noble-curves/README.md
2023-04-02 16:38:03 +02:00

889 lines
34 KiB
Markdown
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# noble-curves
Audited & minimal JS implementation of elliptic curve cryptography.
- Short Weierstrass, Edwards, Montgomery curves
- ECDSA, EdDSA, Schnorr, BLS signature schemes, ECDH key agreement
- 🔒 [**Audited**](#security) by an independent security firm
- #⃣ [hash to curve](#abstracthash-to-curve-hashing-strings-to-curve-points)
for encoding or hashing an arbitrary string to an elliptic curve point
- 🧜‍♂️ [Poseidon](https://www.poseidon-hash.info) ZK-friendly hash
- 🏎 [Ultra-fast](#speed), hand-optimized for caveats of JS engines
- 🔍 Unique tests ensure correctness with Wycheproof vectors and
[cryptofuzz](https://github.com/guidovranken/cryptofuzz) differential fuzzing
- 🔻 Tree-shaking-friendly: use only what's necessary, other code won't be included
Check out [Upgrading](#upgrading) if you've previously used single-feature noble
packages ([secp256k1](https://github.com/paulmillr/noble-secp256k1),
[ed25519](https://github.com/paulmillr/noble-ed25519)).
See [Resources](#resources) for articles and real-world software that uses curves.
### This library belongs to _noble_ crypto
> **noble-crypto** — high-security, easily auditable set of contained cryptographic libraries and tools.
- No dependencies, protection against supply chain attacks
- Auditable TypeScript / JS code
- Supported in all major browsers and stable node.js versions
- All releases are signed with PGP keys
- Check out [homepage](https://paulmillr.com/noble/) & all libraries:
[curves](https://github.com/paulmillr/noble-curves)
(4kb versions [secp256k1](https://github.com/paulmillr/noble-secp256k1),
[ed25519](https://github.com/paulmillr/noble-ed25519)),
[hashes](https://github.com/paulmillr/noble-hashes)
## Usage
Browser, deno and node.js are supported:
> npm install @noble/curves
For [Deno](https://deno.land), use it with
[npm specifier](https://deno.land/manual@v1.28.0/node/npm_specifiers).
In browser, you could also include the single file from
[GitHub's releases page](https://github.com/paulmillr/noble-curves/releases).
The library is tree-shaking-friendly and does not expose root entry point as
`import * from '@noble/curves'`. Instead, you need to import specific primitives.
This is done to ensure small size of your apps.
Package consists of two parts:
1. [Implementations](#implementations), utilizing one dependency `@noble/hashes`,
providing ready-to-use:
- NIST curves secp256r1/P256, secp384r1/P384, secp521r1/P521
- SECG curve secp256k1
- ed25519/curve25519/x25519/ristretto255, edwards448/curve448/x448
implementing
[RFC7748](https://www.rfc-editor.org/rfc/rfc7748) /
[RFC8032](https://www.rfc-editor.org/rfc/rfc8032) /
[ZIP215](https://zips.z.cash/zip-0215) standards
- pairing-friendly curves bls12-381, bn254
2. [Abstract](#abstract-api), zero-dependency EC algorithms
### Implementations
Each curve can be used in the following way:
```ts
import { secp256k1 } from '@noble/curves/secp256k1'; // ESM and Common.js
// import { secp256k1 } from 'npm:@noble/curves@1.2.0/secp256k1'; // Deno
const priv = secp256k1.utils.randomPrivateKey();
const pub = secp256k1.getPublicKey(priv);
const msg = new Uint8Array(32).fill(1);
const sig = secp256k1.sign(msg, priv);
secp256k1.verify(sig, msg, pub) === true;
// hex strings are also supported besides Uint8Arrays:
const privHex = '46c930bc7bb4db7f55da20798697421b98c4175a52c630294d75a84b9c126236';
const pub2 = secp256k1.getPublicKey(privHex);
```
All curves:
```typescript
import { secp256k1, schnorr } from '@noble/curves/secp256k1';
import { ed25519, ed25519ph, ed25519ctx, x25519, RistrettoPoint } from '@noble/curves/ed25519';
import { ed448, ed448ph, ed448ctx, x448 } from '@noble/curves/ed448';
import { p256 } from '@noble/curves/p256';
import { p384 } from '@noble/curves/p384';
import { p521 } from '@noble/curves/p521';
import { pallas, vesta } from '@noble/curves/pasta';
import { bls12_381 } from '@noble/curves/bls12-381';
import { bn254 } from '@noble/curves/bn';
import { jubjub } from '@noble/curves/jubjub';
```
Weierstrass curves feature recovering public keys from signatures and ECDH key agreement:
```ts
// extraEntropy https://moderncrypto.org/mail-archive/curves/2017/000925.html
const sigImprovedSecurity = secp256k1.sign(msg, priv, { extraEntropy: true });
sig.recoverPublicKey(msg) === pub; // public key recovery
const someonesPub = secp256k1.getPublicKey(secp256k1.utils.randomPrivateKey());
const shared = secp256k1.getSharedSecret(priv, someonesPub); // ECDH
```
secp256k1 has schnorr signature implementation which follows
[BIP340](https://github.com/bitcoin/bips/blob/master/bip-0340.mediawiki):
```ts
import { schnorr } from '@noble/curves/secp256k1';
const priv = schnorr.utils.randomPrivateKey();
const pub = schnorr.getPublicKey(priv);
const msg = new TextEncoder().encode('hello');
const sig = schnorr.sign(msg, priv);
const isValid = schnorr.verify(sig, msg, pub);
```
ed25519 module has ed25519ctx / ed25519ph variants,
x25519 ECDH and [ristretto255](https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-ristretto255-decaf448).
It follows [ZIP215](https://zips.z.cash/zip-0215) and [can be used in consensus-critical applications](https://hdevalence.ca/blog/2020-10-04-its-25519am):
```ts
import { ed25519 } from '@noble/curves/ed25519';
// Variants from RFC8032: with context, prehashed
import { ed25519ctx, ed25519ph } from '@noble/curves/ed25519';
// ECDH using curve25519 aka x25519
import { x25519 } from '@noble/curves/ed25519';
const priv = 'a546e36bf0527c9d3b16154b82465edd62144c0ac1fc5a18506a2244ba449ac4';
const pub = 'e6db6867583030db3594c1a424b15f7c726624ec26b3353b10a903a6d0ab1c4c';
x25519.getSharedSecret(priv, pub) === x25519.scalarMult(priv, pub); // aliases
x25519.getPublicKey(priv) === x25519.scalarMultBase(priv);
// hash-to-curve
import { hashToCurve, encodeToCurve } from '@noble/curves/ed25519';
import { RistrettoPoint } from '@noble/curves/ed25519';
const rp = RistrettoPoint.fromHex(
'6a493210f7499cd17fecb510ae0cea23a110e8d5b901f8acadd3095c73a3b919'
);
RistrettoPoint.hashToCurve('Ristretto is traditionally a short shot of espresso coffee');
// also has add(), equals(), multiply(), toRawBytes() methods
```
ed448 is similar:
```ts
import { ed448, ed448ph, ed448ctx, x448 } from '@noble/curves/ed448';
import { hashToCurve, encodeToCurve } from '@noble/curves/ed448';
ed448.getPublicKey(ed448.utils.randomPrivateKey());
```
Every curve has params:
```ts
import { secp256k1 } from '@noble/curves/secp256k1'; // ESM and Common.js
console.log(secp256k1.CURVE.p, secp256k1.CURVE.n, secp256k1.CURVE.a, secp256k1.CURVE.b);
```
BLS12-381 pairing-friendly Barreto-Lynn-Scott elliptic curve construction allows to
construct [zk-SNARKs](https://z.cash/technology/zksnarks/) at the 128-bit security
and use aggregated, batch-verifiable
[threshold signatures](https://medium.com/snigirev.stepan/bls-signatures-better-than-schnorr-5a7fe30ea716),
using Boneh-Lynn-Shacham signature scheme. Compatible with ETH and others,
just make sure to provide correct DST (domain separation tag argument).
```ts
import { bls12_381 as bls } from '@noble/curves/bls12-381';
const privateKey = '67d53f170b908cabb9eb326c3c337762d59289a8fec79f7bc9254b584b73265c';
const message = '64726e3da8';
const publicKey = bls.getPublicKey(privateKey);
const signature = bls.sign(message, privateKey);
const isValid = bls.verify(signature, message, publicKey);
console.log({ publicKey, signature, isValid });
// Sign 1 msg with 3 keys
const privateKeys = [
'18f020b98eb798752a50ed0563b079c125b0db5dd0b1060d1c1b47d4a193e1e4',
'ed69a8c50cf8c9836be3b67c7eeff416612d45ba39a5c099d48fa668bf558c9c',
'16ae669f3be7a2121e17d0c68c05a8f3d6bef21ec0f2315f1d7aec12484e4cf5',
];
const messages = ['d2', '0d98', '05caf3'];
const publicKeys = privateKeys.map(bls.getPublicKey);
const signatures2 = privateKeys.map((p) => bls.sign(message, p));
const aggPubKey2 = bls.aggregatePublicKeys(publicKeys);
const aggSignature2 = bls.aggregateSignatures(signatures2);
const isValid2 = bls.verify(aggSignature2, message, aggPubKey2);
console.log({ signatures2, aggSignature2, isValid2 });
// Sign 3 msgs with 3 keys
const signatures3 = privateKeys.map((p, i) => bls.sign(messages[i], p));
const aggSignature3 = bls.aggregateSignatures(signatures3);
const isValid3 = bls.verifyBatch(aggSignature3, messages, publicKeys);
console.log({ publicKeys, signatures3, aggSignature3, isValid3 });
// bls.pairing(PointG1, PointG2) // pairings
// hash-to-curve examples can be seen below
```
## Abstract API
Abstract API allows to define custom curves. All arithmetics is done with JS
bigints over finite fields, which is defined from `modular` sub-module. For
scalar multiplication, we use
[precomputed tables with w-ary non-adjacent form (wNAF)](https://paulmillr.com/posts/noble-secp256k1-fast-ecc/).
Precomputes are enabled for weierstrass and edwards BASE points of a curve. You
could precompute any other point (e.g. for ECDH) using `utils.precompute()`
method: check out examples.
There are following zero-dependency algorithms:
- [abstract/weierstrass: Short Weierstrass curve](#abstractweierstrass-short-weierstrass-curve)
- [abstract/edwards: Twisted Edwards curve](#abstractedwards-twisted-edwards-curve)
- [abstract/montgomery: Montgomery curve](#abstractmontgomery-montgomery-curve)
- [abstract/bls: BLS curves](#abstractbls-bls-curves)
- [abstract/hash-to-curve: Hashing strings to curve points](#abstracthash-to-curve-hashing-strings-to-curve-points)
- [abstract/poseidon: Poseidon hash](#abstractposeidon-poseidon-hash)
- [abstract/modular: Modular arithmetics utilities](#abstractmodular-modular-arithmetics-utilities)
- [abstract/utils: General utilities](#abstractutils-general-utilities)
### abstract/weierstrass: Short Weierstrass curve
```ts
import { weierstrass } from '@noble/curves/abstract/weierstrass';
import { Field } from '@noble/curves/abstract/modular'; // finite field for mod arithmetics
import { sha256 } from '@noble/hashes/sha256'; // 3rd-party sha256() of type utils.CHash
import { hmac } from '@noble/hashes/hmac'; // 3rd-party hmac() that will accept sha256()
import { concatBytes, randomBytes } from '@noble/hashes/utils'; // 3rd-party utilities
const secq256k1 = weierstrass({
// secq256k1: cycle of secp256k1 with Fp/N flipped.
// https://personaelabs.org/posts/spartan-ecdsa
// https://zcash.github.io/halo2/background/curves.html#cycles-of-curves
a: 0n,
b: 7n,
Fp: Field(2n ** 256n - 432420386565659656852420866394968145599n),
n: 2n ** 256n - 2n ** 32n - 2n ** 9n - 2n ** 8n - 2n ** 7n - 2n ** 6n - 2n ** 4n - 1n,
Gx: 55066263022277343669578718895168534326250603453777594175500187360389116729240n,
Gy: 32670510020758816978083085130507043184471273380659243275938904335757337482424n,
hash: sha256,
hmac: (key: Uint8Array, ...msgs: Uint8Array[]) => hmac(sha256, key, concatBytes(...msgs)),
randomBytes,
});
// weierstrassPoints can also be used if you don't need ECDSA, hash, hmac, randomBytes
```
Short Weierstrass curve's formula is `y² = x³ + ax + b`. `weierstrass`
expects arguments `a`, `b`, field `Fp`, curve order `n`, cofactor `h`
and coordinates `Gx`, `Gy` of generator point.
**`k` generation** is done deterministically, following
[RFC6979](https://www.rfc-editor.org/rfc/rfc6979). For this you will need
`hmac` & `hash`, which in our implementations is provided by noble-hashes. If
you're using different hashing library, make sure to wrap it in the following interface:
```ts
type CHash = {
(message: Uint8Array): Uint8Array;
blockLen: number;
outputLen: number;
create(): any;
};
```
**Weierstrass points:**
1. Exported as `ProjectivePoint`
2. Represented in projective (homogeneous) coordinates: (x, y, z) ∋ (x=x/z, y=y/z)
3. Use complete exception-free formulas for addition and doubling
4. Can be decoded/encoded from/to Uint8Array / hex strings using
`ProjectivePoint.fromHex` and `ProjectivePoint#toRawBytes()`
5. Have `assertValidity()` which checks for being on-curve
6. Have `toAffine()` and `x` / `y` getters which convert to 2d xy affine coordinates
```ts
// `weierstrassPoints()` returns `CURVE` and `ProjectivePoint`
// `weierstrass()` returns `CurveFn`
type SignOpts = { lowS?: boolean; prehash?: boolean; extraEntropy: boolean | Uint8Array };
type CurveFn = {
CURVE: ReturnType<typeof validateOpts>;
getPublicKey: (privateKey: PrivKey, isCompressed?: boolean) => Uint8Array;
getSharedSecret: (privateA: PrivKey, publicB: Hex, isCompressed?: boolean) => Uint8Array;
sign: (msgHash: Hex, privKey: PrivKey, opts?: SignOpts) => SignatureType;
verify: (
signature: Hex | SignatureType,
msgHash: Hex,
publicKey: Hex,
opts?: { lowS?: boolean; prehash?: boolean }
) => boolean;
ProjectivePoint: ProjectivePointConstructor;
Signature: SignatureConstructor;
utils: {
normPrivateKeyToScalar: (key: PrivKey) => bigint;
isValidPrivateKey(key: PrivKey): boolean;
randomPrivateKey: () => Uint8Array;
precompute: (windowSize?: number, point?: ProjPointType<bigint>) => ProjPointType<bigint>;
};
};
// T is usually bigint, but can be something else like complex numbers in BLS curves
interface ProjPointType<T> extends Group<ProjPointType<T>> {
readonly px: T;
readonly py: T;
readonly pz: T;
multiply(scalar: bigint): ProjPointType<T>;
multiplyUnsafe(scalar: bigint): ProjPointType<T>;
multiplyAndAddUnsafe(Q: ProjPointType<T>, a: bigint, b: bigint): ProjPointType<T> | undefined;
toAffine(iz?: T): AffinePoint<T>;
isTorsionFree(): boolean;
clearCofactor(): ProjPointType<T>;
assertValidity(): void;
hasEvenY(): boolean;
toRawBytes(isCompressed?: boolean): Uint8Array;
toHex(isCompressed?: boolean): string;
}
// Static methods for 3d XYZ points
interface ProjConstructor<T> extends GroupConstructor<ProjPointType<T>> {
new (x: T, y: T, z: T): ProjPointType<T>;
fromAffine(p: AffinePoint<T>): ProjPointType<T>;
fromHex(hex: Hex): ProjPointType<T>;
fromPrivateKey(privateKey: PrivKey): ProjPointType<T>;
}
```
**ECDSA signatures** are represented by `Signature` instances and can be
described by the interface:
```ts
interface SignatureType {
readonly r: bigint;
readonly s: bigint;
readonly recovery?: number;
assertValidity(): void;
addRecoveryBit(recovery: number): SignatureType;
hasHighS(): boolean;
normalizeS(): SignatureType;
recoverPublicKey(msgHash: Hex): ProjPointType<bigint>;
toCompactRawBytes(): Uint8Array;
toCompactHex(): string;
// DER-encoded
toDERRawBytes(): Uint8Array;
toDERHex(): string;
}
type SignatureConstructor = {
new (r: bigint, s: bigint): SignatureType;
fromCompact(hex: Hex): SignatureType;
fromDER(hex: Hex): SignatureType;
};
```
More examples:
```typescript
// All curves expose same generic interface.
const priv = secq256k1.utils.randomPrivateKey();
secq256k1.getPublicKey(priv); // Convert private key to public.
const sig = secq256k1.sign(msg, priv); // Sign msg with private key.
secq256k1.verify(sig, msg, priv); // Verify if sig is correct.
const Point = secq256k1.ProjectivePoint;
const point = Point.BASE; // Elliptic curve Point class and BASE point static var.
point.add(point).equals(point.double()); // add(), equals(), double() methods
point.subtract(point).equals(Point.ZERO); // subtract() method, ZERO static var
point.negate(); // Flips point over x/y coordinate.
point.multiply(31415n); // Multiplication of Point by scalar.
point.assertValidity(); // Checks for being on-curve
point.toAffine(); // Converts to 2d affine xy coordinates
secq256k1.CURVE.n;
secq256k1.CURVE.p;
secq256k1.CURVE.Fp.mod();
secq256k1.CURVE.hash();
// precomputes
const fast = secq256k1.utils.precompute(8, Point.fromHex(someonesPubKey));
fast.multiply(privKey); // much faster ECDH now
```
### abstract/edwards: Twisted Edwards curve
```ts
import { twistedEdwards } from '@noble/curves/abstract/edwards';
import { Field } from '@noble/curves/abstract/modular';
import { sha512 } from '@noble/hashes/sha512';
import { randomBytes } from '@noble/hashes/utils';
const Fp = Field(2n ** 255n - 19n);
const ed25519 = twistedEdwards({
a: -1n,
d: Fp.div(-121665n, 121666n), // -121665n/121666n mod p
Fp: Fp,
n: 2n ** 252n + 27742317777372353535851937790883648493n,
h: 8n,
Gx: 15112221349535400772501151409588531511454012693041857206046113283949847762202n,
Gy: 46316835694926478169428394003475163141307993866256225615783033603165251855960n,
hash: sha512,
randomBytes,
adjustScalarBytes(bytes) {
// optional; but mandatory in ed25519
bytes[0] &= 248;
bytes[31] &= 127;
bytes[31] |= 64;
return bytes;
},
} as const);
```
Twisted Edwards curve's formula is `ax² + y² = 1 + dx²y²`. You must specify `a`, `d`, field `Fp`, order `n`, cofactor `h`
and coordinates `Gx`, `Gy` of generator point.
For EdDSA signatures, `hash` param required. `adjustScalarBytes` which instructs how to change private scalars could be specified.
**Edwards points:**
1. Exported as `ExtendedPoint`
2. Represented in extended coordinates: (x, y, z, t) ∋ (x=x/z, y=y/z)
3. Use complete exception-free formulas for addition and doubling
4. Can be decoded/encoded from/to Uint8Array / hex strings using `ExtendedPoint.fromHex` and `ExtendedPoint#toRawBytes()`
5. Have `assertValidity()` which checks for being on-curve
6. Have `toAffine()` and `x` / `y` getters which convert to 2d xy affine coordinates
7. Have `isTorsionFree()`, `clearCofactor()` and `isSmallOrder()` utilities to handle torsions
```ts
// `twistedEdwards()` returns `CurveFn` of following type:
type CurveFn = {
CURVE: ReturnType<typeof validateOpts>;
getPublicKey: (privateKey: Hex) => Uint8Array;
sign: (message: Hex, privateKey: Hex, context?: Hex) => Uint8Array;
verify: (sig: SigType, message: Hex, publicKey: Hex, context?: Hex) => boolean;
ExtendedPoint: ExtPointConstructor;
utils: {
randomPrivateKey: () => Uint8Array;
getExtendedPublicKey: (key: PrivKey) => {
head: Uint8Array;
prefix: Uint8Array;
scalar: bigint;
point: PointType;
pointBytes: Uint8Array;
};
};
};
interface ExtPointType extends Group<ExtPointType> {
readonly ex: bigint;
readonly ey: bigint;
readonly ez: bigint;
readonly et: bigint;
assertValidity(): void;
multiply(scalar: bigint): ExtPointType;
multiplyUnsafe(scalar: bigint): ExtPointType;
isSmallOrder(): boolean;
isTorsionFree(): boolean;
clearCofactor(): ExtPointType;
toAffine(iz?: bigint): AffinePoint<bigint>;
}
// Static methods of Extended Point with coordinates in X, Y, Z, T
interface ExtPointConstructor extends GroupConstructor<ExtPointType> {
new (x: bigint, y: bigint, z: bigint, t: bigint): ExtPointType;
fromAffine(p: AffinePoint<bigint>): ExtPointType;
fromHex(hex: Hex): ExtPointType;
fromPrivateKey(privateKey: Hex): ExtPointType;
}
```
### abstract/montgomery: Montgomery curve
```typescript
import { montgomery } from '@noble/curves/abstract/montgomery';
import { Field } from '@noble/curves/abstract/modular';
const x25519 = montgomery({
a: 486662n,
Gu: 9n,
Fp: Field(2n ** 255n - 19n),
montgomeryBits: 255,
nByteLength: 32,
// Optional param
adjustScalarBytes(bytes) {
bytes[0] &= 248;
bytes[31] &= 127;
bytes[31] |= 64;
return bytes;
},
});
```
The module contains methods for x-only ECDH on Curve25519 / Curve448 from RFC7748.
Proper Elliptic Curve Points are not implemented yet.
You must specify curve params `Fp`, `a`, `Gu` coordinate of u, `montgomeryBits` and `nByteLength`.
### abstract/bls: BLS curves
The module abstracts BLS (Barreto-Lynn-Scott) primitives.
Right now we only implement BLS12-381, but in theory defining BLS12-377, BLS24
should be straightforward.
Main methods and properties are:
- `getPublicKey(privateKey)`
- `sign(message, privateKey)`
- `verify(signature, message, publicKey)`
- `aggregatePublicKeys(publicKeys)`
- `aggregateSignatures(signatures)`
- `G1` and `G2` curves containing `CURVE` and `ProjectivePoint`
- `Signature` property with `fromHex`, `toHex` methods
- `fields` containing `Fp`, `Fp2`, `Fp6`, `Fp12`, `Fr`
Full types:
```ts
getPublicKey: (privateKey: PrivKey) => Uint8Array;
sign: {
(message: Hex, privateKey: PrivKey): Uint8Array;
(message: ProjPointType<Fp2>, privateKey: PrivKey): ProjPointType<Fp2>;
};
verify: (
signature: Hex | ProjPointType<Fp2>,
message: Hex | ProjPointType<Fp2>,
publicKey: Hex | ProjPointType<Fp>
) => boolean;
verifyBatch: (
signature: Hex | ProjPointType<Fp2>,
messages: (Hex | ProjPointType<Fp2>)[],
publicKeys: (Hex | ProjPointType<Fp>)[]
) => boolean;
aggregatePublicKeys: {
(publicKeys: Hex[]): Uint8Array;
(publicKeys: ProjPointType<Fp>[]): ProjPointType<Fp>;
};
aggregateSignatures: {
(signatures: Hex[]): Uint8Array;
(signatures: ProjPointType<Fp2>[]): ProjPointType<Fp2>;
};
millerLoop: (ell: [Fp2, Fp2, Fp2][], g1: [Fp, Fp]) => Fp12;
pairing: (P: ProjPointType<Fp>, Q: ProjPointType<Fp2>, withFinalExponent?: boolean) => Fp12;
G1: CurvePointsRes<Fp> & ReturnType<typeof htf.createHasher<Fp>>;
G2: CurvePointsRes<Fp2> & ReturnType<typeof htf.createHasher<Fp2>>;
Signature: SignatureCoder<Fp2>;
params: {
x: bigint;
r: bigint;
G1b: bigint;
G2b: Fp2;
};
fields: {
Fp: IField<Fp>;
Fp2: IField<Fp2>;
Fp6: IField<Fp6>;
Fp12: IField<Fp12>;
Fr: IField<bigint>;
};
utils: {
randomPrivateKey: () => Uint8Array;
calcPairingPrecomputes: (p: AffinePoint<Fp2>) => [Fp2, Fp2, Fp2][];
};
```
### abstract/hash-to-curve: Hashing strings to curve points
The module allows to hash arbitrary strings to elliptic curve points. Implements [hash-to-curve v16](https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-hash-to-curve-16).
Every curve has exported `hashToCurve` and `encodeToCurve` methods. You should always prefer `hashToCurve` for security:
```ts
import { hashToCurve, encodeToCurve } from '@noble/curves/secp256k1';
import { randomBytes } from '@noble/hashes/utils';
hashToCurve('0102abcd');
console.log(hashToCurve(randomBytes()));
console.log(encodeToCurve(randomBytes()));
import { bls12_381 } from '@noble/curves/bls12-381';
bls12_381.G1.hashToCurve(randomBytes(), { DST: 'another' });
bls12_381.G2.hashToCurve(randomBytes(), { DST: 'custom' });
```
If you need low-level methods from spec:
`expand_message_xmd` [(spec)](https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-hash-to-curve-11#section-5.4.1) produces a uniformly random byte string using a cryptographic hash function H that outputs b bits.
Hash must conform to `CHash` interface (see [weierstrass section](#abstractweierstrass-short-weierstrass-curve)).
```ts
function expand_message_xmd(
msg: Uint8Array,
DST: Uint8Array,
lenInBytes: number,
H: CHash
): Uint8Array;
function expand_message_xof(
msg: Uint8Array,
DST: Uint8Array,
lenInBytes: number,
k: number,
H: CHash
): Uint8Array;
```
`hash_to_field(msg, count, options)`
[(spec)](https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-hash-to-curve-11#section-5.3)
hashes arbitrary-length byte strings to a list of one or more elements of a finite field F.
```ts
/**
* * `DST` is a domain separation tag, defined in section 2.2.5
* * `p` characteristic of F, where F is a finite field of characteristic p and order q = p^m
* * `m` is extension degree (1 for prime fields)
* * `k` is the target security target in bits (e.g. 128), from section 5.1
* * `expand` is `xmd` (SHA2, SHA3, BLAKE) or `xof` (SHAKE, BLAKE-XOF)
* * `hash` conforming to `utils.CHash` interface, with `outputLen` / `blockLen` props
*/
type UnicodeOrBytes = string | Uint8Array;
type Opts = {
DST: UnicodeOrBytes;
p: bigint;
m: number;
k: number;
expand?: 'xmd' | 'xof';
hash: CHash;
};
/**
* Hashes arbitrary-length byte strings to a list of one or more elements of a finite field F
* https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-hash-to-curve-11#section-5.3
* @param msg a byte string containing the message to hash
* @param count the number of elements of F to output
* @param options `{DST: string, p: bigint, m: number, k: number, expand: 'xmd' | 'xof', hash: H}`, see above
* @returns [u_0, ..., u_(count - 1)], a list of field elements.
*/
function hash_to_field(msg: Uint8Array, count: number, options: Opts): bigint[][];
```
### abstract/poseidon: Poseidon hash
Implements [Poseidon](https://www.poseidon-hash.info) ZK-friendly hash.
There are many poseidon variants with different constants.
We don't provide them: you should construct them manually.
Check out [micro-starknet](https://github.com/paulmillr/micro-starknet) package for a proper example.
```ts
import { poseidon } from '@noble/curves/abstract/poseidon';
type PoseidonOpts = {
Fp: Field<bigint>;
t: number;
roundsFull: number;
roundsPartial: number;
sboxPower?: number;
reversePartialPowIdx?: boolean;
mds: bigint[][];
roundConstants: bigint[][];
};
const instance = poseidon(opts: PoseidonOpts);
```
### abstract/modular: Modular arithmetics utilities
```ts
import * as mod from '@noble/curves/abstract/modular';
const fp = mod.Field(2n ** 255n - 19n); // Finite field over 2^255-19
fp.mul(591n, 932n); // multiplication
fp.pow(481n, 11024858120n); // exponentiation
fp.div(5n, 17n); // division: 5/17 mod 2^255-19 == 5 * invert(17)
fp.sqrt(21n); // square root
// Generic non-FP utils are also available
mod.mod(21n, 10n); // 21 mod 10 == 1n; fixed version of 21 % 10
mod.invert(17n, 10n); // invert(17) mod 10; modular multiplicative inverse
mod.invertBatch([1n, 2n, 4n], 21n); // => [1n, 11n, 16n] in one inversion
```
#### Creating private keys from hashes
Suppose you have `sha256(something)` (e.g. from HMAC) and you want to make a private key from it.
Even though p256 or secp256k1 may have 32-byte private keys,
and sha256 output is also 32-byte, you can't just use it and reduce it modulo `CURVE.n`.
Doing so will make the result key [biased](https://research.kudelskisecurity.com/2020/07/28/the-definitive-guide-to-modulo-bias-and-how-to-avoid-it/).
To avoid the bias, we implement FIPS 186 B.4.1, which allows to take arbitrary
byte array and produce valid scalars / private keys with bias being neglible.
Use [hash-to-curve](#abstracthash-to-curve-hashing-strings-to-curve-points) if you need
hashing to **public keys**; the function in the module instead operates on **private keys**.
```ts
import { p256 } from '@noble/curves/p256';
import { sha256 } from '@noble/hashes/sha256';
import { hkdf } from '@noble/hashes/hkdf';
const someKey = new Uint8Array(32).fill(2); // Needs to actually be random, not .fill(2)
const derived = hkdf(sha256, someKey, undefined, 'application', 40); // 40 bytes
const validPrivateKey = mod.hashToPrivateScalar(derived, p256.CURVE.n);
```
### abstract/utils: General utilities
```ts
import * as utils from '@noble/curves/abstract/utils';
utils.bytesToHex(Uint8Array.from([0xde, 0xad, 0xbe, 0xef]));
utils.hexToBytes('deadbeef');
utils.hexToNumber();
utils.bytesToNumberBE(Uint8Array.from([0xde, 0xad, 0xbe, 0xef]));
utils.bytesToNumberLE(Uint8Array.from([0xde, 0xad, 0xbe, 0xef]));
utils.numberToBytesBE(123n, 32);
utils.numberToBytesLE(123n, 64);
utils.numberToHexUnpadded(123n);
utils.concatBytes(Uint8Array.from([0xde, 0xad]), Uint8Array.from([0xbe, 0xef]));
utils.nLength(255n);
utils.equalBytes(Uint8Array.from([0xde]), Uint8Array.from([0xde]));
```
## Security
1. The library has been audited during Jan-Feb 2023 by an independent security firm [Trail of Bits](https://www.trailofbits.com):
[PDF](https://github.com/trailofbits/publications/blob/master/reviews/2023-01-ryanshea-noblecurveslibrary-securityreview.pdf).
The audit has been funded by Ryan Shea. Audit scope was abstract modules `curve`, `hash-to-curve`, `modular`, `poseidon`, `utils`, `weierstrass`, and top-level modules `_shortw_utils` and `secp256k1`. See [changes since audit](https://github.com/paulmillr/noble-curves/compare/0.7.3..main).
2. The library has been fuzzed by [Guido Vranken's cryptofuzz](https://github.com/guidovranken/cryptofuzz). You can run the fuzzer by yourself to check it.
3. [Timing attack](https://en.wikipedia.org/wiki/Timing_attack) considerations: _JIT-compiler_ and _Garbage Collector_ make "constant time" extremely hard to achieve in a scripting language. Which means _any other JS library can't have constant-timeness_. Even statically typed Rust, a language without GC, [makes it harder to achieve constant-time](https://www.chosenplaintext.ca/open-source/rust-timing-shield/security) for some cases. If your goal is absolute security, don't use any JS lib — including bindings to native ones. Use low-level libraries & languages. Nonetheless we're targetting algorithmic constant time.
We consider infrastructure attacks like rogue NPM modules very important; that's why it's crucial to minimize the amount of 3rd-party dependencies & native bindings. If your app uses 500 dependencies, any dep could get hacked and you'll be downloading malware with every `npm install`. Our goal is to minimize this attack vector. As for devDependencies used by the library:
- `@scure` base, bip32, bip39 (used in tests), micro-bmark (benchmark), micro-should (testing) are developed by us
and follow the same practices such as: minimal library size, auditability, signed releases
- prettier (linter), fast-check (property-based testing),
typescript versions are locked and rarely updated. Every update is checked with `npm-diff`.
The packages are big, which makes it hard to audit their source code thoroughly and fully.
- They are only used if you clone the git repo and want to add some feature to it. End-users won't use them.
## Speed
Benchmark results on Apple M2 with node v19:
```
secp256k1
init x 58 ops/sec @ 17ms/op
getPublicKey x 5,640 ops/sec @ 177μs/op
sign x 3,909 ops/sec @ 255μs/op
verify x 780 ops/sec @ 1ms/op
getSharedSecret x 465 ops/sec @ 2ms/op
recoverPublicKey x 740 ops/sec @ 1ms/op
schnorr.sign x 597 ops/sec @ 1ms/op
schnorr.verify x 775 ops/sec @ 1ms/op
P256
init x 31 ops/sec @ 31ms/op
getPublicKey x 5,607 ops/sec @ 178μs/op
sign x 3,930 ops/sec @ 254μs/op
verify x 540 ops/sec @ 1ms/op
P384
init x 15 ops/sec @ 63ms/op
getPublicKey x 2,622 ops/sec @ 381μs/op
sign x 1,913 ops/sec @ 522μs/op
verify x 222 ops/sec @ 4ms/op
P521
init x 8 ops/sec @ 119ms/op
getPublicKey x 1,371 ops/sec @ 729μs/op
sign x 1,090 ops/sec @ 917μs/op
verify x 118 ops/sec @ 8ms/op
ed25519
init x 47 ops/sec @ 20ms/op
getPublicKey x 9,414 ops/sec @ 106μs/op
sign x 4,516 ops/sec @ 221μs/op
verify x 912 ops/sec @ 1ms/op
ed448
init x 17 ops/sec @ 56ms/op
getPublicKey x 3,363 ops/sec @ 297μs/op
sign x 1,615 ops/sec @ 619μs/op
verify x 319 ops/sec @ 3ms/op
ecdh
├─x25519 x 1,337 ops/sec @ 747μs/op
├─secp256k1 x 461 ops/sec @ 2ms/op
├─P256 x 441 ops/sec @ 2ms/op
├─P384 x 179 ops/sec @ 5ms/op
├─P521 x 93 ops/sec @ 10ms/op
└─x448 x 496 ops/sec @ 2ms/op
bls12-381
init x 32 ops/sec @ 30ms/op
getPublicKey 1-bit x 858 ops/sec @ 1ms/op
getPublicKey x 858 ops/sec @ 1ms/op
sign x 49 ops/sec @ 20ms/op
verify x 34 ops/sec @ 28ms/op
pairing x 94 ops/sec @ 10ms/op
aggregatePublicKeys/8 x 116 ops/sec @ 8ms/op
aggregatePublicKeys/32 x 31 ops/sec @ 31ms/op
aggregatePublicKeys/128 x 7 ops/sec @ 125ms/op
aggregateSignatures/8 x 45 ops/sec @ 22ms/op
aggregateSignatures/32 x 11 ops/sec @ 84ms/op
aggregateSignatures/128 x 3 ops/sec @ 332ms/opp
hash-to-curve
hash_to_field x 850,340 ops/sec @ 1μs/op
hashToCurve
├─secp256k1 x 1,850 ops/sec @ 540μs/op
├─P256 x 3,352 ops/sec @ 298μs/op
├─P384 x 1,367 ops/sec @ 731μs/op
├─P521 x 691 ops/sec @ 1ms/op
├─ed25519 x 2,492 ops/sec @ 401μs/op
└─ed448 x 1,045 ops/sec @ 956μs/op
```
## Contributing & testing
1. Clone the repository
2. `npm install` to install build dependencies like TypeScript
3. `npm run build` to compile TypeScript code
4. `npm run test` will execute all main tests
## Resources
Article about some of library's features: [Learning fast elliptic-curve cryptography](https://paulmillr.com/posts/noble-secp256k1-fast-ecc/)
Projects using the library:
- secp256k1
- [btc-signer](https://github.com/paulmillr/scure-btc-signer), [eth-signer](https://github.com/paulmillr/micro-eth-signer)
- ed25519
- [sol-signer](https://github.com/paulmillr/micro-sol-signer)
- BLS12-381
- Check out `bls12-381.ts` for articles about the curve
- Threshold sigs demo [genthresh.com](https://genthresh.com)
- BBS signatures [github.com/Wind4Greg/BBS-Draft-Checks](https://github.com/Wind4Greg/BBS-Draft-Checks) following [draft-irtf-cfrg-bbs-signatures-latest](https://identity.foundation/bbs-signature/draft-irtf-cfrg-bbs-signatures.html)
- Others
- All curves demo: Elliptic curve calculator [paulmillr.com/noble](https://paulmillr.com/noble)
- [micro-starknet](https://github.com/paulmillr/micro-starknet) for stark-friendly elliptic curve.
## Upgrading
Previously, the library was split into single-feature packages
noble-secp256k1 and noble-ed25519. curves can be thought as a continuation of their
original work. The libraries now changed their direction towards providing
minimal 4kb implementations of cryptography and are not as feature-complete.
Upgrading from [@noble/secp256k1](https://github.com/paulmillr/noble-secp256k1) 1.7:
- `getPublicKey`
- now produce 33-byte compressed signatures by default
- to use old behavior, which produced 65-byte uncompressed keys, set
argument `isCompressed` to `false`: `getPublicKey(priv, false)`
- `sign`
- is now sync; use `signAsync` for async version
- now returns `Signature` instance with `{ r, s, recovery }` properties
- `canonical` option was renamed to `lowS`
- `recovered` option has been removed because recovery bit is always returned now
- `der` option has been removed. There are 2 options:
1. Use compact encoding: `fromCompact`, `toCompactRawBytes`, `toCompactHex`.
Compact encoding is simply a concatenation of 32-byte r and 32-byte s.
2. If you must use DER encoding, switch to noble-curves (see above).
- `verify`
- `strict` option was renamed to `lowS`
- `getSharedSecret`
- now produce 33-byte compressed signatures by default
- to use old behavior, which produced 65-byte uncompressed keys, set
argument `isCompressed` to `false`: `getSharedSecret(a, b, false)`
- `recoverPublicKey(msg, sig, rec)` was changed to `sig.recoverPublicKey(msg)`
- `number` type for private keys have been removed: use `bigint` instead
- `Point` (2d xy) has been changed to `ProjectivePoint` (3d xyz)
- `utils` were split into `utils` (same api as in noble-curves) and
`etc` (`hmacSha256Sync` and others)
Upgrading from [@noble/ed25519](https://github.com/paulmillr/noble-ed25519) 1.7:
- Methods are now sync by default
- `bigint` is no longer allowed in `getPublicKey`, `sign`, `verify`. Reason: ed25519 is LE, can lead to bugs
- `Point` (2d xy) has been changed to `ExtendedPoint` (xyzt)
- `Signature` was removed: just use raw bytes or hex now
- `utils` were split into `utils` (same api as in noble-curves) and
`etc` (`sha512Sync` and others)
- `getSharedSecret` was moved to `x25519` module
## License
The MIT License (MIT)
Copyright (c) 2022 Paul Miller [(https://paulmillr.com)](https://paulmillr.com)
See LICENSE file.