoint` in xyzt coordinates
- `Signature` was removed
- `getSharedSecret` was removed: use separate x25519 sub-module
- `bigint` is no longer allowed in `getPublicKey`, `sign`, `verify`. Reason: ed25519 is LE, can lead to bugs
## Contributing & testing
1. Clone the repository
2. `npm install` to install build dependencies like TypeScript
3. `npm run build` to compile TypeScript code
4. `npm run test` will execute all main tests
## License
The MIT License (MIT)
Copyright (c) 2022 Paul Miller [(https://paulmillr.com)](https://paulmillr.com)
See LICENSE file.